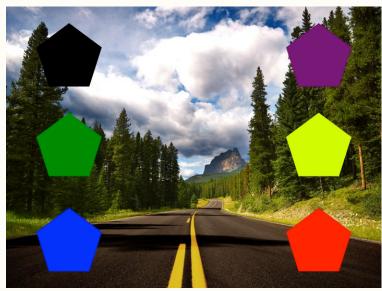
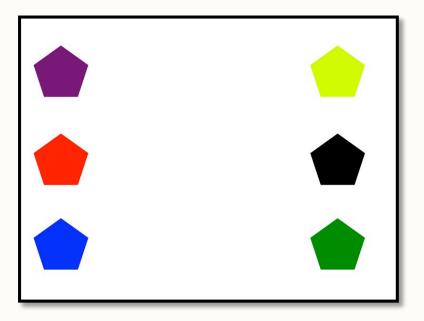


- During the 1980's, optometrists found that the human eye is "red-weak"
- Stephen S. Solomon and James King studied the Dallas Fire Department from 1984-1988
 - They found that fire trucks with a red livery had more accidents than the fluorescent yellow fire trucks
- FEMA conducted a study on how the color of fire engines affects the amount of intersection accidents
 - Florescent yellow vehicles were involved in less intersection accidents
 - Recognition of the vehicle is more important than the color

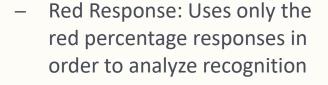
- 2008- Motor vehicle crashes were the cause of death for 29 of 114 firefighters killed on duty
- "True empirical research specific to U.S. emergency vehicle visibility is almost nonexistent"
- Goal- Quantify the importance of recognition so that engineers
 can design a livery that will decrease this statistic firefighter deaths

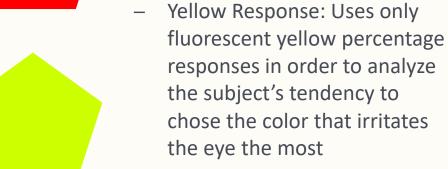

Design

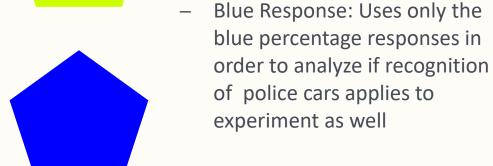

– Factors Include:

- Noise: Police siren, ire truck siren, and no siren (ambient noise)
- Background: Cityscape, countryside, and no background (white)
- Constant: Colors, fire truck siren, and police siren
- Three Replications
- 90% Confidence Level

Procedure


Data

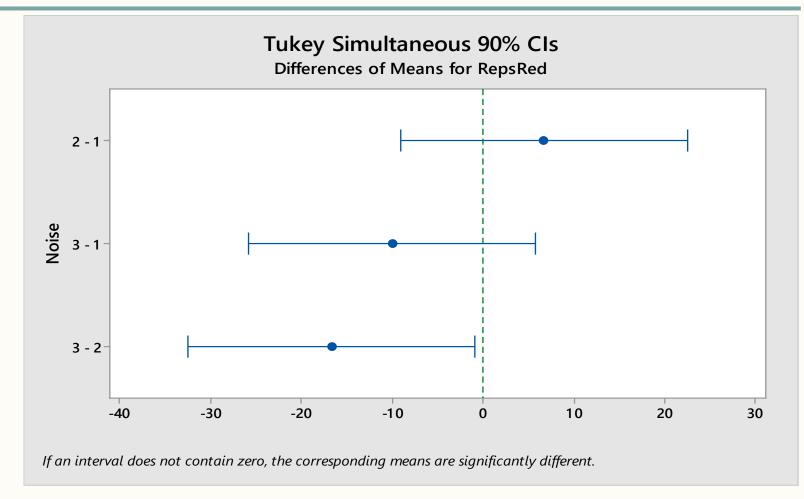

		Background									
		1. Blank			2. City			3. Rural			
		Yellow: 60	Yellow: 40	Yellow: 0	Yellow: 20	Yellow: 0	Yellow: 10	Yellow: 10	Yellow: 50	Yellow: 10	
		Red: 10	Red: 20	Red: 20	Red: 10	Red: 70	Red: 20	Red: 30	Red: 30	Red: 20	
	1. None	Blue: 20	Blue: 20	Blue: 70	Blue: 20	Blue: 30	Blue: 20	Blue: 30	Blue: 20	Blue: 10	
		Red&Blue: 30	Red&Blue:40	Red&Blue: 90	Red&Blue: 30	Red&Blue: 100	Red&Blue: 40	Red&Blue: 60	Red&Blue: 50	Red&Blue: 30	
		Randomization: 11	Randomization: 26	Randomization: 9	Randomization: 10	Randomization: 25	Randomization: 27	Randomization: 21	Randomization: 22	Randomization: 24	
	2. Fire Siren	Yellow: 0	Yellow: 0	Yellow: 0	Yellow: 0	Yellow: 10	Yellow: 10	Yellow: 20	Yellow: 20	Yellow: 10	
96		Red: 10	Red: 40	Red: 20	Red: 40	Red: 70	Red: 50	Red: 10	Red: 30	Red: 20	
Noise		Blue: 30	Blue: 0	Blue: 10	Blue: 20	Blue: 20	Blue: 20	Blue: 30	Blue: 10	Blue: 30	
		Red&Blue: 40	Red&Blue: 40	Red&Blue: 30	Red&Blue: 60	Red&Blue: 90	Red&Blue: 70	Red&Blue: 40	Red&Blue: 40	Red&Blue: 50	
		Randomization: 3	Randomization: 4	Randomization: 17	Randomization: 1	Randomization: 5	Randomization: 19	Randomization: 2	Randomization: 6	Randomization: 20	
	3. Police Siren	Yellow: 0	Yellow: 90	Yellow: 10	Yellow: 0	Yellow: 10	Yellow: 10	Yellow: 10	Yellow: 0	Yellow: 20	
		Red: 10	Red: 10	Red: 10	Red: 0	Red: 10	Red: 10	Red: 50	Red: 30	Red: 10	
		Blue: 30	Blue: 0	Blue: 50	Blue: 60	Blue: 20	Blue: 30	Blue: 10	Blue: 40	Blue: 20	
		Red&Blue: 40	Red&Blue: 10	Red&Blue: 60	Red&Blue: 60	Red&Blue: 30	Red&Blue: 40	Red&Blue: 60	Red&Blue: 70	Red&Blue: 30	
		Randomization: 7	Randomization: 14	Randomization: 18	Randomization: 23	Randomization: 13	Randomization: 16	Randomization: 8	Randomization: 12	Randomization: 15	


Three Analyses

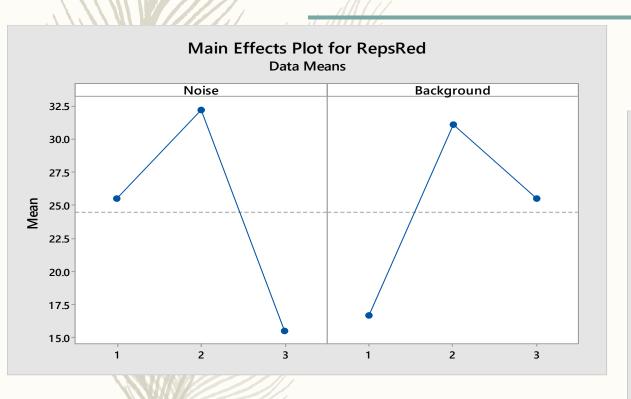
Noise		Background	RepsYellow	RepsRed
	1	1	60	10
	1	1	40	20
	1	1	0	20
	1	2	20	10
	1	2	0	70
	1	2	10	20
	1	3	10	30
	1	3	50	30
	1	3	10	20
	2	1	0	10
	2	1	0	40
	2	1	0	20
	2	2	0	40
	2	2	10	70
	2	2	10	50
	2	3	20	10
	2	3	20	30
	2	3	10	20
	3	1	0	10
	3	1	90	10
	3	1	10	10
	3	2	0	0
	3	2	10	10
	3	2	10	10
	3	3	10	50
	3	3	0	30
	3	3	20	10

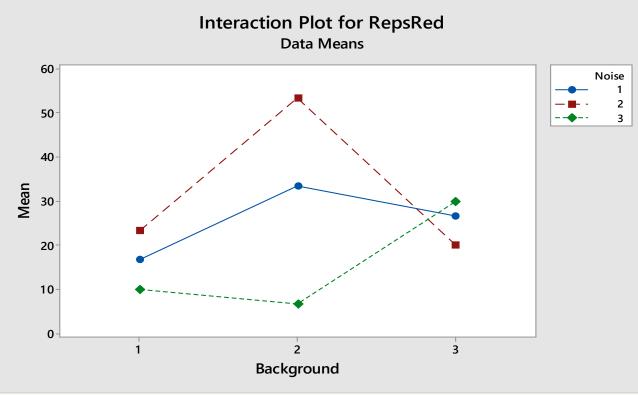
Analysis of Variance

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F-Value	P-Value
Noise	2	1266.7	14.29%	1266.7	633.3	2.71	0.093
Background	2	955.6	10.78%	955.6	477.8	2.05	0.158
Noise*Background	4	2444.4	27.57%	2444.4	611.1	2.62	0.069
Error	18	4200.0	47.37%	4200.0	233.3		
Total	26	8866.7	100.00%				


$$\begin{cases}
H'_0: \alpha_1 = \alpha_2 = \alpha_3 = 0 \\
H'_1: At least one \alpha_i \neq 0
\end{cases}$$
(1)

$$\begin{cases}
H''_0: \beta_1 = \beta_2 = \beta_3 = 0 \\
H''_1: At least one \beta_i \neq 0
\end{cases}$$
(2)

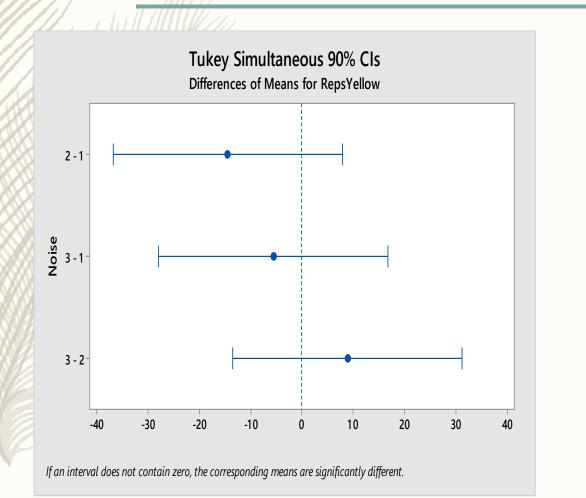

$$\begin{cases}
H'''_0: (\alpha\beta)_{11} = (\alpha\beta)_{12} = \cdots = (\alpha\beta)_{33} = 0 \\
H'''_1: At least one (\alpha\beta)_{ij} \neq 0
\end{cases}$$
(3)

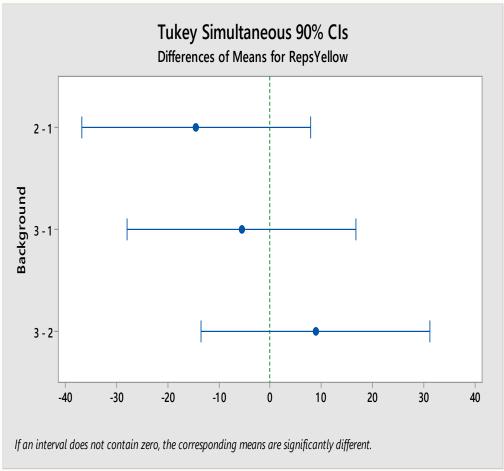

- Noise- Significant
- Background- Insignificant
- Interaction- Significant

Red Response: Main Effects and Interaction Plot

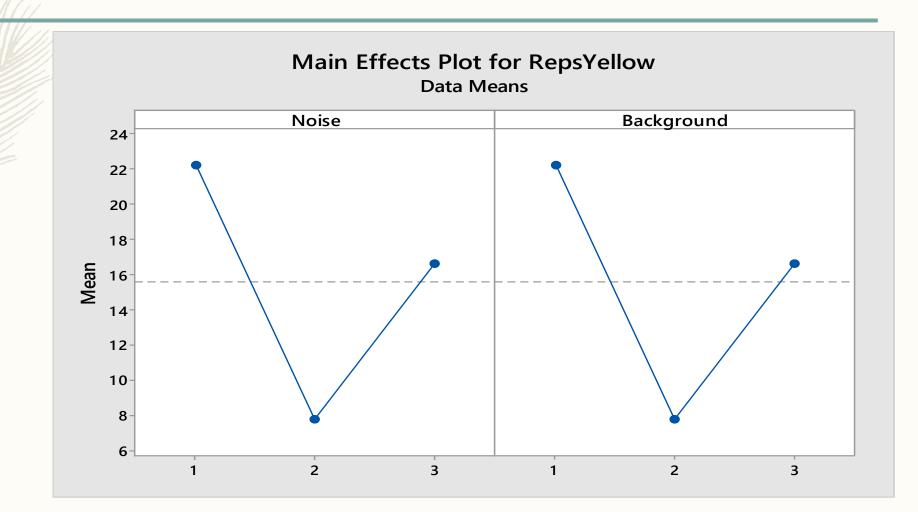
Analysis of Variance

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F-Value	P-Value
Noise	2	955.6	8.05%	955.6	477.8	1.02	0.379
Background	2	955.6	8.05%	955.6	477.8	1.02	0.379
Noise*Background	4	1555.6	13.11%	1555.6	388.9	0.83	0.522
Error	18	8400.0	70.79%	8400.0	466.7		
Total	26	11866.7	100.00%				


$$\begin{cases}
H'_0: \alpha_1 = \alpha_2 = \alpha_3 = 0 \\
H'_1: At least one \alpha_i \neq 0
\end{cases}$$
(1)


$$\begin{cases}
H''_0: \beta_1 = \beta_2 = \beta_3 = 0 \\
H''_1: At least one \beta_i \neq 0
\end{cases}$$
(2)

$$\begin{cases}
H'''_0: (\alpha\beta)_{11} = (\alpha\beta)_{12} = \cdots = (\alpha\beta)_{33} = 0 \\
H'''_1: At least one (\alpha\beta)_{ij} \neq 0
\end{cases}$$
(3)


- Noise- Insignificant
- Background- Insignificant
- Interaction- Insignificant

Yellow Response: Tukey's Plot

Recognition versus Science

Expected Results

- Fluorescent yellow- Insignificant
 - despite hearing an auditory response, subjects would choose the color that the eye is generally drawn to and irritated by the most

OR

- Red- Significant
 - subjects would link the fire truck siren to a particular color and the eye would seek that color

Direct Comparison

Response	Error	Fire Truck Siren Mean		
Yellow	70.79%	7.77		
Red	47.37%	32.22		

Analysis of Variance

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F-Value	P-Value
Noise	2	496.30	7.44%	496.30	248.15	0.85	0.445
Background	2	96.30	1.44%	96.30	48.15	0.16	0.850
Noise*Background	4	814.81	12.21%	814.81	203.70	0.70	0.604
Error	18	5266.67	78.91%	5266.67	292.59		
Total	26	6674.07	100.00%				

Background-Insignificant

$$\begin{cases} H'_0: \alpha_1 = \alpha_2 = \alpha_3 = 0 \\ H'_1: At \ least \ one \ \alpha_i \neq 0 \end{cases}$$

$$\begin{cases} H''_0: \beta_1 = \beta_2 = \beta_3 = 0 \\ H''_1: At \ least \ one \ \beta_i \neq 0 \end{cases}$$

$$(2)$$

$$\begin{cases}
H'''_0: (\alpha\beta)_{11} = (\alpha\beta)_{12} = \cdots = (\alpha\beta)_{33} = 0 \\
H'''_1: At least one (\alpha\beta)_{ij} \neq 0
\end{cases}$$
(3)

Conclusion & Recommendation

- Subjects were more likely to choose the red object in response to a recording of a fire truck engine on a cityscape background
- Recognition plays an important part in the color of emergency vehicles and being able to link a fire truck siren with a red fire engine is better for emergency vehicle design
- Recommendation: Red should be chosen as the predominate color of the body
 of the fire truck, particularly when designing fire trucks in area with a high level
 of distractions such as large cities

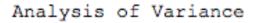
References

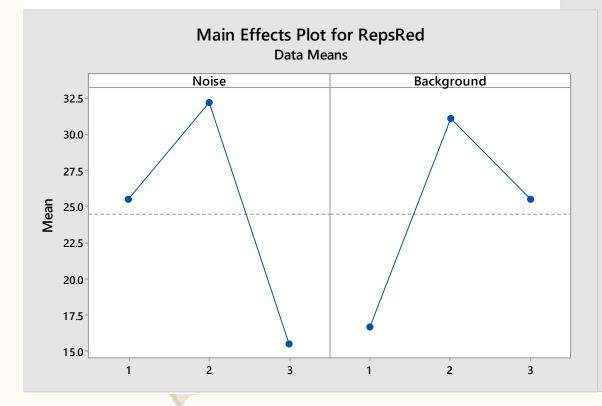
Federal Emergency Management Agency. Emergency Vehicle Visibility And Conspicuity Study (FEMA Publication No. FA-323). Emmitsburg, Maryland: Federal Emergency Management Agency; 2009.

Lime-Yellow Fire Trucks Safer Than Red -- A Conclusion from Four Years of Data. Usroadscom. 2016. Available at: http://www.usroads.com/journals/aruj/9702/ru970203.htm. Accessed April 24, 2016.

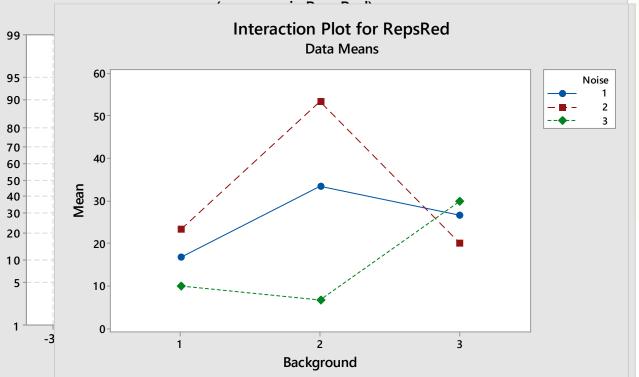
Who said fire trucks had to be red? - Firefighter-EMT.com. Firefighter-emtcom. 2016. Available at: http://www.firefighter-emt.com/archives/who-said-fire-trucks-had-to-be-red.php. Accessed April 24, 2016.

Charcoal Ford Taurus Police Interceptor Utility at West County Center in Des Peres, MO_DSCN3431c. Flickr - Photo Sharing!. 2016. Available at: https://www.flickr.com/photos/11581147@N06/8552891271. Accessed April 24, 2016.

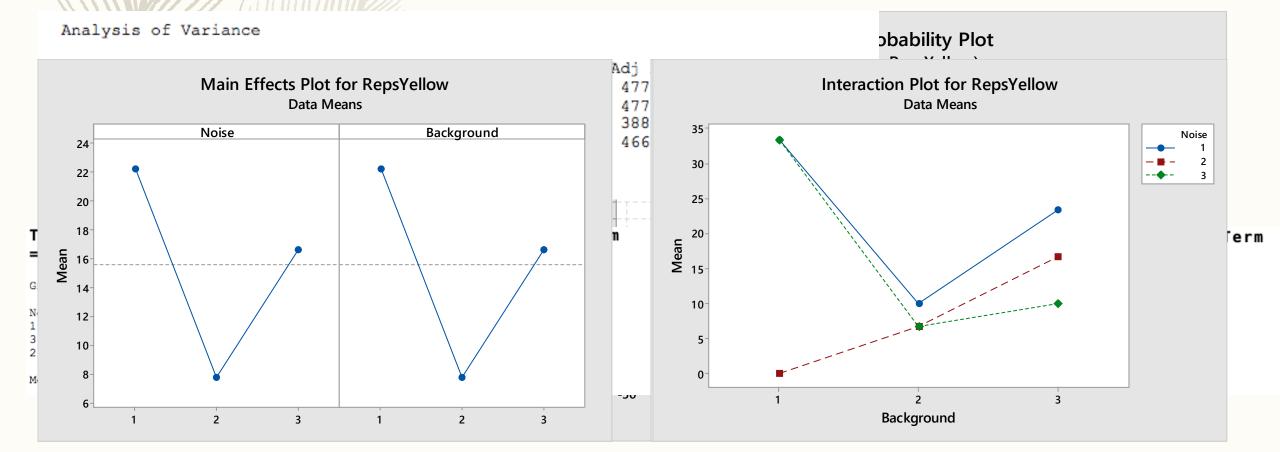

Jonathan R. Muslim Family Encounters Georgia Police, Then This Happened. The Inquisitr News. 2016. Available at: http://www.inquisitr.com/2616447/muslim-family-encounters-georgia-police-then-this-happened/. Accessed April 24, 2016.

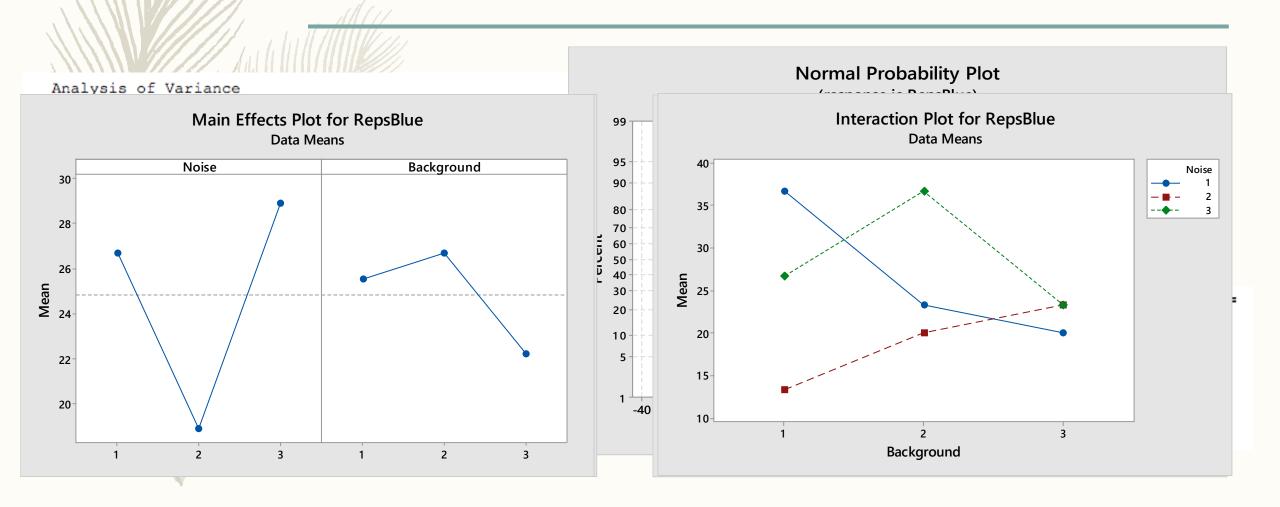

Wattrick JDavies L. Photos: New Detroit Police Cars And Ambulances Parade Down Woodward. Deadlinedetroitcom. 2016. Available at:

http://www.deadlinedetroit.com/articles/6133/photos_new_detroit_police_cars_and_ambulances_parade_down_wo odward#.VxxPKxF0OrU. Accessed April 24, 2016.


"1 injured in crash involving Jackson fire truck", WAPT, 2016. [Online]. Available: http://www.wapt.com/news/central-mississippi/jackson/1-injured-in-crash-involving-jackson-fire-truck/19936104. [Accessed: 25- Apr- 2016].

Red Response:




Normal Probability Plot

Yellow Response:

Blue Response:

