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ABSTRACT

The coupled action of wind and wave on the stability of floating off-
shore wind turbines (FOWT) tremendously affects the lifespan of these
energy systems and their energy output. Passive control systems reduce
such loads but can only mitigate the loading over a small range of ex-
citation frequencies. To improve this, an active control system (ACS)
is needed. The aim of this research is a digital twin proof of concept
allowing the diagnosis of current and upcoming environmental events
and re-tuning the ACS based on a mass-spring damper system (TMD) to
minimize wave-induced response at the frequency range of interest. This
is accomplished through a series of numerical investigations supported
by laboratory measurements in a wave basin made on a scale model of
a 15MW FOWT. The numerical models are implemented via the multi-
physics, multi-fidelity code: OpenFAST, that enables coupled nonlinear
aero-hydro-servo-elastic simulation in time domain. The code is modi-
fied to enable ACS implementation and ease of communication between
the controller and OpenFAST. After validating the model, an open-loop
controller is designed to allow multiple stiffness and damping entries tar-
geting first-order wave-frequency region. Two methods of data acqui-
sition are investigated: the Current Sea-State Controller (CSSC) where
sea-state prediction is governed by past wave elevation data points us-
ing a polynomial weighted buffer that leverages more recent data, and
the Future Sea-State Controller (FSSC) that, additionally utilizes recon-
struction/prediction model of the upcoming wave to investigate the effect
of reduced latency in the controller response. Both controllers are opti-
mized through a genetic algorithm scheme. Preliminary results show
an advantage for the latter controller in reducing wave excitations rang-
ing between 10s to 20s under varying sea-state. While the magnitude
of reduction is defined by the specific arrangement of the TMD system
studied, this study builds the foundation of a more sophisticated digital
twin system with concepts such as control co-design in its core.

KEYWORDS: Hydrodynamics modeling; dynamic positioning; con-
trol; model predictive control; model test.

INTRODUCTION

Wind energy is being recognized as a central factor in attaining Paris
agreement (COP21) goals of 1.5 C global warming by the year 2100.
Specifically, offshore wind energy is the most commercially well-
established marine renewable form with a relatively mature technology
(Astariz and Iglesias, 2016). This motivates more industry to be included
in the picture and is the reason behind a year-over-year (YoY) growth of
12% in the year 2021 which was the wind industry’s second-best year
after 2020. Onshore wind market added 72.5 GW worldwide whereas
offshore installations represented 22.5% of all new installations in the
year 2021, bringing the world’s total offshore capacity to 57GW (Coun-
cil, 2022).

As offshore wind is transitioning towards floating technologies, the
platform rigid-body motion becomes an urgent issue in the design and
analysis stage (Alkarem, 2020). Hence, numerical and experimental ap-
plications are necessary to understand this multi-faceted problem (Mar-
tin et al., 2014; Viselli et al., 2015). For instance, the sea-to-land ratio
of fore-aft tower base bending moment fatigue loads is 2.5 for spar-type
and 7.0 for barge-type platform (Jonkman, 2009). Therefore, innova-
tion that leads to response reduction is critical in the design of floating
offshore wind turbines (FOWT) and active control system becomes a ne-
cessity. While active control systems have been extensively researched
for the turbine control (Raach et al., 2014), strategies for minimizing
wave-induced rigid body motion of the platform are usually based on
passive techniques such as tuned mass dampers (TMDs) that can be op-
timized to mitigate vibrations/motions of certain frequencies (Villoslada
et al., 2020; Stewart and Lackner, 2014). These dampers can be either
situated in the nacelle (Ding et al., 2019; Lackner and Rotea, 2011b),
in the platform (Kimball et al., 2022), or both (Yang and He, 2020) and
can be either passive (Lackner and Rotea, 2011a) or active (Namik et al.,
2013). In general, active retuning of TMDs show better reduction in mo-
tion at the expense of active power and mass stroke distance which can
be unrealistic for practical applications.

As digital technology related solutions are invading every industry,
research in its early stages is taking place worldwide to enhance the effi-
ciency and productivity of offshore operations such as in oil and gas (OG)
industry (LaGrange, 2019) and in fault diagnosis and operation optimiza-



tion of offshore wind turbines (Mehlan et al., 2022). In this research,
digital twin is a loose term that translates to the active feed of the short-
term predicted wave elevation to the controller, how the platform would
respond to that input, and the active retuning of the TMD to minimize
that motion. Ma et al. (2018) has demonstrated the important role the
control algorithm has on reducing the platform’s response and developed
a forecasting algorithm for the wave elevation and wave excitation loads.
Desmars et al. (2020) investigated the accuracy of a phase-resolved, pre-
dictive model based on data obtained from an array of wave gauges that
represent a typical spatial sampling of an optical sensor (e.g., LIDAR).
Active control systems on a floating system can be applied over different
time scales. Short-term scaling on the order of individual wave variation
such as the work done by Steele et al. (2023), or over long-term scales
on the order of local wave spectral variation such as the work presented
in this paper.

SEA-STATE (SS) VARYING TEST DESIGN

The basic SS building blocks are described in Table 1. The wave surface
elevations are irregular waves described by the Joint North Sea Wave
Project (JONSWAP) spectrum that describes a SS through three param-
eters, the significant wave height, Hs, the peak wave period, Tp, and the
peak enhancement factor, γ .

test ID SS1 SS2 SS3 SS4
Hs (m) 3.1 6.3 8.1 10.9
Tp (s) 8.96 11.46 12.8 14.2

γ 1.8 2.75 2.75 2.75
Flow (Hz) 0.0599 0.0514 0.0455 0.0411
Fhigh(Hz) 0.3540 0.2752 0.2531 0.2557

Ccal 1.1856 1.0580 1.0397 1.0209

Table 1: SS building block (JONSWAP spectra)

Wave Frequency Spectrum Generation

For each of the wave spectrum described above, waves at frequencies
with energy less than 0.1% of the peak are cut off. A coefficient for cali-
brating the wave amplitude is also calculated through comparing the gen-
erated significant wave height from previous experiments at the W2 basin
with the designated values, The low cut-off frequency, Flow, the high cut-
off frequency Fhigh, and the calibration coefficient for wave height, Ccal
are also shown in Table 1. The unscaled JONSWAP spectrum is com-
puted as follows:

S( f ) =
αg2

ω5 exp
[
−5

4

(
ωp

ω

)4
]

γ
r,

r = exp

[
−
(ω −ωp)

2

2σ2ω2
p

]
,

σ =

{
0.07 ω <= ωp

0.09 ω > ωp.

(1)

where ωp = 2π/Tp, and ω is a random selection of frequencies in rad/s
between the lower and higher limits with a discretization value of d =
500. α is kept constant of 320.

Reduced Testing Duration

The recommended minimum value by DNV (reference) for an irregular
wave test is 1hr full scale. As a verification, the error between the zero

Fig. 1: relative wave spectra as a function of the duration run of 5 differ-
ent seed runs in the basin.

Fig. 2: significant wave height for 3hr and 1hr running time of all SS
building block tests.

moment of the wave spectrum, m0, of a portion of the SS spectrum and a
full (3hr) spectrum is computed:
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where St( f ) is the JONSWAP spectrum of wave data from t = 0 to t.
This analysis is run over various generated wave surface elevation in the
basin of different seeds. As shown in Figure1, after an hour of running,
the relative error drops down to the 10% range. Numerically, The aver-
aged values of Hs and Tp for the four tests are shown in Figures 2 and
3 for 1hr and 3hr running time. Therefore a 1hr spectrum is considered
representative of the SS.

SS-Varying Test Description

The test simulates a gradual increase of the SS extremity (from SS1 to
SS4) with a ramped duration between the blocks of h = 30s full scale.



Fig. 3: wave peak period for 3hr and 1hr running time of all SS building
block tests.

The choice of this ramping value is selected to cover one cycle of the
degree of freedom (DOF) of interest, pitch. Albeit, it might be worthy to
investigate the effect of the ramped value on the behavior of the system
and the ability of the Digital Twin to detect the variation in the wave
environment. The transitioning of the SS is dealt with using linear shape
functions of N1 = ti−t

h +1 for the dying SS and N2 = t−ti
h for the newly

born SS where ti is the beginning of ramping and t is the variation of time
during ramping. The final results are super-positioned. The wave height
and wave period in the test are shown in Figure 4.

SS DETECTION SCHEME AND OPTIMIZATION

The SS parameters shown in Figure 4 are the desired values, and mini-
mizing the difference between the desired SS and the predicted SS is the
objective function. Three different schemes are designed: Past, PSSC,
Current, CSSC, and Future FSSC detectors listed from the simplest to
more complex. Figure 5 illustrates the logic of these detectors in which
the shaded area is the wave data being analysed for the predictor and the
solid curves/lines represent the weight function in time. The red data
points are in future. It is assumed that the predicted waves in future
matches perfectly the designed wave train.

Fig. 4: significant wave height and wave peak period of the designed SS-
varying tests.

Parameter Description

The first parameter, P1 = ∆tP describes the data acquisition time in the
past to be used in the zero-up crossing method to determine the signifi-
cant wave period, Ts, which is defined as the average of the third biggest
wave period in the time series. The second parameter, P2 = b∆tP/2 con-
trols the weight function, wP(t) that is multiplied by Ts. A constant value
of wP = 1 describes the first detection scheme, PSS. Meanwhile CSS
uses a polynomial function that gives more weight to more recent data:

wP(t) = at2 +bt + c, (3)

subject to temporal boundary conditions:

wP(t −∆tP) = 0,
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Applying these conditions we get
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Therefore, ranging P2 between 0 and 1 controls the shape of the poly-
nomial function:

b = P2× 2
∆tp

. (6)

When P2 = 1/2, the weight function is linear.
As for the FSS detector, two additional parameters are added that gov-

erns the upcoming wave data. Just like P1, P3 = ∆tF depicts the duration
in future data points to be included in predicting Tp, and P4 = wF is a
weight constant that leverages the forecast data by having wF > 1.

It is desirable to optimize the values of these parameters. To this effect,
we apply a genetic algorithm (GA) to find the optimal values of these
parameters that would minimize the cost function which is the average
of the two-norm of the difference between the designed SS parameters,
namely Hs and Tp, and the estimated values:
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where N is the number of comparison points throughout the test. The up-
per and lower limits for the parameters are shown in Table 2. The upper
limit for P1 is selected to be a full hour as this is the duration of SS seg-
ments in the tests. Since the definition of the forecast method is loose in
this study, P3 constraints cannot be pin-pointed. However, by definition,
the range of P3 is much smaller than past data acquisition (predicting a
small portion of the wave coming ahead), so an arbitrary choice of ap-
proximately 10×Tp ≈ 120s is selected and a lower limit of 30s. Since
P4 is the leveraging parameter of future data (gives more wright to future
data), it must be greater than 1. However, it is not clear what would the
upper limit be. Basic sensitivity analysis (not shown here for concise-
ness) has shown that extremely high values of P4 can harm the predictor
(i.e. increase the objective function) by introducing a lot of noise. As for
the general setup of the GA, maximum generation is set at 40 for CSS and
60 for FSS since it has more parameters (i.e. more number of genes). The
number of population is kept the same at 60, and the number of genes are



Fig. 5: A schematic for SS detection schemes and their parameters.

limit P1 P2 P3 P4
lower 100 0 30 1
upper 3600 1 120 5

Table 2: lower and upper limit of the SS detection parameters

2 and 4 for CSS and FSS, respectively. The outcome is described in the
results in Table 3. The optimization scheme is run for two types of tests,
a gradual extremity variation and it is the one we are focusing here, and
another test of calm condition followed by a sudden storm surge. P1 for
the first test is quite different than the second test. When the SS increases
gradually in extremity, the data acquisition is long, but with sudden SS
change as in test 2, the optimum data acquisition time is shrunk. Addi-
tionally, the shape of the weighting function takes a concave curvex‘ for
test 1 and a convex curve for test 2. The polarity of these results is inter-
esting. Figure 6 illustrates the resulting estimated wave period, Te for all
detection schemes for test 1.

DAMPING COEFFICIENT LOOKUP TABLE INTERPOLA-
TION

Simplified Time-Domain OpenFAST model

The search for an optimum damping ratio given a stiffness value for the
TMDs can be quite extensive. To allow the GA to run multiple cases and
select the best fit, a simplified OpenFAST model is built and being called
at every iteration by the algorithm. It is simplified by increasing time-
step, decreasing output tabulation, and de-activating the DoFs that are

Detection scheme—test P1 P2 P3 P4 Obj
CSSC—1 3533.40 0.00 N/A N/A 2.05
CSSC—2 659.74 0.87 N/A N/A 2.37
FSSC—1 3543.23 0.00 113.59 5.00 1.96
FSSC—2 663.97 0.99 80.96 4.97 2.36

Table 3: lower and upper limit of the SS detection parameters

Fig. 6: estimated wave period in contrast with the designed wave period.

Fig. 7: original model v. simplified version PSD of the tower base fore-
aft bending moment response in 1hr, 50-year return period wave case
simulation.

not of interest, such as sway, heave, roll, and yaw. The DoF that is used
to check the validitiy of this model is the tower-base fore-aft bending mo-
ment which is mainly driven by the pitch response. This simplified model
is only used to obtain the lookup table and not in the actual validation.
A 1hr frequency-domain comparison between the original model and the
simplified version is shown in Figure 7. While the simplified model is
40% faster, the standard deviation in pitch response only changed by
2.3%.

Wave Region Selection for Optimization

Running the simulation for a full hour is time consuming, instead, only
a portion of the wave train is selected. The region is selected so that it
covers the maximum wave height in the wave elevation history, Hmax.
Then, to present a fair comparison for different test blocks, the number
of waves in the selected region to be scrutinized, xw is kept the same
(not necessarily the same duration). Additionally, a ramping initiation
is introduced. Therefore, the selected region is defined as the temporal
range Hmax−xw/2−Tramp < t < Hmax+xw/2. Figure 8 demonstrate the
selection of the wave region the GA operates over.



Fig. 8: wave region selection for obtaining C lookup table.

GA Optimization for Damping Ratio

The stiffness value, K is governed by the estimated wave period, Te, by
the SS detection scheme described in the previous section:

K = ω
2
e m

ωe =
2π

Te

(8)

where m = 686000kg is the mass of the TMD for the studied configu-
ration. To determine the corresponding damping value, one can use the
following relation

C = 2ζ
√

Km (9)

where ζ is the damping ratio and is the target of this optimization scheme.
The objective (fitness function) is the pitch response of the system. The
constraints for the damping value are 0 and 1 to keep the system un-
derdamped. The resulting optimization based on the test blocks are de-
scribed in Table 4.

test ID SS1 SS2 SS3 SS4
ζ 0.023 0.064 0.876 0.557

Table 4: Optimum ζ for various test blocks

The K & C data are then interpolated for estimated SS that lie in-
between. An example of the TMD parameter variation for test 1 is shown
in Figure 9.

EXPERIMENTATION

Wave Calibration

The 16 wave pedals in the W2 wave basin situated at the Advanced Struc-
tures and Composites Center at UMaine is calibrated to match the power
spectrum density of the theoretical wave surface elevation to the spec-
trum of the wave probe data in the basin. For the sake of conciseness,
the calibrated PSD for one of the seeds is delineated in Figure 10. The
two spectra agree well with some slight discrepancies presented in higher
frequencies.

TMD Set-Point Characterization

To create a characteristic curve for the natural frequency and damping ra-
tio as a function of the applied spring stiffness for each of the three TMDs

Fig. 9: K & C variation for test 1 based on the SS estimator for K and
lookup table for C.

Fig. 10: comparison of the power spectrum density of the wave elevation
data between wave probe data and theory

situated in the hull, a sweep of varying spring and damping values is con-
ducted using a System Identification (SID) methodology to extract the
dynamic system properties of the physical system. This method applies
a synthetic force based on pink noise excitation. Fast Fourier transform
(FFT) is then applied to the setpoint force and position time series. The
resulting response is compared to the theoretical transfer function and
calibration is applied as following:

f0 = a× kb (10)

where f0 is the targeted (theoretical) frequency, k is the actual TMD stiff-
ness value to be calibrated, and a and b are the calibrating parameters.
The characterization test resulting in a and b values shown in Table 5 and
the test setup is shown in Figure 11.

TMD # 1 2 3
a 0.1687 0.1938 0.1789
b 0.4011 0.3714 0.3957

Table 5: summary of the calibrating parameters resulting from TMD
characterization tests

Characterization Tests

These tests ensure the system is setup right and checks the static equilib-
rium, mooring stiffness, and the natural frequency of the system.

The static position of the system is checked every time the floater is
removed and placed in the basin. The average static position is reported
in Table 6. The mooring stiffness is tested by slowly forcing static offset



Fig. 11: TMD characterization test setup

in the X direction (both positive and negative) and measuring tensions in
the three cables. The positive offset is shown in Figure 12. The values
at excursion 0 are the pretension values. There can be seen a slight dif-
ferences in these values but in lab scale, it becomes nearly impossible to
distinguish the difference. In this offset test, the structure is being drifted
further away from the bow anchor, hence the higher tension in the bow
cable and lower tensions in the stern cables.

DOF X Y Z RX RY RZ
value 0.00 0.00 -0.29 -0.69 1.34 -1.17

Table 6: average static position of the system

The free decay tests are performed on the two degrees of freedom of
interest; heave and pitch. Four repetitions are performed. The damping
ratio as a function of initial cycle amplitude is extracted and can be used
in the future to compare/calibrate numerical models. The response of
one repetition is plotted in Figure 13. These oscillations have expected
periods of 20.67s and 27.95s for heave and pitch, respectively.

Irregular Wave Sea-State Varying Tests

The platform is then excited by stochastic wave input of gradually in-
creasing extremity (test 1). A script is written to divide the resulting re-
sponse based on the extremity of the loading, the superposition of which
must give the total response as illustrated in Figure 14 for the fixed case
(TMDs’ sole influence to the dynamics of the system is their mass). This
gives insight as how different control methods affect responses at various
extreme conditions.

For the sake of comparison, the response spectra (the output) are nor-
malized by the wave elevation surface spectrum (the input) to extract the
response amplitude operator (RAO). However, RAO can give erroneous
results if the input does not have enough energy (frequencies outside the
wave region). Therefore, to ensure the RAO is only applied at the wave
region, a filter is applied to erase output data corresponding to wave spec-
tra that is below or equal to 5% of the spectral peak. This results in RAO

Fig. 12: measured tension values in all three cables as a function of hor-
izontal excursion in the X direction (positive)

data such as the one shown in Figure 15 where SS#4 has wave energy
up to 20sec (therefore responses can be compared up to 20sec) while
wave energy at SS#1 dies at around 13sec. The RAO is then divided into
frequency bins and the bin area under the spectral curve, dA is used as
comparison parameter.

CSSC/FSSC v. fix Figure 16 illustrates the ratio of the bin area of the
different control schemes (either CSSC or FSSC) to the bin area of the
fixed case, dA1/dA2. If the ratio is below unity, reduction in the response
is in favor the control method and vice versa. The response at various
SS is distinguished by colors and only plotted at the proper frequency
region for each sea-state. Both CSSC and FSSC controller exacerbate
the responses at low wave periods. At higher periods, the response is
enhanced with FSSC performing better than CSSC. interestingly, heave
and pitch for the most extreme SS with CSSC enabled is even worse than
the fixed condition.

CSSC v. FSSC Figure 18 demonstrates a different perspective to the
same results with the fixed controller out of the picture and only compar-
ing CSSC with FSSC. Blue regions are enhancements in favor of FSSC
and red is in favor of CSSC. Here, the pattern can be easily observed.
CSSC performs better at lower periods while FSSC performs better at
higher ones. However, it is not wise to consider low period and high pe-

Fig. 13: free decay test in heave and pitch degree of freedom



Fig. 14: SS-based divided responses of the fixed case

Fig. 15: RAO at or higher than 5% input threshold

Fig. 16: response of CSSC and FSSC v. fix

Fig. 17: wave steepness of the zero-crossed wave elevation data (left) and
polynomial relationship between individual wave period v. wave height
for one test

riod excitations equal since higher periods hold more energy to them and
reducing the energy there is more critical than lower periods. From linear
wave theory, we know that through the deepwater dispersion relation;

L ∝ T 2 (11)

and given a constant wave steepness, ε ,

H ∝ T 2. (12)

Since

E =
1
8

ρgH2, (13)

that makes

E ∝ T 4. (14)

The above assumption that the wave steepness is constant is investi-
gated by applying zero-crossing to the wave elevation data and measur-
ing the moving average over the data. This is illustrated for one of the
tests in the left subplot of Figure 17. The moving average suggests that
despite variations in the extremity of the wave, the overall wave steep-
ness remains more or less constant. The correlation between the individ-
ual wave heights and wave periods after applying zero-crossing is also
shown in the right subplot of the same figure with the 2nd-order polyno-
mial fit and a moving average. The moving average oscillates around the
fit. Discrepancies start to occur at very high wave period/height due to the
scarcity of the data. The general trend is in fact of 2nd-order polynomial
nature.

This allows us to penalize/reward exacerbation/improvement in the re-
sponse, accordingly. The resulting weighted average as a function of SS
and of DOF of interest is given in Table 7. The weighted average is
mostly below 1 favoring FSSC and the average value is 0.978. This may
not seem to be revolutionary in response reduction but is a proof of con-
cept that having the knowledge of the upcoming wave and preparing for
it can actually make a positive difference.

SS#1 SS#2 SS#3 SS#4 Average
Heave 1.009 1.003 0.998 0.918 0.982
Pitch 1.007 1.001 0.994 0.881 0.971

TwrBsMyt 1.002 0.986 0.995 0.940 0.981
Average 1.006 0.997 0.996 0.913 0.978

Table 7: weighted average of dA1/dA2



Fig. 18: response of CSSC v. FSSC

CONCLUSION

A crucial part of the digital twin development is to ensure the system is
up-to-date with its surroundings and to adapt accordingly. This research
shows that actively re-tuning the mass dampers at the hull can impact
the response. If the re-tuning process takes into consideration the spatio-
temporally forecasted wave at the hull, the resulting response undergoes
an improvement in the lower wave frequency region where wave energy
is higher (stormy waves) when compared to the fixed TMD scenario or
the current SS controller in which the controller only knows the past and
the current state of the sea at the hull. This research is the foundation
to build more sophisticated algorithms that serves as a design tool (opti-
mization and control-co design (CCD)) that aims to lower the levelized
cost of energy (LCOE) by maximizing power output and minimizing fa-
tigue on the whole wind farm and its individual components, and later as
a real-time observer/controller of the physical system.
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