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Abstract

Three-dimensional (3D) directional wave focusing is one of the mechanisms that
contributes to the generation of extreme waves, also known as rogue waves, in the
ocean. To simulate and analyze this phenomenon, we generate extreme waves in a 3D
numerical wave tank (NWT), by specifying the motion of a snake wavemaker. The
NWT solves fully nonlinear potential flow equations with a free surface, using a high-
order boundary element method and a mixed Eulerian-Lagrangian time updating.
Some numerical aspects of the NWT were recently improved, such as the accurate
computation of higher-order derivatives on the free surface and the implementation
of a fast multipole algorithm in the spatial solver. The former has allowed the
accurate simulation of 3D overturning waves and the latter has led to at least a
one-order of magnitude increase in the NWT computational efficiency. This made it
possible to generate finely resolved 3D focused overturning waves and analyze their
geometry and kinematics. In this paper, we first summarize the NWT equations and
numerical methods. We then introduce a typical simulation of an overturning rogue
wave, and analyze the sensitivity of its geometry and kinematics to water depth and
maximum angle of directional energy focusing. We find that an overturning rogue
wave can have different properties depending on whether it is in the focusing or
defocusing phase at breaking onset. The maximum focusing angle and the water
depth largely control this situation, and therefore the main features of the rogue
wave crest, such as its 3D shape and kinematics.

1 Introduction

The purpose of this work is to study the rare but important phenomenon of rogue
waves at sea (also known as extreme or freak waves). Despite their low probability
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of occurrence [35], rogue waves can cause severe damage to vessels or fixed ocean
structures. Hence, the naval and offshore engineering communities must be able to
predict rogue wave loading on structures, when developing design rules. Earlier work
shows that rogue waves are characterized by their brief occurrence in space and time,
resulting from a local focusing of wave energy. This energy focusing, in addition to
a “natural” occurrence through self-focusing (sideband instability [1,36,52,18], see
below), may be due or reinforced by multiple factors, such as an opposing current
[43], bottom topography in shallow water [33], frequential [8] and/or directional
focusing [6,7]. Other wave-wave interactions or interactions with the atmosphere
may also play a role in this phenomenon. Rogue wave generation mechanisms are
further discussed in the recent review article by Kharif and Pelinovsky [38].

Two-dimensional (2D) simulations with space-periodic nonlinear models have con-
firmed that self-focusing of wave energy occurs in irregular wave trains and may
cause the occurrence of extreme/rogue waves, after long distance and time of prop-
agation [6,15,52]. Because of its occurrence in small regions of space and time,
the latter phenomenon has sometime been referred to as quasi-solitonic turbulence
[52]. More recently, mainly due to improvements in accuracy and efficiency of fully
nonlinear spectral models, similar space-periodic but three-dimensional (3D) simu-
lations have confirmed the occurrence of extreme 3D waves in irregular sea surfaces,
through 3D self-focusing of energy, given enough spatial area and time [15]. Such
3D waves appear to have 2D profiles in their main vertical cross-sections (i.e., that
passing through the crest in the wave’s main direction of propagation) qualitatively
similar to those of 2D focused waves, but also show lateral spreading in the form
of a “croissant” shape of rapidly decreasing elevation. These features make these
(natural) 3D rogue waves quite similar to waves produced by the so-called type II
instability of bi-periodic wave trains [44,51,7].

Independent of their specific generation mechanism, engineering properties of rogue
waves, such as geometry and kinematics, are still poorly known. Since current mod-
eling of the natural occurrence of freak waves through 2D or 3D energy self-focusing
both requires to model a large region of space and is computationally expensive, ex-
treme waves have usually been produced in both physical and numerical wavetanks
by artificially specifying energy focusing towards some small area of the tank. Early
2D studies, both numerical and experimental, used the mechanism of frequency
focusing to create rogue waves [8,36]. Due to dispersion, longer and faster waves,
that have been generated earlier, catch up with slower and shorter ones, to create
extreme waves by superposition. In 3D space periodic models, energy focusing can
be achieved by forcing directional components to focus at some location [15]. In
physical tanks or Numerical Wave Tanks (NWTs), one can also use the principle
of a snake wavemaker to focus directional wave components in some areas of the
tank, thus creating extreme, possibly breaking waves [48,49,7]. In fact, more intense
and faster directional energy focusing can be achieved in NWTs by using periodic
incident waves [7] rather than irregular wavetrains [16]. It appears that, in either
case, the large focused waves show very similar features near their crest and, hence,
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somewhat locally loses the memory of the physical phenomenon that has caused
energy focusing. [Note, this directional energy focusing can be reinforced by also
adjusting the frequency of directional components, to compensate for the increased
propagation distance of oblique components.]

Accordingly, in this work we generate extreme overturning rogue waves in a NWT,
by simulating directional energy focusing of periodic waves, and investigate their
properties and sensitivity to governing parameters. As a first approximation, accord-
ing to linear theory, different wave components with different phases and directions
can superimpose over a small region of space and time and produce a much larger
wave [11]. To do so in the NWT, a properly programmed snake wavemaker cre-
ates the superposition of several directional sinusoidal wave components, towards
a target area of the tank. She et al. [48,49] experimentally studied the kinemat-
ics of breaking waves this way, using a PIV technique. Grue et al. [32] conducted
similar experiments. Brandini [6] and Brandini and Grilli [7] used the same mecha-
nism of directional energy focusing for generating rogue waves in a fully nonlinear
3D-NWT. They clearly showed that nonlinear effects further reinforce the linear
superposition process. More recently, Bonnefoy et al. [5] and Ducrozet et al. [15,16]
developed a 3D model based on an efficient high-order spectral solution (HOS) of
potential flow equations with a free surface, and compared their results with experi-
ments. They also simulated wave generation by a snake wavemaker. Although their
method cannot model overturning waves, it can handle many wave components in
a large basin, such as random wave fields with wave components propagating as
wave packets. Hence, as indicated before, their method can simulate wave focus-
ing events, similar to those occurring in actual sea states. Finally, Fuhrman and
Madsen [21] recently solved similar wave focusing problems using a model based on
higher-order Boussinesq (BM) equations. They successfully simulated experiments
of Johannessen and Swan [37] for the focusing of random wave trains, including
values of the horizontal water velocity measured under the focused wave crests.

Here, we follow the earlier numerical work by Brandini and Grilli [7] and simu-
late intense directional energy focusing of periodic waves in a 3D-NWT, to create
extreme overturning waves. Brandini and Grilli modified Grilli et al.’s 3D Fully Non-
linear Potential Flow (FNPF) model [26], based on the Boundary Element Method
(BEM), by implementing a snake wavemaker for wave generation as well as a snake
absorbing wavemaker to radiate waves out of a NWT [9,27]. Unlike the HOS or
BM models, the present NWT does not break down when wave overturning oc-
curs and hence can potentially simulate more intense 3D energy focusing and thus
produce larger single rogue waves (note, computations break down upon impact of
the breaker jet on the free surface). Additionally, in the present computations, we
benefit from recently extended expressions of non-orthogonal tangential derivatives
on the free surface [20], which have been shown to make the 3D-NWT solution
both more accurate and stable, particularly within the jet of overturning waves
[33]. We also use a more efficient spatial solver based on the Fast Multipole Algo-
rithm (FMA) [40,19]. The computational cost of Grilli et al.’s [26] original method,
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which grows quadratically with discretization size, was indeed making highly re-
solved 3D computations rapidly prohibitive. We alleviate this obstacle by using the
FMA to accelerate all the matrix-vector products in the spatial solver. This yields
a computational cost that grows almost proportionally to the discretization size
[19]. Details of the model and its recent improvements are given in the next section.
For completeness, we mention the recent 3D-FNPF-BEM model proposed by Hague
and Swan [34], that was used to simulate similar directional focusing problems, to
create highly nonlinear but non-breaking wave groups.

As far as wave kinematics is concerned, Kjeldsen [39] stressed that larger particle
velocities may be associated with overturning waves than with the highest non-
breaking waves. Guyenne and Grilli [33] found that this also applies to 3D solitary
waves breaking over a sloping ridge, in shallow water. They also showed that the
shape and kinematics of the crest and breaker jet of such large 3D overturning waves
is mostly independent of the mechanism that has caused breaking. This property
was also suggested in earlier studies of 2D deep water breakers [14]. Hence, we
expect that this finding also applies to 3D deep water waves, such as overturning
rogue waves. [As noted before, we already observe a strong similarity between the
vertical profiles of 2D and 3D focused wavetrains.] Accordingly, we do not have to
generate these waves by simulating the actual complex mechanisms occurring in
irregular ocean waves (such as discussed above), in order to study their properties.
Instead, in the applications, we create 3D overturning waves in the middle of a
NWT by properly specifying parameters of the snake wavemaker.

While most studies of rogue waves have so far assumed deep water, it has also been
shown that these waves can occur for any water depth and, in fact, may even be
more frequent in shallow water [39]. Hence, in this study, we consider an arbitrary
finite depth, but specify a flat bottom in the NWT in order to further simplify the
problem and concentrate on one focusing mechanism only. [Our numerical model can
however feature an arbitrary bottom topography and such effects as topographic
focusing could be studied in future work.] Hence, we calculate properties of 3D
rogue waves at the onset of overturning, such as crest geometry and kinematics, as
a function of water depth and energy focusing (or defocusing), represented by the
maximum energy focusing angle specified at the wavemaker.

The wave model equations and numerical methods implemented in the NWT are
described in Section 2. The most recent numerical improvements of the NWT are
also summarized. Numerical experiments and results, together with their physical
interpretation, are presented in Section 3.
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Fig. 1. Computational domain. The free surface Γf (t) is defined at each time step by the
position vector R(t). Lateral boundaries are denoted by Γr1, Γr2 and Γr3. The bottom
Γb is defined by z = −h(x, y). Use is made of the Cartesian coordinate system (x, y, z)
and of the local curvilinear coordinate system (s,m, n), defined at the point R(t) of the
boundary.

2 The numerical wave tank

2.1 Equations and boundary conditions

We solve potential flow equations for an ideal and incompressible fluid, with a free
surface. The velocity u = (u, v, w) is given by ∇φ, where φ is the velocity potential.
The computational domain is defined as a closed basin, such as a wave tank, whose
bottom may have arbitrary geometry, and lateral boundaries are either impermeable
or open (Fig. 1). The governing equation, representing mass conservation within the
basin, is Laplace’s equation,

∇2φ(x, y, z, t) = 0, (1)

for the potential. Green’s second identity transforms this equation into the Bound-
ary Integral Equation (BIE),

α(xl) φ(xl) =
∫

Γ(t)

{

∂φ

∂n
(x) G(x, xl) − φ(x)

∂G

∂n
(x, xl)

}

dΓ, (2)

where G(x, xl) = 1/4π|r| is the 3D free space Green’s function in which r = x−xl.
The vector n is the normal vector exterior to the boundary, α(xl) is proportional
to the exterior solid angle of the boundary at point xl, and Γ denotes the entire
domain boundary.

On the free surface boundary Γf(t), the potential satisfies the nonlinear kinematic
and dynamic boundary conditions,
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D R

D t
=∇φ, (3)

D φ

D t
=−gz +

1

2
∇φ · ∇φ, (4)

where R is the position vector on the free surface, g the acceleration due to grav-
ity and D/Dt the material derivative. [Note that surface tension is omitted here
since we are interested in gravity waves with a wavelength large enough to avoid a
significative influence of surface tension on wave breaking (see for instance [17]).]

Lateral boundaries of the domain are either fixed or moving boundaries. Here, waves
are generated by a wavemaker with motion xp and velocity up, specified at boundary
Γr1(t). Hence, the boundary condition on Γr1 reads

x = xp and
∂φ

∂n
= up · n, (5)

where overbars denote specified values. Along fixed impermeable parts of the bound-
ary, Γr3, a no-flow condition is prescribed as

∂φ

∂n
= 0. (6)

For flat bottoms, like in this work, the image method is used to automatically
satisfy a no-flow condition similar to Eq. (6) along the bottom boundary Γb. For
wave focusing experiments, in order to simulate an open boundary condition, an
actively absorbing, pressure sensitive, snake piston wavemaker is specified at the
extremity Γr2(t) of the NWT [9,27]. The piston normal velocity is specified as

∂φ

∂n
= uap(xp, yp, t) (7)

with the latter calculated at point (xp, yp) along the piston as

uap(xp, yp, t) =
1

ρwd
√

gd

ηap(xp,yp,t)
∫

−d

pD(xp, yp, z, t) dz. (8)

Here ρw is the water density, d the mean water depth, ηap the surface elevation at
the piston, and pD = −ρw(φt +

1
2
∇φ ·∇φ) the dynamic pressure. The integral in Eq.

(8) represents the horizontal hydrodynamic force FD(xp, yp, t) acting on the piston
at time t, as a function of (xp, yp). [A validation of this snake absorbing boundary
condition for solitary waves can be found in [31].]
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With a BIE formulation, the numerical solution can be explicitly calculated inside
the domain based on boundary values. For instance, the vectors u for the internal
velocity and a for the local acceleration are given respectively by

u(xl) = ∇ φ(xl)=
∫

Γ(t)

{

∂φ

∂n
(x) Q(x, xl) − φ(x)

∂Q

∂n
(x, xl)

}

dΓ, (9)

a(xl) = ∇
∂φ

∂t
(xl)=

∫

Γ(t)

{

∂2φ

∂t∂n
(x) Q(x, xl) −

∂φ

∂t
(x)

∂Q

∂n
(x, xl)

}

dΓ, (10)

with

Q(x, xl) =
1

4π|r|3r, (11)

and

∂Q

∂n
(x, xl) =

1

4π|r|3{n − 3(er · n)er}, with er = r/|r|. (12)

The internal Lagrangian acceleration can then be obtained from

D u

D t
=

D ∇φ

D t
=

∂∇φ

∂t
+ (∇φ · ∇)∇φ. (13)

Indeed, the first term is given by (10) and the second term is computed using (9)
and differentiating ∇φ, which requires the evaluation of a BIE similar to (9), using
instead the spatial derivatives of Q and ∂Q/∂n [33].

2.2 Numerical techniques

Many different numerical methods have been proposed for solving FNPF equations
for water waves (see, e.g., [13] for a recent review). Here, we use the BIE formulation
outlined above, which was applied to our original 3D-NWT by Grilli et al. [26],
with recent improvements in the numerical formulation and solution [20,19]. A brief
summary is given below.

The time stepping algorithm consists of updating the position vector and velocity
potential on the free surface, based on second-order Taylor series expansions. At
each time step, the BIE (2) is expressed for N nodes defining the domain boundary,
and solved with a BEM. Thus, elements are specified in between nodes, to locally
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interpolate both the boundary geometry and field variables, using bi-cubic polyno-
mial shape functions. A local change of variables is defined to express the BIE inte-
grals on a curvilinear reference element, and compute these using a Gauss-Legendre
quadrature and other appropriate techniques removing the weak singularities of the
Green’s function (based on polar coordinate transformations). The number of dis-
cretization nodes yields the assembling phase of the system matrix, resulting in an
algebraic system of equations. The rigid mode technique is applied to directly com-
pute angles α and diagonal terms in the system, which normally requires evaluating
strongly singular integrals involving the normal derivative of the Green’s function.
This modifies the algebraic system as well. Multiple nodes are specified on domain
edges and corners, in order to easily express different normal directions on different
sides of the boundary. Additional equations derived for enforcing continuity of the
potential at these nodes also lead to modifications of the algebraic system matrix.
The velocity potential (or its normal derivative depending on the boundary condi-
tion) is obtained as a solution of the linear system of equations. Since the system
matrix is typically fully populated and non-symmetric, the method has, at best, a
computational complexity of O(N 2), when using the iterative, optimized conjugate
gradient method GMRES. Thus the spatial solution at each time step is of the same
complexity as the assembling of the system matrix. The Fast Multipole Algorithm
(FMA) is implemented to reduce this complexity.

First developed by Greengard and Rokhlin [24] for the N -body problem, the FMA
allows for a faster computation of all pairwise interactions in a system of N particles,
in particular, interactions governed by Laplace’s equation. Hence, it is well suited to
our problem. The basis of the algorithm is that the interaction strength decreases
with distance, so that points that are far away on the boundary can be grouped
together to contribute to one collocation point. A hierarchical subdivision of space
automatically verifies distance criteria and distinguishes near interactions from far
ones. The FMA can be directly used to solve Laplace’s equation, but it can also
be combined with an integral representation of this equation. The discretization
then leads to a linear system, with matrix-vector products evaluated as part of
an iterative solver (such as GMRES), that can be accelerated using the FMA.
Rokhlin [46] applied this idea to the equations of potential theory. A review of
the application of this algorithm to BIE methods can be found in [45]. Korsmeyer
et al. [40] combined the FMA with a BEM, through a Krylov-subspace iterative
algorithm, for water wave computations. Following Rokhlin’s ideas, they designed a
modified multipole algorithm for the equations of potential theory. First developed
for electrostatic analysis, their code was generalized to become a fast Laplace solver,
which subsequently has been used for potential fluid flows. Their model was efficient
but its global accuracy was limited by the use of low order boundary elements.
Scorpio and Beck [47] studied wave forces on bodies with a multipole-accelerated
desingularized method, and thus did not use boundary elements to discretize the
problem. Neither did Graziani and Landrini [22], who used the Euler-McLaurin
quadrature formula in their 2D model. Srisupattarawanit et al. [50] also used a fast
multipole solver to study waves coupled with elastic structures. We show briefly
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below how the FMA can be combined with Grilli et al.’s [26] 3D-NWT to yield a
more efficient numerical tool. Details can be found in [19].

The FMA is based on the principle that the Green’s function can be expanded in a
series of separated variables, for which only a few terms need to be retained, when
the source point xl and the evaluation point x are far enough from one another.
Thus, for a point O (origin of the expansion) close to x and far from xl, we have,

G(x, xl) ≈
1

4π

p
∑

k=0

k
∑

m=−k

ρkY −m
k (α, β)

Y m
k (θ, ϕ)

rk+1
, (14)

where x−O = (ρ, α, β) and xl−O = (r, θ, ϕ) in spherical coordinates. The functions
Y ±m

k are the spherical harmonics defined from Legendre polynomials. A hierarchical
subdivision of the domain, with regular partitioning automatically verifying distance
criteria, is defined to determine for which nodes this approximation applies. Thus,
close interactions are evaluated by direct computation of the full Green’s functions,
whereas far interactions are approximated by successive local operations based on
the subdivision into cells and the expansion of the Green’s function into spherical
harmonics. The underlying theory for this approximation is well established in the
case of Laplace’s equation. In particular, error and complexity analyses are given in
the monograph by Greengard [23].

In our case, Laplace’s equation has been transformed into a BIE and a specific
discretization has been used. Thus, the FMA must be adapted in order to be part
of the surface wave model, but the series expansion (14) remains the same. Hence,
with the FMA, Eq. (2) can be rewritten as

α(xl) φ(xl) ≈
1

4π

p
∑

k=0

k
∑

m=−k

Mm
k (O)

Y m
k (θ, ϕ)

rk+1
, (15)

where moments Mm
k (O) are defined as

Mm
k (O) =

∫

Γ

{

∂φ

∂n
(x) ρkY −m

k (α, β) − φ(x)
∂

∂n

(

ρkY −m
k (α, β)

)}

dΓ. (16)

Instead of considering mutual interactions between two points on the boundary,
we now need to look at the contribution of an element of the discretization to a
collocation point. The local computation of several elements, grouped together into
a multipole, relies on a BEM analysis using the spherical harmonic functions instead
of the Green’s function. The integration of the normal derivative of the spherical
harmonics is done by taking care of avoiding an apparent singularity, which could
generate numerical errors. The BEM discretization only applies to the computation
of the moments. Thus, the rest of the FMA is unchanged, especially regarding
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translation and conversion formulae, which allow to pass the information through
the hierarchical spatial subdivision, from the multipole contributions to the matrix
evaluation for each collocation node. In the 3D-NWT, the use of the FMA only
affected parts that involved the assembling and the solution of the algebraic system
matrix. The storage of coefficients that are used several times for each time step,
for instance, is now done inside the cells of the hierarchical subdivision. The rigid
mode and multiple nodes techniques, which a priori modified the matrix before the
computation of matrix-vector products, are now considered as terms correcting the
result of such products, so that the linear system keeps the same properties.

The accelerated model benefits from the faster Laplace’s equation solver at each
time step. The FMA model performance was tested by comparing new results with
results of the former model, for a 3D application which requires great accuracy : the
propagation of a solitary wave on a sloping bottom with a transverse modulation,
leading to a plunging jet [26]. The consistency of the new solution was checked but,
more importantly, the accuracy and stability of results and their convergence as
a function of discretization size was verified. In fact, by adjusting the parameters
of the FMA, i.e. the hierarchical spatial subdivision and the number of terms p in
the multipole expansions, one can essentially obtain the same results as with the
former model. In this validation application, for discretizations having more than
4,000 nodes, the computational time was observed to increase nearly linearly with
the number of nodes [19].

The present applications have a horizontal symmetry and a flat bottom in the
computational domain. Hence, the image method can be applied with respect to
the planes z = −d and y = 0, to remove parts of the discretization [7]. Doing so,
the 3D free space Green’s function is modified in the BIE, by adding contributions
of each image source. In the FMA, when the original source point is far from the
collocation point, so are the images. Thus, image contributions have simply been
added to the multipole associated with the original point. In the usual application
of the FMA, images should be accounted for at a coarser subdivision level than the
original source points, since they are further away from the evaluation point.

3 Numerical experiments

3.1 Introduction

We generate extreme waves in a 3D-NWT by directional energy focusing, up to
overturning, i.e. the first stage of breaking. The large size of the extreme waves
we are modeling justifies neglecting capillary and viscous effects. In the absence of
surface tension and viscosity, wave breaking is initiated by an overturning motion
at the tip of the wave crest [17]. For such cases, the potential flow solution has been
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shown to be in good agreement with experiments [14,28–30]. We do not attempt
to model the subsequent turbulent part of breaking, with air entrainment and bub-
bles. Potential flow would no longer apply and other models would be required to
this effect, for instance, a VOF-Navier-Stokes solver coupled to the BEM model
[41,2,3,10] or directly applied [42] to the simulation. Moreover, for the same reason,
we focus our interest on plunging breakers, for which there is a clean large size jet,
rather than the more turbulent spilling breakers.

We generate an extreme overturning wave in the 3D-NWT, by simple geometrical
focusing, using a snake wavemaker. Since our goal is to study wave kinematics we
do not try to reproduce a prespecified target wave, as e.g. in [37,5], but rather we
produce as large a breaker as possible, given the specified water depth. Besides, our
selected wave generation method creates evanescent modes, free waves, and nonlin-
ear interactions, which would not easily be taken into account, when attempting to
generate a specific target wave through inverse modeling. Such an iterative adjust-
ment of generation parameters might be necessary for performing physical wavetank
experiments, in which various gages must be strategically located, but is less crucial
in numerical experiments, where results are available everywhere.

We only present idealized situations of extreme wave generation, in order to show the
dependence of wave properties on governing parameters, such as the maximum wave
focusing angle and water depth. Thus, only a moderate number of periodic wave
components are specified at the wavemaker, which all geometrically focus at one
point in the NWT, according to the linear approximation. Large, perhaps not fully
realistic, values of maximum angular directionality are typically used, to produce the
wave focusing event not too far from the wavemaker, and hence reduce the length
of the computational domain. In light of the present simulation results, future work
will deal with the generation of more realistic extreme waves, from a directional
wave spectrum. Such cases will involve longer and more expensive computations,
requiring the implementation of a more efficient open boundary condition in the
3D-NWT in order to minimize reflection [27,9].

3.2 Wave focusing

For the idealized applications considered in this paper, the NWT is defined as a
rectangular basin with a flat bottom at depth z = −d (Fig. 1). Laterally, the NWT
is bounded by fixed or moving, initially vertical, boundaries. A snake wavemaker is
specified on the x = 0 side of the tank, consisting of multiple flap paddles rotating

on the bottom, with the angular velocity
·
ω j [7] and horizontal stroke So(y, t) at

z = 0. Each wavemaker paddle thus has an angle ω = arctan So/d and a position
xp = (xp, yp, zp) defined by

xp = xo − ρ m, (17)

11



with xo = yp j − d k the coordinates of the axis of rotation of the paddle, and

ρ =
√

x2
p + (d + zp)2 the distance from points on the wavemaker to this axis.

¿From these definitions, we find the velocity and acceleration vectors on the wave-
maker as

up =−·
ρ m − ρ

·
ω n

dup

dt
=(ρ

·
ω

2

− ρ̈) m − (2
·
ρ
·
ω + ρ ω̈) n. (18)

The snake wavemaker stroke function is defined, according to linear theory [11], as
a linear superposition of Nθ sinusoidal components of amplitude an and direction
θn. Angles θn are uniformly distributed in the range [−θmax, θmax]. We find

So(y, t) =
Nθ
∑

n=1

an cos {kn(y sin θn − xf cos θn) − Ωnt}, (19)

where xf is a geometrical focusing distance for the waves in front of the wave-
maker, and kn and Ωn denote the wavenumber and frequency of each component,
respectively, satisfying the linear dispersion relationship

Ω2
n = g kn tanh (knd). (20)

Based on linear wavemaker theory, each wave component amplitude can be esti-
mated as [12]

An = an

1

cos(θn)

4 sinh(knd)(1 − cosh(knd) + knd sinh(knd))

knd(2knd + sinh(2knd))
, (21)

and at the linearly defined focal point x = xf , the total amplitude is estimated by
A∗ =

∑

An.

In order to reduce initial singularities at the interface between the free surface and
the moving wavemaker, the wavemaker is gradually set in motion in the computa-
tions, following a tanh-like ramp-up over three representative wave periods [7].

The above describes the simplest way of generating wave focusing with a snake
wavemaker, and Fig. 2 shows an example of snake wavemaker motion. More complex
motions could be achieved. In particular, only directional focusing is used in all the
cases reported here, and hence Ωn = Ω. Frequency focusing can be specified by
adjusting the frequency (or celerity) of wave components as a function of θn so that
they (linearly) reach the focal point at the same time. Given the celerity co of the
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Fig. 2. Illustration of the snake motion of the wavemaker located at the left of the tank.
Data used corresponds to one of the cases described in the following.

normal component corresponding to θn = 0, the celerity for oblique components is
cn = Ωn/kn = co/ cos θn. Moreover, for simplicity, we assume that the amplitudes
of the wavemaker components are all identical (an = a). Different values could be
selected in order to model a real sea state with a specified energy spectrum. Finally,
as mentioned above, even with this simplest case, the wavemaker generates a more
complex wave field than predicted by linear wave theory, due to both the finite size
of the wavetank and nonlinear effects. This leads to changes in focal point locations
and maximum wave height. Perfect focusing, however, is not the topic of the present
study, and this wavemaker law of motion serves our purpose well enough.

In the following, we give results of two wave focusing applications. The first one
details a single wave focusing case and discusses features of the plunging breaker
that is generated. The second one presents a comparison of focusing results obtained
for nine cases, with different water depth and directionality parameters. All compu-
tations were performed with non-dimensionalized equations, obtained by dividing

lengths by the water depth d of our first case, and times by
√

d/g. Therefore, all
results in the figures are also given in this non-dimensionalized form. In order to give
an idea for actual physical values, results in the text are given with a characteristic
depth of 20 m (corresponding roughly to coastal waters in the North Sea [38]).

3.3 Analysis of an overturning rogue wave

First we consider the superposition of Nθ = 30 wave components having identical
properties, but with directions varying between −θmax = −45 and θmax = 45 degrees.
Each component has a frequency Ω = 0.8971 rad/s, for which Eq. (20) gives a
(linear) wavelength L = 2π/k = 72 m, a period T = 7 s, and a linear celerity
c = Ω/k = 10.28 m/s, all for a water depth of d = 20 m. The amplitude of
each individual wavemaker stroke component is fixed to a = 0.2 m, yielding an
individual wave amplitude of A = 0.19 m for a (linear) steepness of kA = 0.0162
(for the wave component propagating at the angle θn = 0). The amplitude at the
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linear focal point, specified at the distance xf = 250 m from the wavemaker, is
thus theoretically A∗ = 6.3 m. This is clearly a large value, in accordance with our
goal of generating a large overturning wave early in the generation process, before
reaching the far end of the tank where, despite the absorbing boundary condition,
some reflection occurs that may perturb wave focusing.

The NWT has a 440 m length (or 22d) and a 600 m width (or 30d). For the selected
focusing distance, this NWT length is such that, when overturning of the extreme
wave occurs, almost no wave will have yet reached the far end of the tank. Hence, the
absorbing boundary condition will not be activated in this computation. The width
of the NWT along y is divided into 70 elements, and its depth into 4 elements. At the
beginning of computations, the discretization has 90 elements in the x−longitudinal
direction, which corresponds to roughly 15 nodes per wavelength. In order to better
resolve the wave steepening towards breaking (defined as the occurrence of the first
vertical tangent on the free surface), the resolution is later improved by using 120
elements with an irregular grid, refined around the breaking wave for t > 43.39 s
(= 6.20T ). The present simulations require 2 min per time step on a biprocessor
Xeon (3Ghz, 2Go RAM) for the initial grid, and 10 min 30 s per time step for the
finer one.

Figure 3 shows the time evolution of the non-dimensional surface wave field. The
initially flat free surface starts moving near the wavemaker (Fig. 3a) and, due to
the ramp-up motion, a first focused wave of moderate amplitude is generated (Fig.
3b). Then, this wave elevation decreases (not shown) and almost disappears at the
plot scale. Hence, our focusing mechanism effectively produces local focusing that
is transient both in time and space. The amplitude of the wavemaker oscillations
further increases to give rise, in Fig. 3c, to an even larger wave in the middle of the
tank and, eventually, after the transient ramp-up of the wavemaker motion is over
and complete focusing is achieved, to an even larger wave that starts overturning
around xc = 211 m (or 10.55 d) (Fig. 3d). This is closer to the wavemaker than the
linearly estimated focal point. Behind this breaker, we see on the figure that the
phenomenon is starting to repeat itself, with a new curved crest line appearing and
converging towards the center of the NWT.

The observation of the free surface shape at focusing for this 3D application leads to
the following additional comments. First of all, there is a circular trough located just
in front of the overturning wave (the so-called “hole in the sea” reported by rogue
wave eyewitnesses). Behind the wave, an even deeper trough has formed (which is
more clearly seen in Fig. 4), separating the main wave from the curved crest line
which follows it. This trough has more of a crescent shape, due to the directions of
the incoming waves. The overturning wave itself appears like a curved front as well.
In the present case, for which directionality is significant, the front is not so wide,
reflecting strong 3D effects. The amplitude of the overturning wave is significantly
larger than that of the following waves, which have not yet converged, and the wave
has a strong back-to-front asymmetry (this is also more clearly seen on Fig. 4).
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Fig. 3. Free surface evolution at : (a) t = 3.11T , (b) t = 4.74T , (c) t = 6.20T , (d)
t = 6.89T . In the last figure, the focused wave is starting to overturn, with its crest
located at x = 211 m (or 10.55 d).
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Fig. 4. Vertical slice at y = 0 and t = 6.89T in Fig. 3d. The arrows show the projected
velocity vectors. The arrow in the upper-right corner represents the unit vector. The
vertical axis is exaggerated by a factor 9.

This wave asymmetry increases with time, prior to reaching the breaker point, and
indicates that the wave is about to overturn and break.

The dominant nonlinear effect in this application is clearly the wave steepening
towards breaking. In particular, this application was not designed to study the
transfer of energy inside an incoming wave group, as in studies related to modula-
tional instability leading to the sudden appearance of a very large wave. Here, the
wave starts to break before the focusing mechanism can fully develop and possibly
lead to an even bigger wave; however our numerical method is limited as it cannot
continue computations beyond breaking.
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Fig. 5. Horizontal cross-section at z = Ac/2 (left) and transverse vertical cross-section at
x = xc and t = 6.89T , in Fig. 3d. The arrows show the projected velocity vectors.

The properties of the extreme wave generated in this application agree well with
known characteristics of rogue waves, and more generally of transient breaking
waves. In particular, the vertical cross-section at y = 0 and t = 6.89T = 48.23 s
in Fig. 3d, given in Fig. 4, shows that the wave profile is similar to that observed
in rogue wave measurements or observations (see for example the extreme wave
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Fig. 6. Vertical slice at y = ±`/2 = 36 m and t = 6.89T , in Fig. 3d. The arrows show the
projected velocity vectors. The vertical axis is exaggerated by a factor 5.8.

measured under the Draupner platform in the North Sea on January 1st 1995), as
well as in earlier 2D numerical studies, for instance those related to modulational
instabilities of a wave packet [38]. A large crest (Ac = 7.16 m or 0.358d) is preceeded
and followed by two much shallower troughs; the back trough is deeper than the
front one (At1 = 3.60 m and At2 = 2.14 m, or 0.180d and 0.107d, respectively).
Wave height is H1 = Ac + At1 = 10.76 m or 0.538d, which is less than the linearly
predicted upper bound value 2A∗ = 12.6 m. As discussed above, this is because of
the early breaking of the wave, and the incomplete focusing. Also, since no frequency
focusing was specified, not all waves lead to constructive interferences at the focal
point, even in a linear sense. The wavelength of the nonlinear focused wave can
also be measured on Fig. 4, by averaging the rear and front wavelengths (i.e., mean
water level distance between two zero-crossing points) using the back and the front
trough. We find λ ' 78.0 m (or 3.90 d), which is more than the linear value, due
to amplitude dispersion effects [12]. This yields a steepness H/λ = 0.138, which is
greater than the limiting steepness predicted by Miche’s law for this depth, about
0.132 (for a symmetric maximum Stokes wave [12]). Hence, the asymmetric and
transient extreme wave generated in the NWT in this application grows further
than the theoretical limiting steepness, before it overturns. This may have important
implications for structural design of offshore structures [10].

Figures 5–6 illustrate the 3D shape of the focused wave. [Note that contours shown
in these figures are less smooth than the actual wave surface, because of the in-
terpolation algorithm.] In the horizontal slice at height z = Ac/2 (Fig. 5a), we see
an elliptic-shaped contour of the surface elevation (only one-half is shown since the
problem is symmetrical with respect to the (x, z)-plane). However a pronounced
asymmetry is visible between the back and the front of the wave, as expected from
the 2D wave profile shown in Fig. 4, corresponding to a more curved front face than
the back face of the wave, which is rather straight. The vertical lateral cross-section
at x = xc is shown in Fig. 5b. The transverse shape of the wave is quite triangular,
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so that the 3D wave is approximately pyramidal. This could be due to the large
value of θmax, which creates intense focusing over a small area and hence concen-
trates well wave energy. [Note that the development of a large breaker that follows
this stage will tend to give the wave a more rounded transverse shape.] To further
confirm the 3D nature of the focused wave, we show in Fig. 6 a vertical cross-section
taken at y = ±`/2 = 36 m, where ` is the wave width at mid-height. We observe
here that, for this smaller wave elevation, the back-to-front asymmetry is almost
non-existant, while the crest-to-trough asymmetry is very pronounced, indicating
significant wave nonlinearity.
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Fig. 7. Same parameters as Fig. 4. The arrows show the projected internal accelerations
vectors. The arrow in the right-hand corner represents the unit vector.
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Fig. 8. Same parameters as Fig. 5. The arrows show the projected internal accelerations
vectors.

Besides wave shapes, Figs. 4 to 6 show projections of internal velocity vectors on
each cross-section. Figs. 7 to 9 present similar projections for the internal acceler-
ation vectors at the same cross-sections. Figs. 4 and 7 illustrate the more intense
kinematics at incipient breaking immediately below the wave crest. The horizontal
cross-section in Fig. 5a shows that the horizontal velocity field is nearly (laterally)
uniform at mid-height. For the corresponding acceleration field in Fig. 8a, we see
positive accelerations (of magnitude ≈ g) in the front tier zone, and negative values

18



7 8 9 10 11 12 13 14−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

z

Fig. 9. Same parameters as Fig. 6. The arrows show the projected internal accelerations
vectors.

in the back. We note that the transverse effects seem rather small at this level. This
is confirmed by the transverse vertical cross-sections of Figs. 5b and 8b. Particle
velocities are essentially upwards, with the upper part of the fields having nearly
uniform values. Accelerations are negative, with greater values (' 2g) nearest the
crest. Finally, the flow in the section at y = ±`/2 does not show particular fea-
tures, other than those of a typical periodic nonlinear wave, the crest having not
yet started overturning (Figs. 6 and 9).

Velocity and acceleration fields (not shown) computed on the free surface for the
same stages as shown in Fig. 3 show two main phases in the evolution of the focused
wave event. The first phase is one of approach, in which the different wave compo-
nents forming a crest line are converging towards the focal point. Wave kinematics
thus shows features similar to the propagation of a curved crest line. The second
phase corresponds to the appearance of a unique, large, focused wave, resulting from
the superposition of many components. This stage is shown in Fig. 10 at the time
of breaking, corresponding to Fig. 3d. Upon focusing, the maximum value of the
longitudinal velocity component u increases, and the largest velocities concentrate
more and more towards the wave crest, indicating flow convergence. At the same
time, as we have seen, the decreasing transverse components of the velocity and
acceleration fields in the upper half of the focused wave crest, notably smaller than
for the wave that follows, indicate that the flow becomes more and more 2D (in
y-planes). The focused wave crest tends to move forward faster than the phase ve-
locity of its basic wave components, thus initiating overturning and breaking. This
is in agreement with internal field patterns discussed above. Hence, the dynamics of
a rogue wave which is about to break becomes almost 2D locally. [This observation
has important implications for the design of offshore structures that would be lo-
cated in the path of such a wave [10].] This is in good agreement with descriptions
of a “wall of water”, reported in stories relating extreme wave events in the ocean.

Accelerations are not shown on the free surface, because these are in part calculated
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by differentiation and hence become less accurate near the crest of the focused wave,
due to the very deformed free-surface geometry. However internal fields presented
above, which are calculated with the BIEs (Figures 7 to 9), are much more accurate,
particularly when they are computed not too close to the free surface.

Fig. 10. Same case as Fig. 3d. Velocity field components on the free surface at t = 6.89T
(breaking time) : (a) u, (b) v, (c) w.
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Finally, Fig. 11 shows a close-up of the development of the plunging jet at t = 6.89T .
We did not attempt to accurately follow the overturning jet beyond this stage, in
any of the applications reported in this work, although our model is capable of
doing so, given a proper discretization [33]. Hence, we do not discuss wave breaking
characteristics in detail, but limit our analyses to the initiation of breaking.
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Fig. 11. Close-up of the overturning crest at y = 0 and t = 6.89T for cases of Figs 4 and
7.

3.4 Parametric study

In the previous section, we presented detailed results for a typical 3D transient
focused rogue wave, at the breaking point. Here, we study the effects of two param-
eters on the properties of focused waves: the maximum focusing angle of incident
waves and the water depth. Due to the variations in parameters, we use nondimen-
sional values in both the text and the figures, without specific symbol or notation to
identify those. We compute nine cases for three values of the maximum focusing an-
gle, θmax = 40, 45, 50 degrees, and three values of the water depth, d = 1, 2, 3. Most
other parameters have identical values to those used in the first application. The
only change deals with the stroke amplitude a of the paddles, which is adjusted such
that the linear sum of the amplitudes of the generated waves, namely A∗, remains
the same for all cases (Eq. 21), thus allowing a comparative study between these
nine cases. For the waves generated in the previous application, which had a dimen-
sionless wavelength λ ' 3.90, the water depth d = 3 clearly corresponds to deep
water conditions, while the other two shallower depths correspond to intermediate
water conditions.

Figure 12 shows free-surface elevations at the breaking point for the nine selected
cases. Breaking clearly is a function of the two variable parameters. For a fixed
water depth, a greater value of θmax both increases the focal distance and delays
the instant of breaking. For small θmax values, wave components add together closer
to the wavemaker leading to earlier breaking. For greater θmax values, the focusing
mechanism has more time to develop. Then we would have expected that, for such
cases, focusing would periodically repeat itself in the middle of the tank, until
a sufficiently large wave is generated and breaks. In fact, we observed that one
of the first focused waves, after having gone through the theoretical focal point,
keeps steepening and starts breaking, reaching a point of no-return. Hence, breaking
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Fig. 12. Surface wave fields at breaking (t = tBP ): d = 1 and θmax = (a) 40, (b) 45 and
(c) 50; d = 2 and θmax = (d) 40, (e) 45 and (f) 50; d = 3 and θmax = (g) 40, (h) 45 and
(i) 50. With: A∗ = 0.315(6.3 m); Ω = 1.282; g = 1; Nθ = 30.

for these cases occurs during the defocusing stage (this is clear on Figs. 12c, f
and i). Thus the key observation is that breaking does not necessarily occur when
the maximum focusing amplitude is achieved. Different maximum focusing angles,
i.e. directionality of incident waves, can lead to breaking at different stages of the
focusing phenomenon. This has important implications for wave properties, as we
shall see below. Regarding the effects of changes in water depth, we observe that the
d = 1 cases, which correspond to shallower depth, lead to earlier breaking, whereas
the intermediate (d = 2) and deep (d = 3) cases behave similarly.

Table 1 gives a list of wave characteristics computed for the nine test cases, based
on 2D results measured in a vertical cross section at y = 0. Most of these charac-
teristics are defined as in Bonmarin’s paper [4] but, due to the observed rear-front
asymmetry of the waves, we separately identified values related to both sides of the
wave. Parameters δ and ε are obtained as Ac divided by the horizontal extension of
the positive wave elevation to the rear or the front of the crest, respectively. The
parameter s, which is similar to a parameter introduced in [25], is the ratio of the
front crest length over the rear crest length, or s = ε/δ, and measures the vertical
asymmetry of the crest.

The values of xc and tBP confirm what can be seen in Fig. 12 regarding the oc-
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d 1 1 1 2 2 2 3 3 3

θmax 40 45 50 40 45 50 40 45 50

tBP 25.33 33.76 44.33 33.19 41.99 51.25 33.02 41.45 50.69

xc 7.643 10.585 15.267 10.072 13.363 16.806 9.922 12.927 16.392

Ac 0.337 0.358 0.309 0.339 0.312 0.260 0.335 0.309 0.264

At1 0.164 0.180 0.168 0.194 0.189 0.167 0.196 0.192 0.169

At2 0.074 0.107 0.081 0.068 0.063 0.045 0.062 0.064 0.044

H1 0.501 0.538 0.477 0.533 0.502 0.427 0.531 0.501 0.433

H2 0.411 0.465 0.390 0.407 0.376 0.305 0.397 0.373 0.308

λ1 4.062 4.075 3.808 4.226 4.101 3.801 4.266 4.096 3.824

λ2 4.097 3.723 3.404 4.292 4.243 3.828 4.447 3.940 3.662

µ1 0.673 0.666 0.648 0.637 0.623 0.609 0.631 0.617 0.610

µ2 0.820 0.770 0.792 0.833 0.832 0.854 0.845 0.828 0.859

γ1 0.123 0.132 0.125 0.126 0.122 0.112 0.125 0.122 0.113

γ2 0.100 0.125 0.115 0.095 0.088 0.080 0.089 0.095 0.084

δ 0.392 0.360 0.374 0.346 0.390 0.405 0.350 0.339 0.391

ε 0.419 0.635 0.527 0.467 0.381 0.293 0.438 0.445 0.307

s 1.068 1.765 1.407 1.350 0.978 0.723 1.252 1.312 0.787

` 3.030 3.298 4.062 3.876 4.198 4.496 3.852 4.178 4.430

`/Ac 8.892 9.212 13.146 11.434 13.456 17.292 11.498 13.522 16.780

Table 1
Nondimensional wave characteristics at the breaking point t = tBP for parametric study:
wave crest location xc; crest amplitude Ac; trough amplitudes in the rear At1 and in the
front At2; wave heights in the rear H1 = At1 + Ac and in the front H2 = At2 + Ac;
wavelengths in the rear λ1 and in the front λ2; asymmetries in the rear µ1 = Ac/H1

and in the front µ2 = Ac/H2; wave steepness in the rear γ1 = H1/λ1 and in the front
γ2 = H2/λ2; wave slope in the rear δ and in the front ε; vertical asymmetry s; wave width
` at z = Ac/2. The second column corresponds to the application detailed in Section 3.3.

currence of breaking. More precisely, we see that the deep water case is breaking
slightly earlier than the intermediate one.

Table 1 shows that the amplitude parameters are essentially related to the focusing
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or defocusing stage seen in Fig. 12. In this respect, the intermediate and deep
water cases have very similar amplitude parameters. More specifically, Ac is larger
when breaking occurs closer to the focal point. When breaking occurs during the
defocusing stage, the wave crest amplitude is lower. The amplitudes At1 and At2

also depend on the location with respect to the focal point, but At1 increases with d
while At2 decreases with d. H2 appears to be the most consistent wave characteristic
for explaining the effects of amplitude parameters: for each water depth, it is larger
for cases where the wave crest and its front trough are the closest to the focal point;
apart from this, we can deduce that H2 decreases slightly as d increases.

The linear wavelength is 3.600, 3.815, and 3.825 for d = 1, 2, and 3, respectively.
Wavelengths λ1 and λ2 show the same trend with d for the focusing cases, but are
typically larger than the linear ones, due to nonlinear amplitude dispersion effects.
For the defocusing cases, however, less predictable results are obtained. First we see
that for (d = 2, θmax = 50), λ1 is smaller than for (d = 1, θmax = 50): this is due
to the defocusing evolution of the steepening wave. More surprising are the greater
values of λ2 for (d = 2, θmax = 45, 50) than for (d = 3, θmax = 45, 50), since we have
seen that the d = 2 cases are slightly more “defocused” than the d = 3 cases. This
observation means that these cases, which are similar in their evolution to breaking,
have quite different breaking wave shapes.

For linear waves, both horizontal asymmetry parameters µ1 and µ2 are equal to 0.5.
All our focused transient waves are strongly nonlinear, with a shallow front trough
At2 � At1 and, hence, a large µ2 value. The asymmetry µ1 shows an interesting
trend: on the one hand, it decreases with increased θmax; on the other hand, it
increases for smaller depths. The latter makes sense due to the expected increase in
asymmetry for shallower water waves.

Values of the rear steepness parameter γ1 are quite constant for all cases, except
for the two cases that are the most defocused. The front wave steepness γ2 shows
more variability, with larger values for smaller depth. The rear wave slope δ should
quantify aspects of the breaking crest itself. This parameter value does not vary
as much as the front wave slope ε. The vertical asymmetry factor s, equal to one
in the linear approximation, is much larger for our test cases which are close to
the focal point such as the cases (d = 1, θmax = 45), (d = 2, θmax = 40) and
(d = 3, θmax = 40). However, when breaking occurs in a very defocused stage,
this parameter may fall below one. In any case, it sems difficult to identify a clear
trend for this parameter as a function of d, θmax, and even the focusing/defocusing
aspects. In particular, the intermediate and deep water cases have very different
values for θmax = 45 while breaking at a similar slightly defocused stage.

The wave width parameter ` and the normalized width `/Ac depend strongly on
the focusing or defocusing stage at the instant of breaking. As expected, due to the
directional mechanism of generation, these are minimal for cases that are breaking
close to the focal point, whereas they are larger when the curved wave front focuses
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Fig. 13. Vertical cross-section (y = 0) at the breaking point (t = tBP ), for θmax = 40
(——); 45 (- - - - -); and 50 (. . . . . ). (a) d = 1, (b) d = 2, (c) d = 3. The horizontal
coordinates are shifted by xc. No vertical exaggeration.
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Fig. 14. Horizontal cross-section (z = Ac/2) at the breaking point (t = tBP ). Same
definitions as for Fig. 13.
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Fig. 15. Transverse cross-section (x = xc) at the breaking point (t = tBP ). Same definitions
as for Fig. 13. No vertical exaggeration.

or defocuses, while maintaining a large enough crest amplitude.

In order to better understand the effects of θmax and d on the results, we show
in Figures 13, 14 and 15 various cross-sections through the wave crest simulated
for the nine test cases. The longitudinal cross-sections in Fig. 13 further illustrate
the rear/front (or vertical) wave crest asymmetry (quantified by parameters δ, ε
and s discussed before). After translating all sections to x = xc, the crest geometry
appears quite similar in most cases. The rear wave faces are quite straight and nearly
parallel, which is consistent with the nearly constant value of δ, while the front faces
are more curved, yielding quite different values of the asymmetry parameters ε and
s (Table 1). As noted by Bonmarin [4], the deformation of the wave crest caused
by impending breaking mostly affects the wave front face. By contrast, the two
cases that are breaking at a very defocusing stage have a more deformed rear face
(Fig. 13b,c). This gives a more symmetrical triangular shape to the breaking wave.
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Fig. 16. Horizontal velocity u under the crest at breaking for d = (a) 1, (b) 2, (c) 3. Same
definitions as for Fig. 13.
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Fig. 17. Horizontal velocity u under the crest for a Stokes waves with the same height H2

and wavelength λ2 for d = (a) 1, (b) 2, (c) 3.

Wave overturning in these cases is concentrated on a very small region of the crest
(seemingly spilling breaking). Bonmarin further indicated that vertical asymmetry
should increase with time in waves evolving towards breaking. However, this does
not seem to apply when breaking occurs during the defocusing stage.

The horizontal cross-sections in Fig. 14 further show how the wave shape changes
with respect to the focusing or defocusing situation. As expected from the discus-
sion in the previous section, the curved wave front exhibits a crescent shape, with
concavity oriented to the left or right, for defocusing or focusing cases, respectively.
By contrast, the wave front shape is quite symmetrical (with respect to x) for cases
close to focus. Figure 15 shows the transverse wave profiles at breaking, and con-
firms that the wave geometry is quite pyramidal. However, this pyramidal shape
occurs just before breaking and is of short duration, since it was also noted that the
wave shape tends to become more rounded again during the overturning.

Finally, we discuss wave kinematics at breaking. In the previous section we already
presented and discussed internal velocity and acceleration fields for our first case
(Figs. 4 to 9). Surface velocity fields were shown in Fig. 10 for the same case.
Here, we analyze vertical variations of the horizontal velocity u and the vertical
acceleration az under each wave crest at breaking, down to the bottom z = −d, in
the plane y = 0, for the nine test cases (Figs. 16 and 18). Both of these essentially
decrease gradually from crest to bottom. For the deepest water cases (d = 3), as
expected, both reach nearly zero on the bottom and for a short distance above it.
For the other two depth cases, there is a significant non-zero velocity on the bottom.
Above the mean water level z = 0, horizontal velocities rapidly increase towards
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Fig. 18. Vertical acceleration az under the crest at breaking. Same definitions as for Fig.
16.
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Fig. 19. Vertical acceleration az under the crest for an equivalent Stokes wave with the
same height H2 and wavelength λ2 for d = (a) 1, (b) 2, (c) 3.

the crest, even for the shallowest water cases (d = 1). While velocities differ only
slightly between cases with θmax = 40 and θmax = 45, we observe that all cases with
θmax = 50 have a smaller horizontal velocity between z = −1 and 0. Above z = 0,
the curves for a given depth and different focusing angles are very close, especially
for d = 2 and d = 3. For each depth, the maximum horizontal velocity is obtained
for the highest wave (which corresponds to the case closer to the focal point). These
maximum velocities are the greatest for the shallowest cases. In order to show
the differences between the present waves and 2D Stokes waves, we computed the
horizontal velocities for an equivalent Stokes wave with the same height H2 and the
same wavelength λ2 using stream function theory (Fig.17) [12]. We see that all the
vertical variations of horizontal velocity u under the crest look qualitatively similar.
Much larger velocities (almost twice as large), however, occur in the high crest
region in our focused transient 3D overturning waves than in the permanent form
Stokes waves. Vertical accelerations, which provide a measure of non-hydrostatic
pressure gradients, are significant over a large part of most diagrams. The largest
accelerations are obtained for cases close to focus (excepted the (d = 1, θmax = 50)
defocusing case, which provides a slightly greater maximum vertical acceleration
than the two other cases for the same depth). The maximum value obtained for
each depth among the three different θmax cases is roughly 0.6 for any depth. Thus,
the water depth has not a great influence on these maximum values in our numerical
experiments. We also see, in most cases, a decrease of the vertical acceleration in
the upper crest. For (d = 2, θmax = 40), this decrease is not visible and the vertical
acceleration seems to monotonously increase towards the crest; this however is likely
due to an insufficient number of points under the crest in the computations, while the
decrease only occurs in a very thin zone close to the crest. Fig.19 shows the vertical
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acceleration for equivalent Stokes waves. In the shallower cases, the accelerations
are larger in the Stokes waves, while for other depths (d = 2 and d = 3), it is
the opposite. The influence of the water depth is quantitatively significative: this
emphasizes the opposite observation of globally similar maximum values for any
depth that we made from Fig.18. In the Stokes waves, one does not obtain the
reversal of acceleration close to the crest, which may in part explain why horizontal
velocities stay smaller near the crest. Note that, the series representation of the
kinematics in the laterally symmetric Stokes waves, would not allow for such a
behavior to be expressed, even if the physics called for it.

4 Conclusions

We studied the generation of overturning rogue waves by directional energy focusing
in a fully nonlinear potential flow model, with the purpose of analyzing their geom-
etry and kinematics. The model is based on a high-order BEM, recently made more
efficient by the implementation of a Fast Multipole Algorithm, which computes all
matrix-vector products related to the discretization [19]. In the applications, waves
are generated in a 3D Numerical Wave Tank (NWT) by simulating the movement
of a snake wavemaker. Brandini and Grilli [7] presented a similar study based on an
earlier version of the NWT. They could not, however, reach the overturning phase
for an extreme wave event, both due to limitations in the model implementation
(now corrected; see Fochesato et al., 2005) and discretization size that could be re-
alistically achieved. By contrast, in this work, we usually resolve wave focusing well
enough to accurately create large scale plunging breakers in the NWT. Thus, we
perform a parametric study of wave properties at the onset of breaking, by testing
three water depths and three maximum angles of directional focusing. We specifi-
cally analyze the 3D geometry and kinematics of such waves and make observations
on their dependence to governing parameters.

The main features of rogue waves observed in our results are as follows. A vertical
2D longitudinal (x) cross-section through an extreme wave crest looks quite similar
to the characteristic shape observed for rogue waves in the ocean: a tall and steep
doubly asymmetric wave crest occurs, in between two shallower troughs. Maximum
wave steepness and slope at focusing as well as the horizontal velocity in the crest
are larger than those of a limiting periodic wave that has no rear/front asymmetry.
Unlike in Bonmarin’s observations [4], we find that the vertical asymmetry factor
does not necessarily increase with time, the steepening mostly occurring in the upper
crest. We agree with [4], however, that the deformation of the crest at breaking
mostly affects the wave front face, the back face being quite straight and having
nearly the same slope for all cases.

The 3D wave generation yields a curved wave front before focusing occurs. A shallow
circular trough forms in front of the focused wave (i.e., the “hole in the sea”), fol-
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lowed by a deeper trough, with a crescent shape. The 3D shape of the focused wave
appears to be almost pyramidal, for a small time prior to breaking. By contrast,
during the focusing phase as well as the development of overturning, the transverse
shape of the wave, through the crest, tends to have a more rounded shape. Wave
kinematics exhibits two main phases. First, we observe the propagation of a curved
crest line, converging towards a small area of the NWT. When the focused wave is
generated, it steepens, and flow velocity and acceleration vectors have weak trans-
verse components near the front face of the wave. Hence, after a 3D focusing phase,
wave overturning and breaking become locally quasi-2D. This may help explain
observations of a moving “wall of water”, reported in some stories of rogue waves
in the ocean. Other findings regarding wave kinematics are: (i) horizontal veloci-
ties are very non-uniform over depth, steeply increasing under the wave crest, even
for the shallowest water cases; (ii) vertical acceleration and, hence, non-hydrostatic
pressure gradients, are always significant under the crest; (iii) the largest horizontal
velocities at the crest are obtained when wave overturning occurs close to the fo-
cal point; (iv) the largest vertical accelerations are weakly dependent on the water
depth, unlike what we find for Stokes waves of identical height and wavelength; and
(v) maximum accelerations occur slightly below the free surface, under the crest. In
this respect, kinematics in our focusing overturning 3D waves, despite their quasi-
2D nature, is found to be quite different from that in Stokes waves of identical
height and wavelength. Horizontal velocity near the crest, in particular, is found to
be twice as large. Considering Stokes waves are often used as a model for extreme
waves in the offshore industry, the strong underprediction of kinematics they lead
to is an important finding that may help improve the design of offshore structures
against rogue wave impact [10].

It has been difficult to find general trends for the influence of water depth and max-
imum focusing angle of incident waves, on geometrical and kinematic parameters
at the breaking point. This is because the former parameters significantly modify
conditions under which waves break. For instance, a smaller depth or a larger maxi-
mum angle significantly delay the onset of breaking. Thus, breaking can occur during
focusing, nearly at the focal point, or during the defocusing stage. This “displace-
ment” of the breaking point has a much greater influence on wave characteristics
than the values of the governing parameters themselves (i.e., depth or angle). A
statistical approach based on a much large number of numerical experiments could
probably provide more quantitative information on the exact influence of these two
parameters. This could be the object of future work. Another future study would
be to focus many more smaller wave components to create the rogue wave, and vary
the amplitude of those, such that only one very large wave appears in the NWT
and eventually starts to break, rather than a series of waves of gradually increasing
height, as we have here. Our method was appropriate since we were more interested
in the kinematics of a deterministically generated rogue wave, rather than on find-
ing new mechanisms for rogue wave generation itself. Our 3D-NWT, however, is
general and more complex numerical experiments could be performed in the future,
featuring more realistic rogue wave generation mechanisms.
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