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ABSTRACT
Floating Offshore Wind Turbines (FOWT) can be actively controlled to
minimize their wave induced motions, improving wind energy harvesting
efficiency and increasing structural life by reducing fatigue loads. Here,
we report on the development and validation of Wave Reconstruction and
Prediction (WRP) algorithms that improve the active control of floating
structure motions, achieved, e.g., by moving mass or ballast. Specifically,
given a sensing method, here assumed to be LiDAR-like, that acquires
dense spatiotemporal surface elevation data at some distance from the
FOWT in the incident wave direction, we present and validate determin-
istic WRP algorithms, based on fast nonlinear and dispersive Lagrangian
wave models, and integrate their predictions with in-the-loop hardware
and a real time control system that is informed by computations with a
digital twin (DT) model of the floating structure. We implement multiple
WRP wave models including a model based on linear wave theory (LWT)
with a correct dispersion accounting for nonlinearity (LWT-CDR) and
a 2nd-order “Choppy” wave model with improved nonlinear dispersive
properties (ICWM), initialized with a linear prediction. Although we run
laboratory experiments of the complete system, which are reported else-
where, here the WRP implementation is validated against fully nonlin-
ear potential flow simulations in a Numerical Wave Tank (NWT), which
shows both LWT-CDR and ICWM models appear to provide reasonable
short-term predictions at the float. Implications for the real time control
system are discussed; in a companion paper, the use of short-term wave
predictions with the WRP is shown to improve the real time control of
float motions in waves.

KEYWORDS: Phase-resolved wave prediction, motion control sys-
tems, floating offshore wind turbines

INTRODUCTION
Many offshore wind farms are in development along the US East Coast,
with about 3GW of total installed power, that will be equipped with tur-
bines installed on static foundation support structures. The current goal
of the US administration, however, is to install ten times as much off-
shore wind power in US waters by 2030, and to meet this goal, it will be
necessary to develop farms also in deeper waters, beyond the continental

shelf, made of floating offshore wind turbines (FOWT). In some areas
of the US, such as the Gulf of Maine or the West Coast, which feature a
narrow shelf, FOWTs are the only viable option.

FOWTs are composed of a float, usually a single spar or multiple con-
nected cylinders, anchored using a slack mooring system, and a support
structure attached to the float (e.g., a cylindrical tower with varying iner-
tia), with on top a nacelle that includes an electric motor and a transmis-
sion system, on which the turbine blades are attached. Such a floating and
top heavy system may significantly oscillate under the action of wind, but
mostly ocean waves, particularly in heavy sea states, with the roll/pitch
motions causing an eccentricity of the heavy nacelle that significantly in-
creases structural stresses, e.g., at the tower bottom, hence reducing the
FOWT fatigue life, and significant motions of the turbine blades that will
affect their aerodynamic efficiency and, hence, their energy harvesting
ability.

To improve the energy capture and increase the fatigue life of such
systems (which both affect the levelized cost of electricity; LCOE), it is
thus important to minimize the FOWT wave-induced motions, which can
be achieved through using active control methods, e.g., through moving
mass or water ballast within the FOWT float. Such methods are actu-
ated by Model Predictive Control (MPC) algorithms that can anticipate
the float motions, usually based on a model or “digital twin” (DT) of the
system that assimilates the past motion history (e.g., Casanovas, 2014;
Ma et al., 2018). Such algorithms are reviewed in our companion pa-
per (Steele et al., 2023). Earlier studies, however, have shown that the
optimal control of a FOWT (or any float) motions requires predicting
the wave excitation force a short time in the future (e.g., 5-10 s; Ma
et al., 2018), as a result of the causality principle in irregular waves (e.g.,
Babarit and Clément, 2006; Fusco and Ringwood, 2010). It should be
stressed that, similar to the optimal control of wave energy converters
(WECs; e.g., Wu et al., 2009; Grilli et al., 2011b; Faedo et al., 2017;
Hals et al., 2011; Zou et al., 2017), it is key in this problem to accu-
rately predict the phase of waves impacting the FOWT float, since any
significant phase mismatch will impede the control and, in the worst-case
scenario, make matters worse. Indeed, while in WECs, the control aims
at maximizing the wave-induced motions of some mechanical system,
for FOWTs, control aims at minimizing float motions; hence, a faulty
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Fig. 1: (a) Sketch of FOWT proxy barge model in wave tank, to test
real time application of WRP models that forecast waves at the float,
based on surface elevations measured at upstream gauges, which are
used in DT-MPC control algorithm that actuates moving masses (see (c)).
(a,b) Barge in tank under staff allowing heave/roll motions in wavemaker
generated waves. (c) Details of mass slider active control system and
heave/roll post to attach model to tank carriage heave staff (see (b)).

control due to a phase-mismatch, could, instead, increase these motions.
In Steele et al. (2023), we demonstrate that FOWT motion control with
a DT-MPC can indeed be significantly improved by using a short-term
forecast O(Tp) (with Tp the sea state’s peak spectral period) of the phase-
resolved waves (and their loads) that will impact the float, obtained from
a wave reconstruction and prediction (WRP) algorithm.

In this paper, we report on the development and validation of such
WRPs. Building on earlier work by our team (e.g., Grilli et al., 2011a;
Nouguier et al., 2014; Desmars et al., 2020), we assume that a remote
sensing system is available (e.g., based on a LiDAR camera, LC, or sim-
ilar) that can provide a dense spatiotemporal data set of surface eleva-
tions measured at some distance from the float in the direction of incident
waves. On this basis, we develop, compare, and apply physics-based lin-
ear/weakly nonlinear deterministic WRP models, fast enough to predict
future phase-resolved waves at the float in real time. WRP results are
validated against those of a fully nonlinear numerical wave tank (NWT).

Deterministic wave forecasting approaches use spatiotemporal wave
measurements near a location of interest (e.g., a FOWT float) to initial-
ize models that predict how waves propagate to a new location (e.g.,
Wu, 2004; Fusco and Ringwood, 2010; Blondel-Couprie et al., 2013;
Nouguier et al., 2014; Desmars et al., 2020). For short time scales and
moderate sea states, linear models may be sufficiently accurate, but for
higher sea states wave nonlinearity becomes important and causes ampli-
tude dispersion effects that introduce phase shifts that affect the timing of

wave loading on the float. Hence, models featuring the required physics
to represent such effects should be used. This is further detailed hereafter.

Wu (2004) laid out the basic groundwork in this area and applied
WRP models, to both simulated and measured wave data, based on lin-
ear (LWT) or 2nd-order wave theory, and on the higher-order spectral
method (HOS) (Dommermuth and Yue, 1987), which allows simulating
the propagation of highly nonlinear waves. Compared to other methods
discussed here, HOS (see also, Ducrozet et al., 2016) has a much higher
computational cost but represents nonlinear sea states very well. Wu
(2004) also established a foundation for estimating the space-time region
where an accurate forecast can be made for a given set of spatiotemporal
wave data; this “prediction zone” was estimated based on the speed of
energy transport in the wave field, i.e., the (linear) group velocities of
the lowest and highest frequency waves in the sea state. This approach
has since been applied in many studies including Blondel-Couprie et al.
(2013), Naaijen et al. (2014); Desmars et al. (2020), and the present one.

Models based on LWT are the most widely used and have been shown
to be effective in many applications. For example, both Dannenberg et al.
(2010) and Naaijen et al. (2012) showed how such models can be used to
predict future sea states to advise offshore operations such as heavy lift-
ing. Although sharing the same objective as our work, to provide wave
forecasting in real time, such studies may not need to predict wave phases
as accurately as required here, as discussed before. Regarding nonlinear
WRP methods, the challenge is to use a model that will feature sufficient
physics to accurately simulate both wave shape and phase, while being
efficient enough to be run in real time, together with the float DT-MPC
control algorithm. In this respect, earlier work has illustrated the ad-
vantages of using nonlinear Lagrangian (i.e., Gerstner-type) rather than
Eulerian (i.e., Stokes-type) wave models, since the former models feature
nonlinear wave properties that are one-order of nonlinearity higher than
the equivalent-order Eulerian model (e.g., Guérin et al., 2019). Thus, in
their WRP model based on LiDAR-like data, Grilli et al. (2011a) im-
plemented the Lagrangian wave model “Choppy I” (CWM) (Nouguier
et al., 2009), which represented second-order effects in a highly effi-
cient manner, improving the shape but not the dispersive properties of
waves, which are the same at 1st- as 2nd-order. Nevertheless, CWM
was shown by Nouguier et al. (2014) to be effective when applied to
synthetically generated two-dimensional (2D) LIDAR-like data, meant
to replicate actual wave measurements by a LC at grazing incidence. To
represent wave dispersive properties to 3rd-order, which includes am-
plitude dispersion effects, the 2nd-order Lagrangian Choppy II model
(CWM2) was developed by Nouguier et al. (2015), and later applied to
the WRP problem by Desmars et al. (2020), who found it to be accurate
but too computationally demanding to be applied in real time. As a com-
promise, Guérin et al. (2019) developed the so-called “Improved choppy
wave model” (ICWM), that improved the dispersive properties of CWM
without significantly increasing its numerical complexity. Desmars et al.
(2020) showed that using ICWM greatly improved the wave forecast ac-
curacy when nonlinearity is significant, without the computational cost of
CWM2. This hopefully would allow to run the model in real time, which
they did not demonstrate in their work. Additionally, these authors tested
a LWT model with improved dispersion (LWT-CDR), whose computa-
tional cost is even lower. Using a HOS solution as a reference as well as
wave tank data, Desmars et al. (2020) clearly showed the large improve-
ment in wave prediction (particularly phase) accuracy resulting from us-
ing a modified dispersion relationship (e.g., ICWM or LWT-CDR), as
compared to results of WRP models based on LWT and CWM.

Based on these findings, in this work, we have developed WRP algo-
rithms based on the various Lagrangian or LWT models discussed above
and implemented them to be used for real time in-the-loop wave forecast,
in combination with a float control algorithm (see, Steele et al., 2023). In
the following, we provide results of applying these WRP models on both



experimental data as well as data from a fully nonlinear NWT. To test our
algorithms in real time, we built a proxy FOWT float and control system
in the form of a scale model of a barge with two horizontally moving
masses actuated by an electric motor and a slider system (Fig. 1) that
we tested in the University of Rhode Island’s (URI) wave tank, together
with the acquisition of LiDar like data using a set of wave gauges and
predictions of wave loads on the float using the WRPs.

SYSTEM OVERVIEW
Given a float equipped with an active control system (e.g., the slider
mass system of Fig. 1), assuming spatiotemporal wave measurements
are made upstream of the float, here using wave gauges, the WRP deter-
ministically reconstructs and propagates incident waves up to the location
of the float, allowing to estimate future wave loads that are assimilated
into the DT model, together with the history of past float motions, to
simulate the future float motions and inform the MPC control algorithm
that actuates the control system (see, Steele et al., 2023). Assuming a
fairly stationary wave field (i.e., one with a slowly changing energy den-
sity spectrum) and given an acquisition time window [ta = t0 −∆ta, t0]
at current time t0, where ∆ta is the acquisition time, the WRP provides a
continuous short-term wave forecast, at tp = t0+∆tp, at the float location,
where ∆tp is the prediction time, fast enough to allow for real time DT-
MPC computations that actuate the control system to adapt to changing
float motions in irregular waves. The reconstruction allows estimating
the WRP model parameters that are then used to propagate waves to the
float location xe at time tp. This process is continuous as time progresses.

Besides the accuracy of the wave prediction, computational efficiency
is a key consideration for developing a useful WRP-DT system, since
the prediction must be issued faster than real time to allow the DT-MPC
to also perform computations. In the idealized experimental set-up used
to demonstrate and validate our system (Fig. 1), wave measurements
are made at spatially fixed wave gauges, but the WRP models consid-
ered here can assimilate arbitrary sets of LiDAR-like unstructured spa-
tiotemporal data. Additionally, here the WRPs are validated based on
uni-directional laboratory waves and hence their equations are simpli-
fied to one spatial dimension (1D). However, the proposed models can
readily be extended to 2D (e.g., Nouguier et al., 2014; Kim et al., 2023),
although the computational effort will be greater.

Fig. 2 shows a flow chart of the WRP-DT-MPC system, used in the
1D experimental set-up of Fig. 1, and its hardware, which besides wave
gauges includes a data acquisition device (DAQ) and a PC computer.
The DAQ continuously acquires analog data from upstream wave gauge,
which it transfers to the PC, whenever a new dataset of length ∆ta is avail-
able. The WRP running on the PC processes these datasets and issues a
wave prediction at the float location, which is then used by the DT-MPC
algorithm, together with past float motions, to compute the control com-
mand and actuate the active control system to modify float motions re-
sulting from future incident waves. The DAQ simultaneously generates
and applies the corresponding signal to the control system motor con-
troller, here actuating the mass-slider. Efficient and robust computations
as well as synchronization are thus of the utmost importance to develop
a fully functional system.

For the purpose of development and validation, the WRP-DT model
was implemented two ways, so that the wave predictions at the float
could be based on wave data: (i) either pre-calculated and saved, or (ii)
generated in real time and loaded in the loop. In both cases, parame-
ters defining the problem set-up and WRP model characteristics need to
be provided, such as ∆ta, ∆tp, the cut-in (low)/cut-off (high) frequencies
[ωl ,ωh] of wave components having significant energy in the sea state,
and number N of wave harmonics of frequency ωn and amplitude An
used to reconstruct and predict waves (this is discussed later). In this
work we also assume that the water depth h0 is such that we have deep

Fig. 2: Flow chart of the WRP-DT-MPC system and its hardware used in
experimental set-up of Fig.1. Wave gauge data is recorded by the DAQ
and processed on the PC, on which the WRP-DT is implemented; using
predicted waves and past float motions, a control action is given by the
MPC to the DAQ, which actuates the slider-mass control system motor.

Fig. 3: Flowchart showing how small wave datasets of duration ∆td are
continuously acquired at gauges and added to a buffer; once ∆ta worth
of data is acquired, this data is processed by the WRP and transmitted to
the DT-MPC model by the DAQ (see Fig. 2).

water waves, which implies knh0 ≥ π, ∀ n; hence, based on the linear
wave dispersion relationship (Dean and Dalrymple, 1990), we have,

k0n =
ω2

n
g

; cn0 =
ωn

k0n
=

g
ωn

; cg0n =
1
2

cn0 =
g

2ωn
, (1)

for the wavenumber, phase speed, and group velocity, respectively, where
g is the gravitational acceleration and the subscript 0 refers to deep water
parameters. Whether simulated or deployed in the wave tank one also
needs to specify the number M and locations xm of wave gauges mea-
suring incident waves. As we shall see, the prediction zone, i.e., the
space-time domain where wave predictions exist, is function of the slow-
est and fastest group velocities of energetic waves in the sea state, i.e.,
using Eq. 1, cg0h = g/(2ωh) and cg0l = g/(2ωl), respectively.

Fig. 3 shows how the system, by way of the DAQ controlled by the
PC (Fig. 2), continuously loads small wave data sets of length ∆td into
a buffer, as they become available, and combines those with previously
collected data to create a reconstruction data set of length ∆ta. Hence, at
any given time, represented here by t0 = 0, only part of the buffer is used
as WRP data and the potential update rate of wave predictions is thus
∆td ≪ ∆ta. On startup, the buffer needs to fill-up to acquire at least ∆ta
worth of wave data, before an initial wave prediction can be accurately
issued.



DETERMINISTIC WAVE RECONSTRUCTION/PREDICTION

A deterministic physics-based WRP assumes that the sea state is repre-
sented by the superposition of many constituent waves, including poten-
tial nonlinearities resulting from wave-wave interactions. Using a model
based on LWT, reconstruction is equivalent to a simple Fourier superpo-
sition, with the phase and group velocity of each constituent wave based
on the linear dispersion relationship, as detailed before (Eq. 1). In the
CWM, the phase speed of each constituent is still based on the same
equation, but wave geometry is modified in a manner similar to 2nd-
order Stokes wave theory, with a trough to crest asymmetry. For a 1D
problem, the CWM performs a Hilbert transform that corrects abscissa x
and is in fact identical to Gerstner’s trochoı̈dal wave theory; for 2D prob-
lems, the CWM requires performing a Riez Transform (Nouguier et al.,
2009, 2014). In the ICWM, corrections for Stokes drift and a mean water
level (MWL) increase η are included, which also result in an amplitude
dispersion correction for the phase speed (Guérin et al., 2019).

For a single wave component of amplitude A and frequency ω propa-
gating in deep water, Stokes drift causes a depth-averaged current, Us0 =
k0A2ω = ε2c0, with ε = k0A, the wave steepness. When considering this
current in the ICWM, a Doppler shift of the wave frequency occurs, with,
ω̃ = ω +k0Us0/2, and phase speed becomes, cNL = c0(1+ε2/2), which
matches the 3rd-order Eulerian (Stokes) solution (Guérin et al., 2019).
Finally, assuming that the vertical datum z = 0 is at the MWL, wave el-
evations in the ICWM are corrected by, η = kA2/2. For an irregular sea
state with N components, represented by a spectrum S(ωn) = A2

n/(2∆ω)
(n = 1, ...N), these formula become,

Us0 =
N

∑
n=1

k0n A2
nωn ; η =

1
2

N

∑
n=1

k0n A2
n ; ω̃n = ωn + k0nUs0/2. (2)

In the WRP model, at time t0, parameters of a given wave model
(LWT, ICWM, etc.) are first computed by minimizing the mean square
difference (LSM) between reconstructed and observed wave elevations
η̃ jk(x j, tk), at J locations x j and K times tk over the acquisition time
interval [ta, t0], with a temporal resolution ∆t (or fa = 1/∆t the data ac-
quisition frequency). To simplify notations, measured surface elevations
are defined as η̃ℓ with (ℓ = 1, ...,L = J ×K). Model parameters, which
are functions of wave component amplitudes and phases, then allow in
the prediction phase of the WRP to accurately compute (i.e., propagate
the reconstructed) waves at the float location xe, and time of interest tp,
provided these are selected within the proper space-time prediction zone.
In the following real time framework, the time at which wave data is re-
constructed with the WRP is set to t0 = 0, meaning that positive times are
in the future, e.g., for estimating the control command at tp = ∆tp, while
negative times refer to the WRP data acquisition over [ta =−∆ta,0].

Note that, to accurately estimate the range of energetic frequencies in
the sea state, the spectrum S(ωn) is first calculated based on wave mea-
surements acquired for a larger number of dominant/peak wave period Tp
(here a minimum of 30) than will be typically used for a standard recon-
struction acquisition time window (i.e., ∆ta = 6− 12Tp). Low and high
frequency cut-offs [ωl ,ωh] are then found based on a minimum energy in
the spectrum Smin (set here to 5% of the maximum Smax); these frequency
cut-offs will be used to compute the allowable prediction zone. As more
wave data is being gradually acquired as part of the WRP, the spec-
trum and corresponding [ωl ,ωh] values are iteratively adjusted, which
accounts for slow changes in the sea state. Note, the spectrum also allows
computing the sea state’s significant wave height, Hs = 4

√
mo, where mo

is the zero-th moment of the spectrum, and dominant/peak wavelength,
L0p = gT 2

p /(2π), where Tp corresponds to the period associated with
the highest energy content in the spectrum. Details of the various wave
models used in the WRP model are provided next.

Linear wave models (LWT, LWT-CDR)
In LWT, a 1D surface elevation is represented as the linear superposition,

ηL(x, t) =
N

∑
n=1

{an cosΨn +bn sinΨn} with, Ψn = (k0nx−ωnt), (3)

with k0n given by Eq. 1 as a function of ωn, uniformly distributed within
[ωl ,ωh]. Eq. 3 is similar to the standard Fourier representation of ob-
served data used to compute the sea state’s energy density spectrum
S(ωn) = (a2

n +b2
n)/(2∆ω), with a frequency resolution ∆ω .

In LWT-CDR, a correction for amplitude dispersion is made by substi-
tuting ωn = ω̃n from Eq. 2 in Eq. 3. In this case, the LSM computation
of the model parameters (an,bn) based on measured data η̃ℓ, requires
iterations because of the dependence of ω̃n on these parameters.

Choppy and improved Choppy wave models (CWM, ICWM)
For 1D problems, the CWM or ICWM nonlinear free surfaces are ob-
tained by shifting the abscissa x where the linear elevation is computed
to x+D(x, t), based on the space and time dependent Hilbert transform,

D(x, t) =
N

∑
n=1

{−an sinΦn +bn cosΦn} with, Φn = (k0nx− ω̃nt). (4)

Assuming that the horizontal (Lagrangian) displacement represented by
D(x, t) is small, the nonlinear free surface is explicitly found as,

ηNL(x, t) =
N

∑
n=1

{an sinΦ
′
n +bn cosΦ

′
n}+µη , (5)

with the phases,

Φ
′
n = k0n (x−D(x, t))− ω̃nt = Ψn − k0n{D(x, t)+

1
2

µUs0 t}, (6)

where for ICWM, µ = 1, and Us0, η and ω̃n are computed with Eq. 2,
and all of these parameters are zero for CWM.

Note that, the (ωn,k0n) values used in CWM and ICWM are the same
as used in the LWT model, whose coefficients are used to initialize the
nonlinear models. In both of these, the LSM solution also requires iter-
ations, both because of D(x, t) and η and, for ICWM since Us0 and ω̃n,
are also functions of the model coefficients.

Computation of model coefficients
In the reconstruction phase of the WRP, given a data set of measured
surface elevations η̃ℓ with (ℓ = 1, ...,L) and for N ≪ L, the model co-
efficients (an,bn) are computed with Eq. 3 for LWT and Eqs. 4-6 for
CWM/ICWM, by minimizing the error (or LSM cost) function,

C =
1
L

L

∑
ℓ=1

(ηL/NL(xℓ, tℓ)− η̃ℓ)
2, (7)

in the least square sense, yielding for q = 1, ...,N,

∂C
∂aq

= 0,
∂C
∂bq

= 0 ⇐⇒ Ai
mn pn = Bi

m; for m,n = 1, ...,2N, (8)

which is iteratively solved for pi+1
n = ai+1

n , pi+1
N+n = bi+1

n (i representing
the current iteration), with,
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Fig. 4: Linear wave prediction zone at location xe, for both a single mea-
surement location at xm (top) and multiple measurement locations within
[xm1,xm2] (bottom), based on the fastest/slowest group velocities, cg1 and
cg2, respectively, in the sea state. The prediction zones narrows in time
as x− xmi increases, until it eventually disappears. For a range of spatial
measurement locations the prediction zone area is increased.

and,

Bi
m =

L

∑
ℓ=1

η̃ℓ Pmℓ(a
i
m,b

i
m), Bi

N+m =
L

∑
ℓ=1

η̃ℓ Qmℓ(a
i
m,b

i
m), (10)

where, given (am,bm) values we have,

Pmℓ = cosΦ
′

mℓ−λk−1/2
m

(
am sinΦ

′

mℓ−bm cosΦ
′

mℓ

)(
sinΦmℓ

−µamωmk−1/2
m tℓ

[
k−1/2

m (am cosΦmℓ+bm sinΦmℓ)+1
])

+µamk−1/2
m ,

Qmℓ = sinΦ
′

mℓ−λk−1/2
m

(
am sinΦ

′

mℓ−bm cosΦ
′

mℓ

)(
− cosΦ̃mℓ

−µbmωmk−1/2
m tℓ

[
k−1/2

m (am cosΦmℓ+bm sinΦmℓ)+1
])

+µbmk−1/2
m .

(11)

Eq. 11 corresponds to ICWM when λ = µ = 1; for CWM, λ = 1 and
µ = 0, and for LWT, both of these are zero. For CWM and ICWM, the
iterative solution is initialized with the LWT solution for i = 1.

Prediction Zone
For a given spatiotemporal data set of surface elevations, acquired over
time ∆ta prior to current time t0, an accurate prediction is expected at the
float location xe at time t0 + tp, provided these are within the allowable
prediction zone. To establish this prediction zone, following Wu (2004),
we note that waves can only be predicted based on the reconstructed
wave field, if the corresponding energetic wave components have had
sufficient time to propagate to location xe; otherwise, no meaningful “in-
formation” has is available and predicted waves will have a very large

error. Since the speed of wave energy propagation, i.e., the group ve-
locity cg0, is frequency dependent (see Eq. 1), the prediction zone can
be identified by tracking the propagation of the energy of the two low-
est and highest frequency energetic wave components [ωl ,ωh] in the sea
state, defined before, i.e., at speed cg1 = cg0l and cg2 = cg0h, respectively,
with cg1 > cg2. Hence, for a given location xe, there exists a time interval
[tmin, tmax] corresponding to the temporal prediction zone boundaries at
the said location.

For measurements made at a single location/gauge xm, Fig. 4 (top)
shows a graphical representation of these properties in the (x, t) plane,
which outlines the expected prediction zone, assuming LWT (i.e., no am-
plitude dispersion effects). If wave gauges span a spatial range [xm1,xm2],
Fig. 4 (bottom) shows that the prediction zone is extended since the mea-
surements now span a region of both time and space.

Reconstruction bandwidth
The WRP algorithm requires selecting N wave component with relevant
frequencies to be used in the LSM problem that performs the reconstruc-
tion, i.e., Eqs. 7 and 8, with LWT Eq. 3 or CWM/ICWM Eqs. 4-6.
Hence, to ensure an accurate reconstruction, one also needs to select the
highest and lowest frequencies ωn, or wavenumbers k0n, based on the
shortest and longest spatial scales (or resolution) one aims to achieve at
time tp, for waves in the prediction zone.

Accordingly, the smallest resolved wavenumber in the WRP is defined
as, k0,min = 2π/Lmax, with Lmax denoting the largest predictable region
at reconstruction time t0. For instance, in Fig. 4, Lmax = xe − xm1, with
xe = xm2 + cg2 ta and (xm1,xm2) the farthest and nearest locations where
wave measurements are made with respect to the experiment’s or predic-
tion location xe, respectively. Likewise, the largest resolved wavenumber
k0,max can be determined as a function of either the spatial ∆x or temporal
∆t resolution. If measurements are made at a very high spatial resolution,
such as could be achieved with a LC, the smallest distance between two
data points, Lmin, could be used to determine the maximum wavenumber
k0,max = 2π/Lmin. However, in our specific experimental setup, wave
measurements are only made at coarse spatial intervals, but at a high fre-
quency fa, so the largest wavenumber is defined as that corresponding to
the Nyquist frequency fN = 1/(2∆t), i.e., kmax = (π/∆t)2. For high fre-
quency sampling, however, this yields unnecessarily large wavenumbers,
e.g., k0,max = 987 m−1 for 10 Hz, so in practice, the upper bound for the
frequency in the WRP is selected, similar to the group velocities, using
the high frequency cutoff for energetic waves in the spectrum, hence, as
k0,max = ω2

h/g.
Once the [k0,min,k0,max] or [ωmin,ωmax] values are selected in the

WRP, a set of N frequencies ωn are linearly distributed between these
cut-offs, with corresponding k0n computed with Eq. 1, which are used
with the various model equations and the wave measurements to compute
the (an,bn) coefficients in the wave reconstruction; N = 100 frequencies
were used for all results discussed here.

Prediction error metrics
Applications of the WRP algorithm are presented in the next section. In
each case, we assume an acquisition time duration ∆ta prior to current
reconstruction time t0, and use a single prediction location xe (that of the
float) and time series ts which spans the expected temporal prediction
zone given our spatial measurement configuration and spectral content.
For each model used in the WRP, wave predictions η(xe, ts) are compared
with actual wave elevations (simulated or observed) for times selected
within the prediction zone whose limits can be seen as in Fig. 4.

The accuracy of the surface elevation prediction is assessed with the
error metric,

E (xe, ts) =
1

RHs

R

∑
r=1

| η(xe, ts)− η̃(xe, ts) |r (12)



x1 x2 x3 x4 x5 x6 x7 xe
x/Lp -1.92 -1.28 -0.9 -0.58 -0.32 -0.13 0 2

Table 1: Relative location of measurement wave gauges gi, i = 1, ...7 and
ge at the float, with respect to the peak spectral wavelength Lp, used in
the wave tank/NWT.

which is the absolute difference between predictions and observations at
xe, for time values ts selected within the prediction zone, scaled by the
significant wave height, and ensemble averaged over R realizations of
the WRP. These realizations correspond to a series of predictions made
based on independent, but overlapping, spatiotemporal data sets of wave
elevations acquired in the same sea state for identical acquisition time
duration ∆ta.

Of particular interest is to assess this error over a useful time series,
namely the time in the future up to the prediction zone time boundary,
or [0, tmax]. This can be obtained by averaging E (xe, ts) over this time
interval, as,

E F =
1

tmax

∫ tmax

0
E (xe, t)dt, (13)

which provides a global error metric quantifying the surface elevation
misfit over a relevant temporal domain.

As indicated before, however, even more important than errors on sur-
face elevations, we are concerned in this problem with potentially large
errors in wave phases that could cause faulty control commands to be is-
sued in the float control system. To do so, we compute a cross-correlation
function, which convolves surface elevations computed in the WRP to
those serving as reference (i.e., observed or computed with a NWT), with
a varying time lag τ . The time lag τmax that maximizes this correlation is
then computed and used as an overall error metric for the phase mismatch
resulting from the WRP. Again, using the future time interval [0, tmax] for
x = xe, we thus compute,

C(τ) =
1

tmax

∫ tmax

0
η̃(xe, t)ηL/NL(xe, t + τ)dt (14)

which yields τmax such that C(τmax) is maximum, and the error metric on
wave phases is defined as, E P =| τmax | /Tp. In results, this misfit metric
is ensemble-averaged over R realizations.

NUMERICAL/PHYSICAL EXPERIMENT

While many laboratory experiments were performed in this project,
to which the WRP models were applied, as these include additional
sources of uncertainty and noise (e.g., wavemaker generation, instrumen-
tation,...), we first assessed the efficiency and accuracy of the models for
real time wave predictions, in comparison to “numerical experiments”
set-up and run in a similar geometry as the experiments (Fig 5), with
a Numerical Wave Tank (NWT) based on fully nonlinear potential flow
theory (FNPF) (e.g., Grilli and Subramanya, 1996; Grilli and Horrillo,
1997; Grilli et al., 2020). FNPF theory does not include any assumptions
besides irrotational flow, and has been shown to be very accurate to sim-
ulate wave generation and propagation in many earlier applications (see
references). The same experiments were then repeated in the wave tank,
in combination with the DT-MPC models applied to the barge FOWT
proxy of Fig. 1 (see, Steele et al., 2023).

For the various models considered here, in each case, the WRP algo-
rithm is applied to predict waves at the float locations xe, using actual
or simulated time series of waves acquired over time ∆ta at 7 numeri-
cal wave gauges (gi, i = 1, ...7; Table 1). To assess the accuracy of the
prediction, another gauge is deployed at xe (ge) next to the float (Fig. 5).

Five numerical/physical experiments were considered here, referred
to as (A - E), with parameters listed in Table 2. In each case, irregular

Fig. 5: Physical/NWT wave tank geometry. Gauges 1-7 measure waves
over ∆ta in the WRP, while other gauges ge (thick black lines) are at
distances nLp (n = 1, ...) from gauge 7 and mark the float location xe.

waves were generated in the tank/NWT using a flap wavemaker, with a
target significant wave height Hs different for each case but a peak pe-
riod Tp = 1.0 s identical for each case. With a water depth in the tank,
h0 = 1.4 m, Lp = L0p = 1.56 m, the deep water wavelength, which yields
increasing levels of nonlinearity in waves from cases A to E, as quantified
by the peak wave steepness Hs/Lp listed in the table. As indicated, in the
following, results are only presented for the NWT experiments, while
results of physical experiments can be found in our companion paper
(Steele et al., 2023). In the NWT the bottom geometry is identical to the
physical tank(Fig. 5), with a sloping beach in the far end where energy
dissipation by breaking is simulated using an absorbing beach. Although
other wave generations methods are available in the NWT, as in the phys-
ical tank, waves are generated using a flap wavemaker motion obtained
by applying the wavemaker linear transfer function to each wave compo-
nent (Dean and Dalrymple, 1990). As in the physical tank, both was gen-
eration and absorptions are imperfect and, in particular, there are some
reflected waves, which are re-reflected at the wavemaker; additionally,
the linear wavemaker transfer function for periodic waves only approxi-
mates the generation of nonlinear irregular waves. Accordingly, in Table
2, we find that both the targeted and measured Hs and Lp values show
increasing differences, the larger wave nonlinearity.

Hs (m) Lp (m) Hs/Lp (%)
target actual target actual target actual

A 0.020 0.020 1.56 1.487 1.281 1.304
B 0.040 0.040 1.56 1.560 2.562 2.548
C 0.060 0.061 1.56 1.523 3.844 3.917
D 0.080 0.075 1.56 1.599 5.125 4.475
E 0.100 0.082 1.56 1.421 6.406 6.020

Table 2: Parameters of sea state spectra used to evaluate the WRP models
in wave tank/NWT, targeted and actual values achieved (here) in NWT.
In all cases, Tp = 1 s and h0 = 1.4 m.

For all of the results presented here, the input parameters for the WRP
algorithm are kept constant, in particular: ∆ta = 12Tp, xe = 2Lp (with
x7 = 0), N = 100 (wave components in the WRP models), R = 9 (over-
lapping realizations). For the latter, using a single NWT run for each
wave case in Table 2, these realizations are obtained by selecting time
series separated by 5Tp. Note, time series of elevation misfit error E
were smoothed using a moving average filter. As indicated, due to the
limited space in this paper, we only report and compare the NWT results
with the WRP predictions. Moreover, we only present detailed results for
case C, which has a meaningful but still moderate nonlinearity, while for
other cases, which have qualitatively similar time series, only the overall
misfit metrics are presented in summary figures.

RESULTS
Figure 6 compares the time series of surface elevations reconstructed
using each WRP model, for a single realization of case C in Table 2,
to the NWT elevations, at the float location xe. Similar time series
would be acquired by the DT-MPC model, to be part of the control
system actuation (see, Steele et al., 2023). Here, the reconstruction is



Fig. 6: Case C in Table 2 (acquisition time, ∆ta = 12Tp; float location,
xe = 2Lp). Comparison of (back-solid) NWT with wave WRP results
at the float, using: (red-chained) LWT; (red-solid) LWT-CDR; (blue-
chained) CWM; and (blue-solid) ICWM. The nonlinear phase shift for
the LWT-CDR and ICWM models, better aligns waves with the NWT
reference data. See also Fig. 9. Vertical dash lines mark the boundaries
of the prediction zone [tmin = 0, tmax] (Fig. 4).

Fig. 7: Same case and line definitions as in Fig. 6. Time series of
ensemble-averaged surface elevation misfit E at x = xe. Dash lines mark
theoretical boundaries of prediction zone [tmin = 0, tmax] (Fig. 4).

based on a spatiotemporal data set acquired at gauges 1-7 (Table 1) for
t ∈ [−∆ta,0]. As seen in Fig. 4, wave predictions based on a complete set
of wave components can be issued at x = xe for t ∈ [tmin = 0, tmax], with
tmax = (xe−x1)/cg1. Overall, the surface elevations predicted by the dif-
ferent WRP models all appear to be quite reasonable. However, models
featuring nonlinear phase corrections appear more accurate (LWT-CDR
and ICWM). This is further detailed next.

Additional realizations of wave predictions similar to Fig. 6 were gen-
erated for the same sea states, by re-initializing and applying the WRP
models when shifting the acquisition time interval by 5Tp to the future,
several times over the overall time series of NWT data. Thus, for nine
such realizations (R = 9), Fig. 7 shows ensemble-averaged time series of
surface elevation misfit E at x = xe. As expected, a low misfit is achieved
within the prediction zone, which slightly increases with time, i.e., with
how far in the future the prediction is issued. For xe = 2Lp, which corre-
sponds to time t = 2Tp for the dominant waves in the sea state, the misfit
at this time is about 5% of Hs.

Figures 8 and 9 finally compare the elevation and phase misfits, time-
averaged over the prediction zone [0, tmax], for the different WRP models
applied to the 5 sea state cases in Table 2, with have increasing nonlinear-
ity. Overall, for the elevation misfit, the best results are obtained using
ICWM with E F ≤ 2% for all nonlinearity, while LWT-CDR performs
almost as well, with less than 2.6%. Errors with the LWT and CWM
models are larger in all cases, by at least 50%. For the phase misfit, Fig.
9 shows that tusing models with a nonlinear phase correction is more
important, with E P ≤ 1% for all nonlinearity, except for ICWM in case
E where it is 1.8%. In contrast, the LWT and CWM models show an
increasing phase misfit with nonlinearity, reaching 5% in case E.

Fig. 8: Same case and line definitions as in Fig. 6. Average E F of surface
elevation misfit E at x = xe, over prediction time interval [0, tmax].

Fig. 9: Same case and line definitions as in Fig. 6. Ensemble-averaged
surface elevation phase misfit E P at x = xe.

DISCUSSION AND CONCLUSIONS

The present work was performed in the context of a research project
aimed at improving the active control of FOWT motions in irregular
waves, by remotely sensing, forecasting, and assimilating future wave
loading into the DT model and MPC algorithm used to actuate the control
system. On this basis, a series of WRP models were developed, applied,
and validated, based on spatiotemporal LiDAR-like wave datasets (i.e.,
that could have been remotely sensed by a LC), to reconstruct and prop-
agate nonlinear irregular waves to a different location (i.e., that of the
float) and future time, compared to where the data was acquired. For this
approach to work, the WRP models need to be both accurate, particularly
in their prediction of wave phases at the float, and sufficiently efficient to
allow for a real time framework that provides sufficient lead time to the
DT-MPC system to compute and issue the actuation law to the control
system, before the considered waves have reached the FOWT. Due to a
lack of space, only results of numerical validations of the WRP models,
in comparison with results of a NWT, were presented. Aspects of DT-
MPC development and application are detailed in our companion paper
Steele et al. (2023), as well as experimental data and verifications.

Consistent with earlier work performed by some of the authors (e.g.,
Desmars et al., 2020), our results show that the nonlinear phase correc-
tions included in the LWT-CDR and ICWM models appears to provide a
significant sufficient reduction of phase misfits observed without those.
Among these two models, while its predictions of surface elevations may
be less accurate, the LWT-CDR model appears to predict wave phases ad-
equately and hence would be preferred for its higher efficiency, although
it still requires to perform iterations.

A key aspect of developing a real time WRP algorithm is flexibility in
different operating conditions, which is a feature that was built into our
operating procedure. Thus, the amount of data (i.e., number of spatial
locations and temporal duration of the wave data set) used to issue a pre-
diction can be adjusted depending on the spectral content of the sea state
and configuration of the wave measurements. In practice, the character-



istics of the computer hardware, which the WRP algorithm runs on, will
also provide information on how best select WRP parameters to optimize
run time while still achieving an accurate prediction.

Some aspects of this work, not detailed here, that are still in develop-
ment are how to best cope with uncertainty, aleatory in measurements
and epistemic in model physics, to issue a safe control command to the
FOWT control system. In this respect, errors on the phasing of wave
loads are the main concern since a phase mismatch could cause larger
motion and forces on the FOWT than without control, which negatively
affects structural life and defeats the purpose of using such as control
system. Hence, the selected WRP/model algorithm also needs to provide
an estimate of the confidence of its prediction along with the prediction
itself. Other authors (e.g., Zhang et al., 2022) implemented a Bayesian
machine learning approach, which also determines a confidence interval
for the wave prediction, but this approach being data-driven and non-
physical also has its own limitations. Furthermore, the issue of noisy
data in an experimental/field setting is an additional major factor. Here,
although we acquired experimental data, we provided results and error
estimates based on ideal data obtained with a highly accurate NWT. Des-
mars et al. (2020), who proceeded similarly but using a HOS model, also
validated their WRP predictions using noisier wave tank data and found
this in general increased the prediction errors, although these still stayed
quite reasonable. This aspect will be crucial for the future field deploy-
ment of this system using a LC for acquiring wave data.
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