A COMPUTER PROGRAM FOR
TRANSIENT WAVE RUN-UP

by

S. Grilli and R. Subramanya

Department of Ocean Engineering, University of Rhode Island,
Kingston 02881, RI

RESEARCH REPORT NO. CACR-93-02
June 1993

Abstract

In this study, a computer software for two-dimensional wave propagation and runup
over arbitrary bottom topography, was documented, and made available for use in the
public domain. This software was developed over the past five years by Grilli et al.
31,37 based on fully nonlinear potential flow equations, and although well validated as
a research tool, it was not available in a form allowing easy use by others (see, e.g.,
35, 36, 38,

After an introduction covering theoretical aspects of the problem, numerical algo-
rithms used in the solution are presented (Boundary Element Method, time updating),
as well as detailed flowcharts for the software. A user’s manual is finally provided,
giving step by step instructions on how to use the software, along with a few typical
applications of the program, that can be used for training and verification.

The source code for the software (FORTRAN 77) has also been documented as
part of this project. Each of the 64 subroutines and functions in the source code has
been given an internal description of its task and main variables, and each routine has
also been listed and summarized in the user’s manual. The software source code, too
long for being attached to this report, is available on request through internet, as well
as data and results for the few example presented in the report. Please send Email
with inquiry to : grilli@mistral.oce.uri.edu.

Studies presented in this report have been supported by a grant from National

Science Foundation’s : Sitting and Geotechnical Systems, Division of Biological and

Critical Systems (NSF award nb. 9111827).

Contents

1 Introduction 1
1.1 Background of the project L. 1
1.2 Project achievements 2
1.3 Modeling of highly nonlinear waves 3

2 Mathematical model 7
2.1 Governing equations and solid boundary conditions 7
2.2 Boundary conditions for wave generation 8

2.2.1 Exact wave solution oL 9
2.2.2 Plane wavemaker oo 9
2.2.3 Internal sources 9
2.3 The time integration L L Lo 10
2.4 Expressions of Taylor series coefficients 12
2.5 Discussion of model assumptions and limitations 15

3 Wave generation in the model 18
3.1 Exact solitary waves L 18
3.2 Wave generation by a plane wavemakero 20

3.2.1 Introductiono 20
3.2.2 General boundary condition 21
3.2.3 Generation of a long wave by a piston wavemaker 25

3.2.4 Generation of a sum of periodic sine waves by a flap wavemaker 28

3.3 Wave generation by an internal line of sources 31
3.3.1 “Second-order” solitary waves 32

3.3.2 “Second-order” periodic waves 33

4 Numerical Model 34

4.1 General principleo 34

4.2 Time stepping methodo oL 34
4.3 Transformation of Laplace’s equations into BIE’s 36
4.4 Discretization of the Boundary Integral Equations 37
441 Principle . . . oL 37
4.4.2 Definition of boundary value problems 38
4.4.3 Discretization of BIE’s using boundary elements 39
4.4.4 Transformation of coordinates, high order s-derivatives 43
4.4.5 Discretized system of equations 47
4.5 Numerical integration of matrix terms in the discretized BIEs 49
4.5.1 Principleso 49
4.5.2 Element by element numerical integration 50
4.5.3 Adaptive integrationo Lo Lo 52
4.6 Sliding element for s-derivatives L. 54
4.7 Automatic grid refinement on aslopeo oL 55
4.8 Corner problems 55
4.8.1 Mathematical problem 0. 55
4.8.2 Numerical problem 000 56
4.9 Automatic selection of optimum timestep 57
Computer Program 59
5.1 Introduction 59
5.2 Overview of the computer model 61
5.3 Preprocessing and generation of input data 65
5.3.1 Generation of domain geometry 69
5.3.2 Input parameters L Lo 71
5.4 Subroutines and Functions Lo 78
5.4.1 Subroutines 78
5.4.2 Functions Lo 85
5.5 Program Execution oo 86

5.6 Output Files. oo 91
5.7 Error and Warning Statements 0000 93
Applications 96
6.1 Introduction 96
6.2 Solitary wave runup on a steep slope Lo 102
6.3 Cnoidal wave runup on a steep slopeo 109
6.4 Solitary wave shoaling and breaking over a gentle slope 113

1 Introduction

1.1 Background of the project

A numerical model for fully nonlinear water waves was developed and validated over
the past five years, and used as a research tool for calculating various wave propa-
gation and wave-structure interaction problems in coastal areas (Grilli 2 2°; Grilli et
al. 2%1°; Grilli, Losada & Martin 26 27 28; Grilli, Skourup & Svendsen 3% 3': Grilli &
Svendsen 33 3% 3536, 37,38, Otta et al. °%; Skourup et al. %% ¢ 57; Grilli & Subramanya
2. Svendsen & Grilli ™).

This model solves unsteady two-dimensional potential flow equations in domains
of arbitrary geometry, and can be used to calculate wave shoaling and runup on slopes,
and wave interaction with coastal structures. Because of its Eulerian-Lagrangian de-
scription of the free surface, the model is also capable of modeling wave overturning
over slopes and structures, up to the instant the tip of the breaking wave hits the free
surface.

Waves are generated in the model, by imposing waves directly on the free surface,
by simulating a piston wavemaker motion, as in laboratory experiments, or by using a
line of internal sources. Except for the assumption of potential flow, no further approx-
imation is made in the model, unlike in most wave theories. The model, therefore, is
not restricted to special types of waves (e.g., short, long, periodic, non-periodic,...), and
can be used for arbitrary incident wave conditions. Submerged or emerged structures
of arbitrary shape, like obstacles on the bottom or breakwaters, can be introduced in
the model, as well as gentle or steep bottom slopes.

Although well validated as a research tool, this computer model was not available
in a form allowing easy use or modification by others. The purpose of the present
project has been to document and maintain this computer software, in order to make
it available for other researchers and scientists.

The present text constitutes the final report for this research project, along with

the documented source code for the computer software, that is available on request.

1.2

The

Project achievements

main task in this project was to prepare a user’s manual detailing the theory un-

derlying the computer model, the organization of the computer software (flowcharts),

the algorithms implemented for solving wave propagation and runup problems (Bound-

ary Element Method, time updating, wave generation,...), and the input data required

for r

i)

unning the software.

Detailed technical achievements for the project are as follows :

Theory and numerical algorithms for the mathematical and numerical model are

described in sections 2.3, and 4 of the report.

Assumptions, accuracy and limitations of computations are clearly stated. Many
checks of data and results, and error messages have been implemented at various
stages of computations, to stop the program in case of computational errors or

inaccuracies, and to inform users on why computations have been interrupted.

The computer software is presented in section 5, along with instructions on how

to use it.

Each of the 64 subroutines and functions in the source code were internally doc-
umented, and are summarized in the report. Flow chart diagrams, and general
descriptions of sequences of functions corresponding to subroutines in the pro-

gram are also included.

Parts of the computer program that were not yet written in “structured pro-
gramming’ have been reorganized and well commented. Descriptions of tasks,
algorithms, input and output variables, called subroutines or functions, have been
added as a header to each subroutine source code, following a standard format.

This will make it possible for other researchers to easily understand the structure

of the program, and to make their own modifications as required by their research

project.

Input data for using the software are detailed in the user’s manual, and typical
input/output listing for a few typical problems are given in section 6. Inputs

have been reorganized to make it easier generating data for typical problems.

iii) A few sets of complete calculations have been prepared for typical applications
of the program (long-wave and tsunami runup), and are presented in section 6 of

this report.

A clear description and discussion of input/output data for these cases is given,
and references to related specific publications is made, for further detail or infor-

mation on the physical meaning of these applications.

Computer files, with complete source code (about 10,000 lines in FORTRAN 77
code), user’s manual, and examples, for this software—too voluminous to be included
in this report— are available on request through the internet computer network (send

Email to : grilli@mistral.oce.uri.edu, for inquiry).

1.3 Modeling of highly nonlinear waves

Over the past fifteen years, accurate numerical methods have been developed for cal-
culating propagation of two-dimensional (2D) space-periodic waves in deep water and
over constant depth, up to initiation of breaking (Longuet-Higgins & Cokelet °* 1976,
Vinje & Brevig ™ 1981, New et al. * 1985, and Dold & Peregrine * 1986). These
methods are based on potential flow equations, with full nonlinearity included in the
free surface boundary conditions, and use a representation of the flow that allows for
multi-valued free surface elevations appearing during breaking (i.e., a Lagrangian rep-
resentation; see Fig. 1).

Propagation, shoaling, and runup of 2D waves over a slope have also been the

object of numerous theoretical and numerical studies over the past thirty years, par-

0.3 [
0.2
0.1
0.0
-0.1
-0.2

0.3 | - x/h
0 0.5 1 1.5

N

Figure 1: Instability by plunging breaking of a large periodic sine wave over constant
depth h, as computed with the model by Grilli et al. ' 1989. Initial wave height
% = 0.333, length % = 1.85, and period T\/% = 2.50. A periodicity condition is used
in the model on lateral boundaries, to create a situation similar to that examined by

Longuet-Higgins & Cokelet 2. Symbols (o) denote BEM discretization nodes, identical

to individual fluid particles whose motion is calculated in time.

ticularly for the case of long waves or swells (Carrier & Greenspan © 1958, Carrier °

1966, Camfield & Street # 1969, Hibberd & Peregrine *2 1979, Kobayashi et al. *® 1989,
and Synolakis ™ 1990, using Linear or Nonlinear Shallow Water equations; Peregrine
59 1967, Pedersen & Gjevik °® 1983, Freilich & Guza '? 1984, Liu et al. ®' 1985, Zelt
& Raichlen 7 1990, and Kirby %6 1991, using Boussinesq or parabolic approximations
of Boussinesq equations). The reader can find details about various wave theories,
and some of the above listed studies, in Mei ** 1983, and Dean & Dalrymple ' 1984.
Most of the existing methods, however, are based on first- or low-order theories, whose
assumptions—for instance, small amplitude mildly nonlinear waves, or mild bottom
slope—may no longer be valid for waves that, due to shoaling, may be close to break-
ing (i.e., highly nonlinear), before they run up the slope

For predicting characteristics of shoaling and impending breaking waves on slopes
(shoaling coefficients, profile, and kinematics), the state-of-the-art method has been to
using the higher-order expansion methods, originally developed for waves of permanent

form over constant depth (Stiassine & Peregrine ™ 1980, Peregrine ® 1983, Sobey &

Bando % 1991). These methods, however, by nature, cannot include effects of bottom
slope or change of wave form during shoaling. In particular, shoaling waves may
become strongly asymmetric when approaching breaking (e.g., Skjelbreia ¢* 1987), an
effect that is not included in the above approaches. Griffiths et al. ?* 1992, recently
compared measurements of internal kinematics of periodic waves shoaling up a 1:30
slope, with predictions of the 5th-order Stokes theory, of the 9th- and higher-order

streamfunction theory, and of the full nonlinear model by New et al. °°

(see ' for
definitions of these wave theories). They found, horizontal velocities were correctly
predicted by most theories below still water level. In the high crest region, low-order
theories underpredicted velocities by as much as 50%, whereas predictions of the full
nonlinear theory were quite good up to the crest. These comparisons, however, were
only done for a mild slope (i.e, with limited bottom effect), and for cases in which
breaking occurred by spilling. The authors pointed out “all theories are grossly in
error when compared to severe plunging breakers”.

Other fully nonlinear wave studies will be mentioned for completeness, that have
either inherently been limited to non-breaking waves (Fenton & Rienecker '* 1982, Kim
et al *° 1983, Nakayama ** 1983), or have represented extensions (e.g., to axisymmetric
or three-dimensional problems), or variant of existing methods— mostly by % and
1 (Tsaacson *° 1982, Jansen ** 1986, Dommermuth & Yue *® 1987, Gravert *! 1987,
Greenhow 22 1987, Tanaka et al. ™ 1987, Klopman *7 1988, Cooker 1° 1990, Cointe 7
1990, Romate %2 1990, Seo & Dalrymple ¢ 1990).

The 2D potential low model developed by Grilli et al. 3% 3% 37 follows the strategy
of deep water and constant depth nonlinear wave models mentioned above (e.g., Dold
& Peregrine '*). Tt is based on a mixed Eulerian-Lagrangian representation and in-
cludes full nonlinear terms in the free surface boundary conditions. Unlike most other
approaches, however, this model works in the physical space and is valid for arbitrary
bottom topography and incident wave conditions. It is therefore applicable to shallow

water wave shoaling and breaking, and to wave runup over arbitrary slopes, without

any approximation on the wave shape, or on the free surface boundary conditions.
Development and verification of this model have been carried out under a 2D formu-
lation. All elements in the model, however, were selected to allow implementation of
a three-dimensional model, as a direct extension of the 2D formulation. This is unlike
most other 2D models based on complex variable formulations.

Detailed equations and numerical procedures for this wave model are presented in
sections 2,3, and 4. Applications of the model to cases of wave propagation in shallow

water and wave runup on slopes are presented in section 6.

2 Mathematical model

[. 3137 and its most re-

Equations for the two-dimensional potential model by Grilli et a
cent extensions, are presented in the next subsections. Full nonlinearity is maintained in
the free surface boundary conditions, and time integration of these conditions is based
on higher-order Taylor expansions, for both the free surface position and the potential.
Laplace’s equation is solved using a higher-order Boundary Element Method (Brebbia
2 1978). No-flow boundary conditions are prescribed along solid boundaries of the
domain (bottom, coastal structures), and arbitrary waves are generated in the model,
either by specifying an initial wave on the free surface, by simulating a wavemaker at

the open-sea boundary of the computational domain (as in laboratory experiments),

or by uding a line of internal sources.

2.1 Governing equations and solid boundary conditions

The velocity potential ¢(x,t) is used to describe inviscid irrotational 2D flows in the
vertical (x, z) plane, where the velocity is given by u = V¢ = (u,w). The continuity
equation in the fluid domain Q(t) with boundary I'() is a Laplace equation for the
potential (see Fig. 2 for definitions),

Vi =0 in Q(t) (1)

On the free surface I'¢(t), ¢ satisfies nonlinear kinematic and dynamic boundary

conditions,
Dr
E:u:qu on I's(¢) (2)
Do 1 Pa
E:—gz—F%qu-qu—? on I's(1) (3)

respectively, with r the position vector of a free surface fluid particle, g the acceler-

ation due to gravity, z the vertical coordinate (positive upwards, and z = 0 at the

1 T T | T T T T T T T T T T T T T T T T

-27\\ 1\\\\i T TR I R YN N SO N B I X/h

Figure 2: Typical computational domain for wave shoaling and runup on a slope,
with definition of various boundaries. The domain is sketched with a slope s =1:35,
terminated by a shelf of depth h; = 0.1h, at its upper part, and the free surface
profile corresponds to a solitary wave, of initial height % = (.2 generated by a piston

wavemaker at boundary I',1(?).

undisturbed free surface), p, the atmospheric pressure, and p the fluid density. The

material derivative is defined as,
—=—+u-V (4)

Along the stationary bottom I'y, and other fixed boundaries I',5, a no-flow condi-
tion is prescribed as,
9%
on

V¢é-n= =0 on I'y and I',, (5)

in which n is the unit outward normal vector.

2.2 Boundary conditions for wave generation

Waves are generated in the model by either prescribing a wavemaker motion on the
“open sea” boundary I',1(¢) of the computational domain, by prescribing the elevation
and potential on the free surface, of a known “exact” wave solution of flow equations,

or by using an internal line of sources.

General boundary conditions for these three types of wave generation are given in

the following. Generation of specific waves is detailed in section 3.

2.2.1 Exact wave solution

“Numerically exact” permanent form solutions of the nonlinear “Wave Boundary Value
Problem” over constant depth (WBVP, (1)-(5); i.e., solitary or streamfunction waves),
are generated by specifying their potential ¢(x,t,), and elevation n(x,t,), on the free
surface I'f(1,), at initial time ¢,. In this case, normal velocity is also prescribed to U(t)

over the fixed vertical lateral boundaries I',q, [',5. We get,

5 = qb(l’,to) y 2= n(xvto) on Ff(to)
96 _
P U(t) on 'y, L'y (6)

in which overbars denote prescribed values.

2.2.2 Plane wavemaker

A plane wavemaker motion T = x,(z,t) is specified on the moving boundary I',;(¢), to
generate waves as in laboratory experiments. Paddle motion and normal velocity are

specified over the surface of the paddle, as,

D¢ e
9wy n= on Ty (1) (7)
o ey 1

in which the right hand side represents the normal paddle velocity. Equation (7) will

be developed in section 3, for the case of piston or flap wavemakers.

2.2.3 Internal sources

The traditional way of generating waves by specifying a velocity distribution or move-
ment along a part of the boundary has the disadvantage that this boundary also reflects

waves propagating towards the boundary, from inside the computational domain (such

as the scattered wave field from a structure). This is a major problem in any physical
model.

In a computational model, this can be avoided to a large degree by generating
waves by internal sources (an idea first suggested by Brorsen & Larsen 2 (1987) for a
linear model). If oscillating sources are distributed along a vertical, say, line placed a
short distance inside the fluid domain, waves will be generated and will propagate away
from the sources in both directions. The waves moving into the computational domain
are the ones we are interested in. On the other hand waves scattered from structures
inside the computational domain will essentially pass through the sourceline . Those
scattered waves, along with waves generated away from the domain, should be leaving
the domain through its open sea boundary. Hence, a radiation condition should be
specified. This case will not be detailed here (see Otta et al. 7 1992 for detail).

When sources (or sinks which are negative sources) are introduced in the fluid

domain, Laplace’s equation (1) becomes the Poisson equation,
V¢ = b(x,1) in Q(t) (8)

where b(x,1) is the density of a known distribution of sources inside the domain ().
Values of b(x,t) will be discussed in section 3, in the case of the generation of

specific waves in the model.

2.3 The time integration

Free surface boundary conditions (2) and (3) are integrated at time ¢, to establish
both the new position and the relevant boundary conditions on the free surface, at
a subsequent time ¢ + At (with At being a small time step). This is done, following
the approach introduced by Dold & Peregrine *, using Taylor expansions for both the
position r(¢) and the potential ¢(r(t)) on I's(¢). Series, truncated to Nth-order, are
expressed in terms of the material derivative (4), and of time step At, as,

)* D¥r(t)

DD | ofan 9)

F(t+ Al) = +Z

10

for the free surface position, and,

N

Btete+) = o(e()) + 3 - EH s ofanHy (10

for the potential. The last terms in (9) and (10) represent truncation errors. The
time updating of the free surface geometry described by (9) actually corresponds to
following the motion of fluid particles in time. This procedure is often referred to as a
“Mixed Fulerian-Lagrangian” formulation.

Second-order series are used in the present case (N = 2). Higher-order Taylor
series, however, have successfully been used by others, to provide highly accurate solu-
tions for periodic problems (Dold & Peregrine '* (N=3), and Seo & Dalrymple % 1990
(N=4)). First-order coefficients in (9) and (10) are obtained, based on equations (2)
and (3), using ¢ and %, as provided by the solution of Laplace’s equation (1) at time

t. Second-order coefficients are expressed as 2~ of (2) and (3), and are calculated using

Dt
9¢ 9%2¢
Bt> dtdn

the solution of a second Laplace problem of the form (1), for (). This is because
all time derivatives of the potential satisfy Laplace’s equation (1). Higher-order series
would simply require that more Laplace’s equations are solved for higher-order time

derivatives of ¢.

No-flow boundary conditions for a second Laplace problem for % are readily ob-
tained along solid boundaries, as,
2
ata¢n =0 on [’ and ', (11)

The boundary condition at the free surface is obtained from equation (3) and (4) as,

0o 1 Pa

—=——-V¢-Vop— — — [s(t 12

51 = 5 Ve Ve S on I's(?) (12)
Hence, % can be specified on the free surface as a function of known geometry and

potential at time t.
When I', () represents a wavemaker boundary moving at velocity u,(x,(?),t), we
have by (7),

0 = Dy m)
oton ot "

11

or

0% d(u,-n)
Lo))] on D) (13)
in which, % = % + u, - V, represents the time derivative following the motion of the

boundary x,(¢). This boundary condition is developed in section 3.
When waves are generated by a line of internal sources, the time derivative of the
9¢

source strength %(X, 1) is introduced in a Poisson equation of the form (8), for 7= .

2.4 Expressions of Taylor series coeflicients

Detailed expressions of coefficients of Taylor series (9) and (10) are derived in the
following, using a curvilinear coordinate system (s,n) on the boundary (Fig. 2).
The kinematic free surface boundary condition (2) provides the first-order coeffi-

cient in the series (9), for the free surface position vector r, as,

Dr 99 0¢

Applying the material derivative (4) to equation (2), we get the general expression
of the second-order coefficient in (9) as,

D’ Du Ou
7= Y4) 1
DE- Dr o TV (19)

By definition, the first term on the right hand side of (15) is,
ou _0o 0 0%

RO v G 1
ot = Vot~ o10s° T dion ™ (16)
where the curvilinear gradient operator,
1 0 0
is used, with definitions,
s=[cosf, sinf], n=[—sinf, cos/f] (18)

12

and

dx . 0z
COSﬁzg,Slnﬁ—% (19)

where (3 denotes the angle between the horizontal axis = and the tangent s at the free

surface. Derivatives of (s,n) with respect to their directions are obtained from (18) as,

Js 0B on 0B
dJs Jp on ap

Now, in a family of curves, n = cst, and of straight lines, s = cst, along the free surface,

derivative % vanishes in (21), and the scale factor hg, associated with curves n = cst,

is defined along the free surface as,

Lon, 1 98 -
o = E- g it k=1 22

where R(x) is the radius of curvature of the free surface. Thus, h, is independent of
s and only depends on n. Using the above definitions, the second term on the right
hand side of (15) becomes,

1 oV ov
u-Vu:qu-[h— afs—l—a—nqbn

]

which, using orthogonality of s and n, can be expressed as,

L 090ve | 9605

u-Vu:h—zaS Js on On
or,
106 1 82 06ds. 0% 9¢ In
UV = s G5 T 9505 T ason ™ T on 05
00,1 0 1006 | 09

o Gnas " ham s T ™ (23)

in which, % =0 and % = 0, were used. Using equations (17)-(22), it can be shown,
continuity, V - u = 0, and irrotationality, V x u = 0, conditions transform to,

G¢ 06 0894 _ (24)

ds2 On? Odson

13

0% B 0%
dsOn Onds

(25)

respectively, along the free surface. Using (24) and (25), equation (23) can be expressed

as,

06 ¢ 980
u-Vu = af[(a—f_a_faj)”(anas 95 95 ™
00 00306, %0 9300

o Bnas T 3535 5 T a2 T o590

0%, 050

or

Op 0? oo 0* 0o 0* 0pd*d 030
u-Vu = a_fa—sf 8_;?87155}5 8?87153 8f85¢ 86[(f) +(af) [} n(26)

Combining (15), (16), and (26), we get the final expression for the second-order coeffi-
cient in (9) as,
D 0% 09 aqu do 0%
e = s T s T anonas) S
¢ P d*o N do 0% N ap

do .,
Stan ~ ooz T 3sam9s T 2515 +(8n) [}n

(27)

In the same way, the dynamic free surface boundary condition (3) provides the
first-order coefficient in the series (10) for the free surface potential ¢, using (17) and
(22), as

D¢ d¢

e [(ad R
Dt~ TN

2 2 Pa
P (G -2 (25)

The second-order coefficient in (10) is obtained by material derivation of (3) as,

D?*¢ Dz 1D Pa

W__th BY Dt(¢ Qb)_ﬁ(?) (29)
with, by (2), (17) and (18),

Dz 0¢ 0¢

E—w—a—ncosﬁ—l——smﬁ (30)
and, by definition,

1D ~Du 8u

14

Now, using orthogonality of s and n, and (2), (14), (16), and (26), we get,
du 0¢ 0*¢ Jo 0*¢

9t 9sOtds | Ondton (32)
and,
b .06 *6 I O 00 06 0*¢ 09 0% a

Finally, by combining (29)-(33) and using (17), we get the final expression for the

second-order coefficient in (10) as

D¢ 96 D¢ 099¢ 09 I*¢
Dtz 9s 8t85+$832+8_nan85}+

06, 6 066 06 6 08, 06, . 0,
on oton " anaw T asomos T aslas) TG o

0 1 Dp,
G122 con p+ 2 sin 5 - (34)
Dt
where 222 is the total rate of change of the free surface atmospheric pressure in time.
Dt g p p

2.5 Discussion of model assumptions and limitations

No approximations beyond potential flow theory have been made in the model. In par-
ticular, unlike analytical or numerical expansion wave theories (see, Dean & Dalrymple
13), no small parameter, periodicity, or constant shape wave conditions, have been as-
sumed. This makes the model valid from deep to shallow water, and for arbitrary
length waves.

The only limitations—inherent to potential flow theory—of this type of model are
that bottom friction and flow separation cannot be modelled, and that computations
have to be interrupted shortly after breaking of a wave first occurs. These limitations

are discussed in the following :

o Long wave theory shows bottom friction should attenuate long waves in shallow

water, whereas short waves should be relatively unaffected.

For solitary waves shoaling over gentle bottom slopes, however, experiments by

Camfield & Street * (1969) showed, “bottom roughness has no measurable effect”.

15

This was later confirmed in other experiments by Grilli et al. *? (1993). The likely
reason for this is, bottom friction only becomes significant when wave height is
large and this only occurs in a small region over the slope, just before the wave

starts breaking.

For solitary waves running up a steep slope, Svendsen & Grilli 7 (1990) compared
their nonlinear computations to experiments and found frictional effects were
negligible, In this case, the distance of propagation over steep slopes was likely

too small for friction effects to significantly affect the waves.

Hence, bottom friction is not an important factor when either wave height and/or

distance of propagation are small.

Flow separation over obstacles on the bottom is significant for steep obstacles
(like steps or rectangular bars) of large height to depth ratios, and for high waves
(Grilli et al. 2527 1992).

Flow separation leads to an energy loss at the obstacle that reduces the wave

crest height downstream of the obstacle.

When a wave starts overturning, a small horizontal jet forms in the highest region
of the wave crest (Fig. 1). The jet curls up on itself and falls towards the free
surface. Breaking occurs when the tip of the falling jet impinges on the free
surface, leading to a local violation of continuity equation, manifesting itself by
strongly unstable numerical results. Hence, computations with the model are in
essence limited to prior to the time impact of a wave on the free surface first
occurs. Because of potential flow theory hypotheses, however, computationally
accurate results may not be physically realistic up to that stage. This is discussed

below.

Dommermuth et al. ' (1988) compared wave profiles calculated using a fully
nonlinear potential model, to experimental results, for deep water overturning

breakers. They concluded that potential theory is valid up to the moment the

16

tip of the breaker hits the free surface (i.e., slightly further in time than in the
situation illustrated in Fig. 1).

Skyner et al. ®® (1990) confirmed this conclusion, and compared computed and
measured velocities inside plunging breakers. The good agreement they found

for the velocities further confirmed the validity of potential flow theory.

For a train of solitary or periodic waves shoaling over a sloping beach, the front
wave of the train is also the steepest wave that first breaks in the shallower wate.
Hence, the model can be used to calculate detailed shoaling coefficients over the
length of the beach, up to the point the front wave breaks (breaker line). In this
case, computations are not greatly affected by the limitation of the model to the
first breaking wave discussed above (Grilli & Svendsen ¢ (1991), Otta et al. °°
(1993), Grilli & Subramanya ** 1993).

For irregular wave trains or complex bottom geometry, however, breaking may oc-
cur almost anywhere in the shoaling region, due to nonlinear interaction between
wave components and between waves and bottom geometry. Hence, computa-
tions may have to cease, and the above limitation reduces the utility of the model

in its present form for these situations.

17

3 Wave generation in the model

3.1 Exact solitary waves

“Numerically exact” solitary wave solutions of the WBVP in water of constant depth
h, can be obtained using Tanaka’s ™ (1986) method— in the following, these solitary
waves are referred to as exact solitary waves—, and surface elevation and potential for
such waves of specified height can directly be prescribed in the model, as in (6) (notice,
in all cases, initial waves are being introduced far enough from lateral boundaries,
U(t) =0 is assumed).

Dimensionless variables, @/, z’,t" and ¢, will be used in the discussion of exact (and

later on of first-order) solitary waves,

, T , z , / , c
x—ho,z—ho, = ho,c— I (35)

in which ¢ denotes the (constant) wave celerity. The initial wave height H, is identical

for solitary waves, to the wave elevation above z = 0, and we denote, H' = hﬂ, the

2

gho

non-dimensional wave height. The wave Froude number is defined as, F'? =

Tanaka’s method solves Cauchy’s integral theorem in a frame of reference moving
with the celerity ¢. The crest velocity V. fully defines the wave in this frame, and the
dimensionless crest velocity is defined as, ¢. = % The original method by Tanaka
was modified by Cooker ? (1990), so that the wave height H' could be prescribed as a
parameter, instead of ¢..

Main steps in the calculation of exact solitary waves are as follows (superscripts

denote iteration numbers),

e An approximate crest velocity ¢° is estimated from the specified H’, by in-
terpolation in a table of values of (H’, q.) predetermined within the interval
(H’=0.833197, ¢.=0) for the highest possible wave (like found, e.g., in Tanaka
™ (1986)), to (H'=0,q.=1) for a flat free surface.

18

o Free surface velocity is calculated using the original Tanaka’s method, with the

approximate crest velocity ¢c.

o Wave celerity ¢ and Froude number (Fz)o, are calculated using the free surface
velocities, and the corresponding wave amplitude H'? is obtained from Bernoulli’s

equation as,
rr'o 1 ~ 2\01(I2\0
i = L= (@)) (36)

Tanaka’s method involves an iterative solution of Cauchy’s theorem, using the
Froude number as the convergence parameter. The convergence criterion selected
here is 1071% in relative value of F?. We found, 70 to 75 iterations were necessary

to achieve convergence within this accuracy.

e A better approximation for the crest velocity, G.', is re-estimated from (H’, [:[/0),

in the table of values (H’, q.).

e And so on, iteratively, until AH' =| Hl;ﬁ ~ | is found sufficiently small.

The convergence criterion selected here is AH' < 107>, Three to four iterations

only are found necessary to achieve convergence within this accuracy.

e When convergence is reached for both F'? and H’, the wave shape is calculated
from free surface velocities. Normal velocity %(:p,to) is also calculated on the
free surface at this stage (for being used as initial data in the first time step of
computations with the model), by noting that, for a constant shape wave,

99

an(:zj) = F'sin B(x) (37)

e Wave area above still water level, m, and kinetic and potential energy, (eg,€,),

are calculated for the resulting solitary wave, based on the following standard

19

integrals (p' = ¢’ = 1),

m = p | Zda
Iy
L, 99
= - —dl’
ek i Iy qban
1
e, = 5,0’9’ 5 2?dz’ (38)

e The resulting wave is finally truncated left and right to points at which free

surface elevation ' = ¢, H', with ¢, < 1, a pre-selected treshold.

The overall method is found to be quite computationally efficient. Convergence on
both F'* and H' is reached, and all the wave data are calculated within less than 0.6s
CPU time (IBM-3090/300), using 80 points on the free surface to describe the wave.

3.2 Wave generation by a plane wavemaker

3.2.1 Introduction

A plane wavemaker is simulated on boundary I'.1(%), to generate waves in the model,
the same way as in most laboratory experiments. For selected incident waves, the
wavemaker motion X,(t) and velocity u,(x,(t),t) are obtained from first-order wave
theory (i.e., Boussinesq theory for long waves, and first-order Stokes theory for periodic
short waves).

Waves generated this way propagate without change of form in a model based on
first-order theory equations. In the present full nonlinear model—or, for this respect,
in a laboratory wavetank—, however, such waves are not expected to correspond to
permanent form solutions. Goring ?° (1978), for instance, found that solitary waves of
small amplitude (H’ < 0.2) generated by a piston wavemaker in a wave flume, kept their
shape constant within a very small margin. For such small waves, the first-order wave
profile is quite close to an exact solitary wave. For steeper waves (H' > 0.2), however,

Goring found, solitary waves shed a tail of oscillation behind them as they propagated

20

down the flume. Grilli & Svendsen *® 1990 also observed in their computations with
the model, waves of significant height generated by a wavemaker modulate and adjust
their shape while propagating.

Since computations solve the full equations, if one assumes friction to be small, the
computed wave train should also be expected closely to follow what actually happens
in a wave flume after generation of a wave motion by a wavemaker. For long waves, this

was in fact confirmed in many comparison of model results with laboratory experiments

(Grilli & Svendsen *® 1990, Grilli et al. 3% 2627 28 19921993, Svendsen & Grilli ? 1990).

3.2.2 General boundary condition

”» 2 .
Boundary conditions for 22 and 22 can be expressed for any specified wavemaker
an oton

motion and velocity, based on (7) abd (13). The latter equation, for 88;—;; , includes

a time derivative with respect to the rigid body motion that needs to be developed
with great care. This was done by Cointe ® (1989), for the motion of a rigid body of

arbitrary shape. In the case of a plane rigid body like a wavemaker, Cointe’s expression

simplifies into,

s . . P %6 . 9% -

in which « denotes the position vector of points on the body surface, and 6 the angle

of rotation around x,, and dots denote absolute time derivatives with respect to the

body motion, <, defined as in (13).

y dio
Velocity and acceleration of points on the body boundary can be derived for specific

cases and used along with (39). If r, denotes the distance between point, a = («,),

and x, = (2,4, z,), we get,

a = z,+r,cosb

B = zy+r,sinb (40)
Since r, is constant with respect to any rigid body motion, we also have,

a = :zgg—rgsineé::zgg—(ﬁ—zg)é

21

g = ég+rgcoseé:ég+(a—xg)é (41)

.2 ..
a = z,—rgcos0f) —rysind g
2

B‘ = Z;—rgsineé —I-TgCOS@é

2

o = J‘};J—(Oé—l'g)é —(ﬁ—zg)é

2

B = 4 —(B—2)0 +(a—z,)0 (42)

Motion and boundary conditions can now be expressed for two standard types of

plane wavemakers.

i) Piston wavemaker : This corresponds to a flat vertical plate (§ = 7) moving

horizontally in depth h,, with, x,(t) and w,(x,(t),t) = :J'cp(t), the specified horizontal
piston motion (stroke), and velocity, respectively. Along the wavemaker paddle, we

have by (40),(41),(42),

n=[-1,0, s =[0,1], 6=0=0

a=x,=[z,(l),2], a=u,=[u(t),0, a=u,=I|ul),0] (43)
Hence,

o-n = —up, o-n = —u,, a-s=10

and from (7),(39), and (43), boundary conditions on the piston wavemaker boundary

read,
0
5 = il
Po P
sion = () —w(t) o on I'yy(t) (44)

in which g%f = 227?; and ﬂp = EL:p(t) denotes the specified wavemaker acceleration.

22

ii) Flap wavemaker : This corresponds to a flat plate, hinged at x, = (0, —h,)
on the bottom, and oscillating with an angle 6(t) € [7,0] (defined trigonometrically
with respect to the bottom), with, x,(¢) and w,(x,(¢),t) = :J};p(t), the specified flap
horizontal motion (stroke) and velocity at z = 0, respectively. Along the wavemaker

paddle, we have by (40),

n = [—sinf(t),cos(t)], s =[cosb,sinb], o =x,+r,s=[aft), ()] (45)
in which r, is given by,

re(t) = a(t)cos 0(t) + [B(t) + ho)sin 8() (46)
Now, by (41) and (42), with X‘g = Xg = 0, we have,

o = uy(t) = [~B(t) — ho,a(1)]0

a = uy(t) =[=B(t) = ho,a(D)] 6(t) — [a(t), B(t) + o]0 (1) (47)
Hence, by (45),(46),(47),

a-n = [ar(t) cos B(t) + (B(1) + h,)sin 6(1)] H(t)

Il

-

s

—~
o~

S’ S—’ S’

D -
—
o~
~—

cos O(t) + (B(1) + ho) sin 0(1)] (1)

.2

— 00
a-s = [—(B(t) + he) cos O(t) + a(t) sin ()] H(t)
— 0 (48)
since one can show, by simple geometric considerations, [—(3 4+ h,) cos 8 + arsin 8] = 0.

From (7),(39), and (48), boundary conditions on the flap wavemaker boundary

read,
o e
W B . . aqu Do
PO e + o2 %) (49)

23

Time derivatives of 6(¢) can be expressed as a function of wavemaker stroke x,(t),

and of its time derivatives as,

h
tan 0(t) = P D)
f(t) = arctan x:(ot)
- A h,
M = T
B tan?(t) w,(t)
T 1+ tan? O(t) h,
= —sin?0(t) UZ(Ot)
(9(1‘) = —2sin6(t)cos (1) UZ(:) (9(1‘) — sin? (1) UZ;L(:)
= —sin? H(t)[uz;b—(j) — sin 2(9(t)(u2(j))7 (50)
Now, with R(t) = h%—|—h7;§(t) we get,

sinf(t) = R(t) hg—l—xg(t)
cosB(t) = x,(t) hg—l—xg(t)

sin20(t) = 2R(H)x,(t) (51)

and by (46),(50),(51),

H(t) = —R(t) upy(t)
0t) = —R(t)[u,(t) - 2u§(t)x2—(j)]
() = ROV 30l 4 50+ 1) (52)

in which [a(t), 3(t)] are coordinates of points along the flap wavemaker.

24

3.2.3 Generation of a long wave by a piston wavemaker

In a long wave of permanent form over constant depth h,, we have at any instant,

/77 u dz = ¢+ Qs + uch, (53)

e
in which ¢, is the propagation speed of the wave in a fixed frame of reference, n(x, 1) is
the wave elevation above still water level, () is the nonlinear mass flux averaged over a
wave period, and w., the speed of the current defined as the averaged particle velocity
below wave trough level.

For a first-order long wave, the right hand side of (53) simply reduces to ¢n, where
¢ is the speed of the wave relative to the water, so that (53) becomes the simpler
expression used, e.g. by Goring ?° (1978), for determining the motion required by a
piston wavemaker to generate a specified water surface elevation immediately in front

of the wavemaker. Since the piston motion creates a depth uniform horizontal velocity

up(,(t),1), (53) reduces to,

w(t) = = (54)

which means, a surface elevation n can be generated by specifying the piston velocity

u, as defined above. In this case, corresponding horizontal piston motion x,(t) is given

by,

toen(z,7)
t) = —— d 55
ol = [7T ar (55)
i) Generation of a “first-order” solitary wave by a piston wavemaker

: In water of depth h,, a first-order solitary wave elevation of amplitude H (i.e., a

permanent wave solution of Boussinesq equations) reads,
n'(2', 1) = H'sech®*[r(z’ — 't')] (56)

where £ = Y3 and the celerity ¢ = /1 + H'. Substituting (56) into (55), while

2

specifying @' = x](t) throughout the integration, gives the corresponding piston motion.

25

Since the solitary wave profile (56) extends to infinity in both directions, however,
it is necessary to truncate the wave at some distance from the origin, before it is used
in the model. Goring ?° introduced the significant horizontal extension 2\’ of the wave,
corresponding to a reduction in wave elevation to, ' = ¢, H’. Using this, we get by
(56),

e.H = H’sechZ[/i)\’]

52_% = coshr) (57)

and
1 . , !

¢ = arcosh[e, 2] with N = — (58)

K

Now (see Abramowitz & Stegun ' (1965)),

arcoshx = log[z + (2 — 1)%]

arcosh[e,”2] = log{e. 2[1 + (1- 52)%]} (59)
Hence, since ¢, < 1,
4 — z
{ ~ log _5 (60)
2¢e2
In the numerical applications, we usually use ¢, = 0.002, to which it corresponds
{ ~ 3.80.

Wave generation by the piston wavemaker, hence, starts at ¢, = 0, with 2’ = z/ +\".

Introducing this in the theoretical wave profile (56), and integrating (55) we then get,

/

H
(1) = — [tanh (') + tanh kX'] with x(¥') = k(c't' — 2, (') = X) (61)

P
This transcendental equation in z7 is solved by Newton iterations for any given time

t.
Wavemaker velocity, u; (t') is then computed by (54), for n'(z}(t'),t'), and ﬂ;(t’) is
found by time derivation of it. We get,
1
cosh? x(t')+ H'
cosh® x(¢') sinh x(#')
(Cosh2 x(t)+ H')?

u(t) = H'(1+H)?

w(t) = V3H':(1+H') (62)

26

These values are introduced into (44), to define the boundary conditions on the wave-
maker.

Initial wavemaker velocity and acceleration at ¢, = 0 are deduced as a function of
H' and ¢, by introducing (58), (61) into (62). Since we have z}(t,) = 0, x(t,) = —/

and,

cosh x(t)) =¢. 7, sinh x(t) = ¢ ?[1 — 52]%

which, by (62), leads to,

1 &
') = H(1+H)? ————
) = 0O
L st . A
up(to) = 3 H:> (1+H)€Zm (63)

which both are approximately proportional to ., for a given H’.

Hence, the initial wavemaker acceleration, an important parameter that must be
kept small in order to avoid initial mathematical singularity of the solution (see section
4.8), is controlled by selecting the truncation parameter ¢, of specified solitary waves,
small enough. For ¢, = 0.002 and H'=0.5, for instance, we get u,(t,) ~ 0.00122/¢d,
and ﬁp(to) ~ (0.00184¢g which is quite small.

ii) Generation of a “first-order” cnoidal wave by a piston wavemaker :
First-order cnoidal waves are periodic wave solutions of KdV or Boussinesq’s equations.
In water of constant depth, Al = 1, a cnoidal wave elevation of amplitude H’, period

T', and length L' = ¢/T" is given by (e.g. Dean and Dalrymple '* 1984),

n'(2',t") = H{B + CHQ[%(J}/ — "), m]} (64)

in which, L' = 4K (5%)%, the celerity ¢ = /1 + AH' with A = A(m) = %(Z—m—i’)%),

3H'
and the dimensionless trough B = B(m) = L(1 —m — £).
In (64), cn is a Jacobian elliptic function of parameter m, and K = K(m), F =
FE(m) denote complete elliptic integrals of the st and 2nd kind, respectively (for details

and definitions, see Abramowitz & Stegun !).

27

Wave generation starts for 2, = ¢’ = 0, at a given initial phase 2’ = A" of the wave
profile (64). Setting 2’ = 2, + X" in (64), and integrating (55), we get the following

transcendental expression for ('), which is solved by Newton iterations,

X1 = 21 + X =) (65)
PN(1) = o B (1) = x) = LB (1), m) ~ B, m)]) (66)

in which v, = QL—If)\’, and E(x(t),m) is the incomplete elliptic integral of the 1st kind.
Finally, w/(¢') and ﬂ;(t’) are obtained by derivation and introduced into (44), which
defines the boundary conditions at the wavemaker.

Initial acceleration u;(tg) of the wavemaker varies with the initial phase X, and
hence can be made sufficiently small by adjusting this phase. For X' = 0, for instance,
initial acceleration is zero. For cnoidal waves, however, this also corresponds to max-
imum crest elevation and velocity. Hence, the origin is shifted to a point with zero

water elevation and velocity, by selecting,
= U
2K

where 27,(0) is obtained from (66) for x = 0. Doing so, the initial acceleration is no

[2K —en~'V/=B] + x7(0) (67)

longer zero but, for long waves, it is still quite small compared to gravity ((’)(40’[&”%)).

For a cnoidal wave of height H' = 0.2, and period T = 25, which is close to
the upper limit of long wave theory, for instance, we get L' = 25.99, ¢ = 1.040 and
K = 5.035, and Figure 3 shows the free surface elevation and paddle motion calculated

with these data. Corresponding initial acceleration is about 0.03g.

3.2.4 Generation of a sum of periodic sine waves by a flap wavemaker

A sum of sine waves can be generated by a flap wavemaker in water of depth h,, by
specifying boundary conditions, based on first-order Stokes theory, as in laboratory
experiments. Due to nonlinearities, however, it is well known, free second and higher-
order harmonics are created when waves of finite amplitude propagate down a tank

(see, e.g., Mei %3 1983). This will be illustrated in the applications.

28

Figure 3: Cnoidal wave elevation and paddle motion as a function of time t’, for

H' =0.2, T" = 25, with n(—), @,(- - - -), u,(- — -) and ﬁp(. —).

The paddle stroke x,(t) is specified as the sum S() of n sine functions of frequency
27mw;, phase @;, and amplitudes A;. Amplitudes A; are related, in a linear sense, to the
corresponding wave component amplitudes to be generated, a;, by a transfer function
T (wi, h,) that can be derived from wavemaker theory (see, e.g., Dean & Dalrymple **
1984).

Furthermore, a smooth start with small and bounded initial acceleration of the
paddle is ensured by multiplying x,(¢), by a damping function D(¢), varying from 0
to (1 —e.) over a given time 2¢. . For ¢, < 1, the damping function gives a smooth

transition from 0 to ~ S(t), over a time 2¢.,. We get,

"1
z,(t) = S(t)D(1) with Sit)y=> 5 Ai [l — cos (wi t + ;)]
=1
) 4sinh? k;h,
a; = A; T (wi, hy) with T (ki(wi, ho), he) = e = Sih 2T (68)

with H; = 2a;, the wave height (predicted by linear wave theory), and k;(w;, h,), the
wavenumber of a given sine wave component to be generated. By the linear dispersion

relation, we have,

2
L tanh kb, = <&

p (69)

29

Now, by analogy with the smooth initial paddle motion, obtained above for the
generation of solitary waves by a piston wavemaker (61), the damping function is

selected as,

1+e, 1—e,
D(t) = tanh u(t — 1. 70
(1) = 5 fanb e 1)+ (70)
with p, a damping coefficient defined from the condition that D(0) = 0 as,

u = —Qtsz 10g€z (71)

in which use has been made of the definition (see Abramowitz & Stegun '),

1+

tanhx = —1 2
arctanh = = log T— (72)

One can easily check using (72), that (70)-(71) also satisfy D(2¢..) = 1 — £,, which

allows to select the rate of damping corresponding to given values of {., and ¢, : for

3.454

. = 0.001, for instance, we get p ~ =

The time 2¢._ is selected as an integer multiple NV, of the average wave period of

the wave components 7' defined as,

N, T

N
t.. 5 and T = - Z — (73)

By time derivation, we now get the paddle velocity and acceleration at z = 0, from

(68)-(70), as,

SD+ 8D and U,(t) = SD + 2DS + SD

up(t)

. L .. |
St) = Z B A wisin (wit + @), S(t) = Z 3 A;w? cos (wit + ;)
=1 =1

; H 1+€z o 2
t) = —) = — 1 ;
D(t) 2 cosh? u(t —t..)’ D(t) w(lte:)

tanh p(t —t.,)
cosh? pu(t —t..)

(74)

Hence, boundary conditions (49),(52) can be defined on the wavemaker.
The wavemaker velocity and acceleration at initial time ¢, = 0 can also be obtained
from (74), by noting D(t,) = 0 as,

1 - 1—¢
d ly) =4Ap’e, ———
1+e, a D(t) He (1+¢.)?

D(1,) = 2pe. (75)

30

For e, = 0.001, we get by (75), b(to) ~ 0.0020 and b(to) ~ ZMb(to). This leads by
(74) to,
wy(t,) ~ S(to)D(1) and y(t,) 2 2D(t,)(S (L) +) (76)

If we further require S(t,) = 0, we get by (76), u,(t,) ~ 0 and ﬁp(to) o~ 0.0040#3(%),
with g~ 1 for ., ~ 3.454. The acceleration is thus rather small at ¢ = ¢,.

3.3 Wave generation by an internal line of sources

Using the Boundary Integral Equation representation introduced in section 4.3, based

on free space Green’s function, Poisson equation (8) transforms into,

0G(x, %))

atxiot) = [1570060x) - o0 0 arg
+ /Q o PG00 x0) A0 x) (77)

which can itself be solved by the Boundary Element Method (BEM) introduced in
section 4.4 for Laplace’s equation. Domain integrals, however, have to be calculated
to account for the source field b(x,?) contribution in (77).

Using a vertical line of sources with linear density for wave generation, ¢(s(x),1)

(s(x) being measured along the line I'y), the source contribution in (77) reduces to,

/Q b(x, 1)G(x, %)) d = / g(s(x), 1)G(x, %) T, (78)

Iy

In two dimensions, a line of sources with continuously varying strength creates
a velocity normal to the line, equal to %q. Thus, specification of the strength of the
source distribution ¢ is straight-forward if particle velocities are known along the line,
for the waves to be generated.

In most cases, it is sufficient to specify the source strength only at points along
the line I';. Doing so, N, concentrated sources of strength B;(t) are specified at these
nodes. For a vertical source line located at * = x4, and divided into N, segments from

bottom to free surface, we thus have,

n(ws,)+ he __

By(t) =2 N Up(Ts, 25, 1) s=1,..., N, (79)

31

where Wy (x5, z5,t) represents the mean horizontal velocity of the wave in the s-th
segment, and n = n(as,t) the wave elevation above the source line (a stretching has
been applied to the line to account for the wave elevation above the line). In this case,

also,

a(s(x),1) = 3 By(1)3(x — x4 s=1,....N, (80)

s=1

where §(x — X4) is the Dirac function at point xs. Equation (78) simplifies into,

/Q b(x,)G(x, x;) dSY = 2 By(1) /Q G, x,)5(x — x3) 92

and by the sifting property of the Dirac function,

/Q b(x,)G, %) d2 = 3 Ba(t)G(x,. %) (81)

s=1
Hence, this method of generation makes it possible to model any wave motion for
which particle velocity distribution is given along a chosen bottom-to-surface line. Two

such cases are detailed in the following.

3.3.1 “Second-order” solitary waves

For a solitary wave whose first-order profile is given by (56), the horizontal velocity can
be deduced as a function of depth from Boussinesq’s theory (see Mei 5?). The horizontal
velocity is constant over depth, to the first order in H’. Identical developments can be

made up to the 2nd-order accuracy, and we get,

Uy (x5, 2,1) = @sechzx(t) 1+ (%)2(2 + hy)?(2tanh? x(¢) 4 sinh® x(2))] (82)

c 0
in which x(?) is defined as in (61), and the solitary wave has been limited to its
significant part 2X defined as in (58).

In dimensionless form, (82) reads,

/

ul (2, 2/, t') = Es<eclr12)<(i") [1+ (k*(2" 4+ 1)*(2tanh® x(¢') + sinh? x(¢'))] (83)

cl2

Equation (82) could be extended to higher-order.

32

Notice, in the implementation of this procedure in the model, source strengths

defined based on (81) and (82) correspond to the Poisson equation (8) for ¢. Corre-

sponding developments have been made for the equation for %, using

DUy

gr instead of

Uy

3.3.2 “Second-order” periodic waves

For a wave of period T and height H, the horizontal velocity calculated from Stokes

theory in water of depth h,, up to second-order in 2, reads (see Dean & Dalrymple

J2E
13)7

@cosh E(h, + z)
2¢ cosh kh,
3H?wk cosh 2k(h, + 2)

— T ST cos 2(kxs — wt) (84)

Uy (25,2, 1) cos (kxs — wt)

in which, w = 2%, is the wave circular frequency, ¢ = 7 the wave celerity, and the
wavenumber k is given by the linear dispersion relation (69).
To avoid initial singularity during a “cold start”, the velocity (83) is multiplied by

a damping function of the form,

D(1) = 1= exp (=) (85)
in which g, i1s a damping coefficient defined from the condition that the damping reach,
1 — &,, after a specified number N,, of wave periods, i.e., D(N,T) =1 — ¢, or,
_ 2N,

loge,

p= (86)

For N, = 3, for instance, we get u =1 for e, = 0.0025, and ¢ = 0.65 for . = 0.0001.

Notice, again, source strengths defined by (81) and (84) correspond to the Poisson

equation for ¢. Corresponding developments have been made for the equation for %,
Oy

T instead of wu,,.

using

33

4 Numerical Model

4.1 General principle

Taylor series (9) and (10) are truncated to second-order in At (N = 2), and coef-

ficients (14), (27), (28) and (34) are expressed as function of values of {¢, 2 aw gf,

8% 26 8¢ 0% 3, 2 D pa
Snds® D520 Bt Didn’ 87,‘857) 857 Pas 3

} along the free surface. Potential &, 2 5, and
their n-derivatives, are directly obtained from the numerical solution of two Laplace’s

equations, for ¢ and 22, expressed in the same domain geometry at time ¢.

aw
The s-derivatives of field variables are computed along the free surface, using a
4th-order “sliding” polynomial interpolation on the boundary, and by differentiating
inside each polynomial.
At the intersection of the free surface with a moving wavemaker boundary, however,
accuracy of the s-derivatives is not in general sufficient, and special relationships have

been developed by Grilli & Svendsen *7 (“compatibility conditions”) for improving the

accuracy at corners on the free surface. These are discussed below.

4.2 Time stepping method

When initial conditions are known on the free surface at a given time, ¢, i.e., the position

r(t) of the free surface boundary I'¢(¢) and the potential ¢, its normal gradient % and

time derivatives % and aata(b along I'f(?), the free surface position and potential can

be updated to a subsequent time, t + At, using Taylor series (9) and (10). This only
requires calculating s-derivatives of the field variables along the free surface (see details

about that in a subsection below).

96 9%¢ 2@ 39 %% ¢ 28 Dp
Hence, assuming {¢, 57 Gn 0 Bs 0 Bnds 0 052 Ot Biom 8195 0 95 Par Dt

} are known
or calculated at time ¢ on the free surface I';(¢), position r and potential ¢ on the free

surface are updated to time t + At, up to second-order accuracy in At, as,

{1+ A1) = r(t) + Ar2E () ¢ B D,

(1) + O[(At)] (87)

34

o(r(t+ At),t + At) = (1) + At%—f(t) +

(A1) D?6
2 D2

(1) + O[(At)’] (88)

with the coefficients in (87),(88) given by (14), (27), (28) and (34), and s and n given
by (18),(19) as a function of f3.
Values of ¢ or % and the geometry can be specified on lateral boundaries at time

t + At, depending on the specific problem (motion and 9 ¢

5= =~ for instance, will be

calculated by (44) along a piston wavemaker, and % is invariably zero along solid
boundaries, by (5)).
Hence, well posed boundary values can be specified at ¢t + At, for ¢ or % , along

the whole boundary I'(t + At), and a “first” Laplace problem can be defined with

these, and solved to calculate ¢ or % (whichever is unknown) along I' (the solution of

Laplace’s equation by a Boundary Integral equation is discussed later).

99

Now, 57

can be specified on the free surface using Bernoulli’s equation (12), as,

L Rt S SR S T R)

in which all right hand side variables and geometry are known at time ¢+ At¢. Depending

% . .
or =% can now similarly

92
atdn

on the type of conditions along the rest of the boundary,
be specified and, hence, well posed boundary values for solving a Laplace’s equation
for % can be determined and a “second” Laplace problem be solved.

Notice, since both the above Laplace problems are expressed in the same boundary
geometry, ['(t4+At), the extra computational effort required to solve the second problem
will be very small. Therefore at this stage, geometry of the boundary and values of

, % , % and 88;—;; along the boundary are known for time ¢t + At¢, and the whole
procedure can be applied again.

The above operations are globally referred to as “time stepping” and the above

procedure corresponds to time ¢, with the time step being At.

35

4.3 Transformation of Laplace’s equations into BIE’s

Both Laplace problems for ¢ and % can be transformed into Boundary Integral Equa-
tions (BIE), using third Green’s identity, and the free space Green’s function (G being
defined such as to satisfy,

V3G (%, %) + 6(x, %) = 0 (90)

in which §(x,x;) represents a Dirac function at point x; of domain 2. With definition

(90), third Green’s identity for the potential ¢ reads,

o) = 16000 526x) = 66x) 5) 0 (x) (91)

in which the “sifting” property of the Dirac function has been used to eliminate the

domain integral.

In two-dimensions, solution of (90) yields (e.g., Brebbia ?)

1
G(x,x;) = —ﬁlog | x —x; | (92)

The function G(x,x;), also called the fundamental solution of Laplace’s equation, has
a logarithmic singularity when point x approaches point x;.

To derive a BIE only involving values of the field variables on the boundary,
however, it is necessary, in (91), to select points x; on boundary I' over which functions
in the right hand side of (91) are integrated. It follows that some of the integrals in (91)
become strongly singular, and the limiting process by which x; is made to approach
the boundary must be carried out with great care.

Such an analysis can be found in many references dealing with BIE problems (e.g.,
Brebbia ?), and can be shown to introduce “jumps” in the potential value when point
x; moves from inside the domain to the boundary and from the boundary to outside
the domain. Values of these “jumps” are only function of boundary geometry.

Based on the above discussion, final singular BIE’s corresponding to Laplace prob-

élo)
ot

a(x;)p(xi) = /F

lems for ¢ and Z£ read,

94 9G
(x) %(X)G(X’Xl) - ¢(X)—n(X,X;)] dl(x)

36

)50 = [)G —) 5 e) (93)

in which x = (z,z) and x; = (2, ;) are points on boundary I' and a(x;) is a geometric
coefficient only function of the angle of the boundary at point x;. This coefficient
actually represents the “jumps” in potential mentioned above. Values of a(x;) are

discussed later.

4.4 Discretization of the Boundary Integral Equations
4.4.1 Principle

The Boundary Element method (BEM) (Brebbia ?) is used for the discretization re-
quired for the numerical solution of the two BIE’s (93). Collocation nodes x; are
distributed along the entire boundary to describe the variation of boundary geometry
as well as boundary conditions and the unknown functions of the problem. Between
collocation nodes, the variation of all quantities is described by means of shape func-
tions or of splines, and for this purpose, the boundary is divided into elements each of
which contains two or more nodes. Details of these procedure are given in a following
section.

Each integral in the BEM is transformed into a sum of integrals over each boundary
element. Non-singular integrals are calculated by standard Gauss quadrature rules.
A kernel transformation is applied to the weakly singular integrals, which are then
integrated by a numerical quadrature exact for the logarithmic singularity. An adaptive
numerical integration is used for improving the accuracy of regular integrations near
corners and other locations, like the overturning jet in breakers or at the upper part
of a gentle slope, where elements on different parts of the boundary are close to each
other.

A double node technique (Brebbia ?) is used in combination with specific conti-
nuity and compatibility relationships to utilize and make compatible all information

given in corners by the boundary conditions. Corner double nodes represent two nodes

37

of identical coordinates with different nodal values of the field variables. Hence, two
algebraic BIE’s are expressed for each double node, which, however, are not indepen-
dent. Continuity conditions express continuity of ¢ or %, for both nodes of the double
nodes, and compatibility conditions express uniqueness of the velocity vector at cor-

ners, based on the values of % and % on both intersecting boundaries, i.e., again, for

both nodes of the double nodes.

4.4.2 Definition of boundary value problems

Nr points x; are selected on boundary I' to define a spatial discretization. On the
free surface I'y these points represent both actual water particles whose trajectory is
followed in time by the Fulerian-Lagrangian time stepping, and collocation nodes at
which BIE’s (93) are expressed.

With u the unknown field variable (either ¢ or %), boundary conditions prescribe

either @ (Dirichlet) or Du (Neuman) on portions of the boundary. Hence, each BIE (93)

an
reads, for each collocation node x; (I =1,..., Np),
Ju oG
obeulx) = [[5G0 x) —ulx) g xx)] U (x)
ou . 0G
b TR) T e 0] (o1

in which G(x,x;) is the free space Green’s function (92) corresponding to Laplace’s

equation and % represents its normal derivative. In two dimensions we get, by (92),

1
G(x,x;) = ~g- logr;

8G() 1 r-n

—(x, %) = ——

on 21 r?

Tl:|I'l|,I'l:X—X1 (95)

in which r; is the distance from the “integration point” x to the collocation point x;

E
o= is imposed

on the boundary I'. I, represents all parts of the boundary on which 2

38

(“Neuman boundary”), and I'y all parts on which @ is imposed (“Dirichlet boundary”).
Depending on the case these, for instance read :

For a generation of waves by a wavemaker,
I', =T Ul UlY 'y =Ty (96)

For a space periodic wave train with periodicity conditions prescribed on lateral

boundaries,
Fn = Frl U Fb Fd = Ff U F,,Q (97)

Coefficients a(x;) can be expressed as functions of the interior angle ; of the boundary

at x; (Brebbia ?) as,

Oz(Xl) = — (98)

4.4.3 Discretization of BIE’s using boundary elements

i) Principles : The Boundary Element Method (BEM) is used to describe the varia-
tion of both geometry and field variables along the boundary (interpolation), and hence
discretize and solve the BIE’s. The interpolation between nodes on the boundary is
based on higher-order isoparametric boundary elements, using shape functions (1st to
4th-order) for both geometry and field variables, and on quasi-cubic spline elements
for which the interpolation of field variables is based on 1st-order shape functions, and
the interpolation of the geometry is based on cubic parametric splines.

Quasi-spline elements have been implemented to ensure continuity of the free sur-
face slope. They are used, when the free surface curvature is large, in combination
with isoparametric elements on the rest of the boundary /. Quasi-spline elements re-
quire small extra computational effort, for enforcing the inter-element continuity of the

derivatives.

TWith full spline elements, cubic splines would also be used for the field functions. This, however,
would require knowledge of the derivatives of these functions at the extremities of the free surface

which may be hard to accurately obtain in some cases.

39

As in the Finite Element Method, both isoparametric and quasi-spline boundary
elements are mapped onto reference elements, before integrals are calculated in the
BEM, and the Jacobian of the mapping function is determined analytically as a function
of the coordinates of the nodes of the discretization, and of the interpolation functions.

ii) Isoparametric boundary elements : To compute integrals in (94), the
boundary is divided into Mr elements, each of them having m nodes. Within the k-th
element corresponding to boundary section I'* both the boundary geometry and the
field variables (u,g—Z) are discretized using identical sets of higher-order shape functions
defined as polynomials of degree (m — 1) in x whose value is 1 at point j of element
k, and 0 at all other points ¢ # j. These shape functions are noted N,?;_l(x), for
j=1,....m,and k=1,..., Mr.

The use of higher-order shape functions for the discretization increases the rate at
which the approximate BEM solution converges to the exact (unknown) solution of the
BIE, when the normalized size h (spatial step) of the discretization (i.e., the average
distance between two nodes on the boundary is reduced). It can be shown, this rate is
roughly proportional to A for an m-node element.

For convenience, the set of shape functions is analytically defined on a simple
reference element of boundary I'¢, onto which each element of the BEM discretization
of boundary I'* is mapped by a transformation of coordinates. The intrinsic coordinate
on this isoparametric reference element is ¢ € [—1, 1]. Boundary geometry x* and field

variables (u*, M) over the k-th element corresponding to boundary section I'* are

an
ouk

represented as function of their nodal values (Xf, Uf, 52), in which j numbers the

nodes within each element /. and of the shape functions set N]m_l(f), withyj=1,...,m

Tt is worthwhile pointing out, since all variables— geometry or field functions— are defined by
a piecewise interpolation within each element, their nodal values (i.e. values at the nodes of the
discretization) can either be referred to with indices varying within each element & (local definition),
or with indices varying in the global boundary discretization (global definition). For instance, Uf
represents the nodal value of the potential at node j of element k& and also represents the potential

at, say, node [of the global discretization. The local numbering will usually be used when dealing

40

x5(¢) = NP
ou® an‘

dHE) = NPTOUE GO = NPT G = Lm on Te (99)

Notice, from now on, the summation convention will be used for repeated subscripts.
Analytic expressions are derived for the shape function coefficients, by expressing
that, at nodes x¥ (s = 1,...,m), u*(£) in (99) is equal to nodal value UF, or,
k k m—1 k k
ui(§(x7)) = N (&) U = U
or

5;Ur = UF

where ¢;; is the Kronecker symbol. Since N]m_l(f) has been defined as a polynomial of
degree m — 1 in €&, this leads, for the i-th node &; of an m-node reference element, to

the equation,
N7H&) = 6
&=@2i—m—1)/(m=1); ij=1..,m onl (100)

Solving (100) for a given m yields the corresponding polynomial coefficients. For ex-

ample, for a cubic reference element, we get, 11 (m = 4),

1
16

9

(1 =69 = 1), N3(§) = (1 = &)(1 +3¢)

N3(E) ==

with the representation within an element k (i.e., superscript :element, subscript: node number within
element) and the global numbering will be used when dealing with the “assembled” representation,
i.e., the final system matrix of the discretized problem (i.e., subscript: node number in the global
discretization), unless otherwise mentioned. It is implicit that there is a functional correspondence
between local and global numbering, depending on the degree (m — 1) and position on the boundary
of each element k.

HIGQee e.g., Brebbia 2, for other orders of shape functions.

41

N3(E) = (1= €)(1=36) , NJ(E) = (1 +€)(9€ — 1) (101)

iii) Quasi-spline boundary elements : Cubic spline elements have been used
in other studies using the BEM, and have been found accurate, although computa-
tionally time consuming. Spline elements, however, require specification of tangential
derivatives of both geometry and field variables at extremities of the free surface. For
periodic wave problems, this can be avoided using extended periodicity conditions.
For non-periodic problems in the physical space, however, tangential derivatives are
not directly known and have to be independently calculated.

Based on the observation, for wave problems, higher-order continuity is somewhat
more important for the boundary geometry than for the field variables, quasi-spline
elements have been introduced (see, e.g., Longuet-Higgins & Cokelet 2, Dommermuth
& Yue 15 and Grilli & Svendsen ** 37 (1989,1990)) for which geometry is modeled by 2-
node cubic splines and field variables by linear shape functions. Quasi-spline elements
turn out to be rather accurate and efficient and provide the additional advantage
against full spline elements, that only free surface slopes have to be specified at corners.

To be able to model breaking waves, the spline approximation of the geometry
must account for a multi-valued free surface. For that purpose, the point index 7 (also
used in Longuet-Higgins & Cokelet °2) is adopted as a parameter, whose value is equal
to the index of the free surface nodes, at the position of these nodes (i.e., 1 to Ny
where N is the total number of free surface nodes). Instead of defining the splines
in polar coordinates, however, regular Cartesian coordinates are used to define two
single-valued spline approximations of the free surface : © = (1) and z = z(7) (where

r = (x,z) represents a free surface point). Hence, at the free surface nodes,
= x(m) : z1 = z(m) [=1,...,Ny (102)

Two standard cubic spline analyses are performed on the free surface, for the points

(x1,71) and (z;, 7). In such analyses, the slope must be specified at each extremity of

the approximated curve. In this case, j—f and j—j must be specified at both extremities

42

of the free surface, and are estimated based on cubic polynomials fitted to the 4 first
and 4 last nodes of the free surface. In some particular cases, however, the slope at
one extremity of the free surface can be deduced from the physics of the problem and
imposed explicitly as a boundary condition to the geometry.

The spline analyses lead to two tridiagonal matrices, that are solved by LU decom-

d2l’l d2l’l
dr2 7 dr2

position (operations of O(Ny)), to provide () at each node of the free surface

(l=1,..., Np). Hence, for the k-th quasi-spline element of the free surface, we get,

Xk(T) = (k+1- T)X]f + (7 — k)xg

A(T), ., <t B(1), ., d*x5
w2) -)2 B) - 1)
Alr)=k+4+1-71 ; B(r)=1—k
ut Uk
HO=NOU, T = N5 =12 ol (103

Notice that for any variable V', V}* represents the value of V at the first node of element
k, and V} at the second node. Because quasi-spline elements are 2-node elements,
however, this is also the same as (Vj, Vi11), in the global numbering of the free surface
nodes, defined from 1 to Nr.

The reference element for the quasi-spline element, is a 2-node element with the
intrinsic coordinate ¢ € [-1,+1] and,

r(g):k+§%1 E=1,...,M; (104)

where M; = Ny — 1 is the number of quasi-spline elements on the free surface.

4.4.4 Transformation of coordinates, high order s-derivatives

i) Isoparametric boundary elements :

o Jacobian and normal vector :
All the BEM integrals are computed on a reference element I's onto which each

element on the actual boundary I'* is mapped by a transformation of coordinates.

43

1 3 \ ®
-1 -1/3 1/3 1

Figure 4: Sketch for the transformation of coordinates on the boundary.

The transformation from the k-th boundary element of I' : I'* to the reference
element 'y = £ € [—1,1] (Figure 4), is described by the Jacobian J*(¢) of the

transformation given, by definition, by,

ds" dxk ., 92 o1
JHE) = 6—5(5) = [(6—5) + (8—5) I2 (105)
and becomes by (99),
dN™! dNT! ,
JHE) = [(C;T(f)wf)z (djif(f)%‘“)z]?
j=1,....m; k=1,..., My on I'¢ (106)

In the same way, the outward normal vector is given by,

n*(¢) = (—sin B7(£), cos 4*(€)) (107)

which becomes by (19), the discretization (99) and (106),

| 9z 0"
koo Lo dANTTH L dNPT

which also provides, together with (107), the expression of (cos 8%(£),sin 3%(¢)),

within each element.

44

o s-derivatives :

Using v*(£) to denote either of the variables ¢, % or % over the k-th element,

and V]k to represent their nodal values, we have,

vk ook o€

5. &) = 8—5(5)%(5) (110)
or, by (99), (105),
ov* 1 dN™t
On the same way, we get,
D%k d vk 1 a9, 1 ok
1 -1 aJ* 1 9%F
= e R ot O TR ae)
d*o* 1 NPT 1 dNy!
a7 = Trort e YT w1
d2 m—1
e (Oleos 3l 4 sin €)1}V (112)
Now, applying (112) to = and =z, % in (22) is easily expressed over the k-th
element as,
3" 1 &N

Therefore, various s-derivatives in (18)-(34) can be calculated from (111)-(113).
ii) Quasi-spline boundary elements :

o Jacobian and normal vector :
The Jacobian of the transformation from the cartesian quasi-spline element I'*,
defined on the nodes (k,k + 1) of the free surface, to reference element I'y = £ €
[—1,1] is, by (103)-(105),
sk ot ar 1
JEE) = (62~ ith —(&) = = 114
(€)= FoOFHE with 526 = ; (1)

45

Hence by (106),

1 dl‘k 2 de 2
= SUEEEEN + ()

N[

JH(E) (115)

The derivatives with respect to 7 of & and z are deduced from the sections of the
two spline approximations (103) corresponding to the k-th quasi-spline boundary
element of the free surface as,

dx" 3A%(T — 1 > 3B2(r 1P X
€)= xpar - PO L BB — 1

(116)

where A, B are given in (103), and 7 as a function of £ is given in (104). Notice

nodal values have been written in their global numbering (subscript k).

The outward normal vector and (cos 3%, sin 3%) inside the k-th element are again

defined by (111), (108). Now, with (114), we get,

1 dz* dz”

0(6) = 3l g (7O G (O] (117)

where J*(£) is given by (115), and the other terms by (116), (104).

o s-derivatives :

Equations (110), (112) are valid which, with m = 2 and (114) gives,

dv A 1 dANNE)

%= g
ot L ANNE)
Fsin 47 (€) S (r(€NIV (119

The derivatives with respect to 7 of @ and z are deduced from (116) as,

2k 2 2
d*x d*x;, d*xp 41

(7€) = A(7(©) 7 + B(r(O))— 5 (119)

where, again, A, B are given in (103), as well as 7 as a function of £ (104).

46

4.4.5 Discretized system of equations

The BIE (94), discretized element by element, using (99) or (103), becomes a sum
of integrals over each Cartesian element, for each collocation node, { = 1,..., Nr
(notice local numbering within elements is used at first). Boundary conditions @ on
I'y (Dirichlet boundary : total Np, nodes, Mr, elements), and % on I', (Neuman
boundary : total Np, nodes, Mp, elements) are also discretized for consistency, the

same way as u and g_Z' We get,

Mry, oG

alx)li + Al / oy N G x) U
Mr, oU*
XA NG) G
Mr,,) a1k
= DI, NI T
e ile —

= A, N0,) dE G

Transformation of coordinates is then performed within each element, for calculating
the integrals. Global numbering is adopted for the nodal values, as well as for the
shape functions, with s the global numbering for nodes on boundary section I'y, and p

for nodes on I',,. We get,

Mry, oG

aGa)li + AL MO G MO x0T delty)
- ML NG x0T a5
= S OGO dl

g e

- Z{ N H(E) - (x1(€), %) (&) dEJUL }

in which J* is the Jacobian of the transformation of element I'* into I'¢ defined in the

previous section. In matrix form, this leads to a linear algebraic system of equations

47

for the unknown fields u or g—;‘ on the boundary, in which each coefficient of the system

matrix is one of the above sums of integrals. We get,

i . oU, . ou. J—
[Clp + [anp]Up — Adlsa—n = [Xdlpa—; — [Cls + [anS]US (120)

with the following definitions,

e m— 1 aG k k & k
K, = S N de) = 31
k=1

Ki, = D / NPTHEOGH(E),30)JH(€) de} = Zfdl
k=1
l,jzl,...,NF;821,...,Nrd;p:1,...,NFn;NF:NFd—I-NFN (121)

in which j is now a global index representing s or p. This can also be written in

condensed form as,
Ki; X =L (122)

in which Ky, &;, and L£; represent the system matrix, unknown and load vectors,
respectively.

In (120), ¢;; represents a diagonal matrix whose diagonal coefficients ¢;; are equiva-
lent to the geometric coefficients a(x;) in (94). For a smooth boundary, these diagonal
coefficients have the values 1, 1/2 or 0 when x; represents points inside the domain 2
(0, = 27 in (98)), on the boundary I' (; = 7), or outside Q (6, = 0), respectively. When
there are discontinuities on the boundary (corners), coefficients ¢; must be calculated
by a direct numerical evaluation of the interior angles 6.

In the present model, however, these coefficients are deduced by the “rigid mode”
technique (Brebbia ?) which does not require calculation of angles, and also leads to a
somewhat more accurate solution of the final system. This corresponds to considering a
particular Dirichlet problem in which a uniform field w is applied on the whole boundary

I' =Ty. In such a case, the normal gradients g—;‘ must vanish at each node. Hence by

(120),

[Cl]‘ + I(nl]]Uj =0 (123)

48

or by isolating the diagonal terms of (123), we have for 5,/ =1,..., Nr,
len+ K] == Y K, (124)
(#)
which provides the diagonal term of a row of (123), as minus the sum of its off-diagonal
coefficients. The comparison of numerical results in which the ¢; were directly com-
puted or deduced from (124) showed, in our case, a decrease of the system matrix

condition number of more than one order of magnitude.

4.5 Numerical integration of matrix terms in the discretized

BIE’s
4.5.1 Principles

The regular integrals in (93), or its discretized form (120),(121), are computed by
Gaussian quadrature using up to ten Gauss points per interval between the nodes, and
a kernel transformation is applied to the singular integrals which are then computed
by a Gauss-like quadrature dealing with the logarithmic singularity.

An adaptive numerical integration method is used for improving the accuracy of
the regular integrations for very curved elements and for the elements close to the cor-
ners of the fluid domain. This method is based on a binary subdivision of the element
to integrate, while keeping the number of integration points constant within each sub-
division. Subdivision is performed until the intercept angle from which subdivisions
are seen from the considered collocation point outside the element falls under a pre-set
value. The same technique is also used when the distance between two boundaries
of the fluid domain tends to vanish (e.g. during wave overturning or rundown on a
slope). Almost arbitrary accuracy can be achieved in the numerical integrations using

this method (i.e., about 15 significant digits in computer double precision).

49

4.5.2 Element by element numerical integration

Due to the higher-order shape functions and spline interpolation functions, the integrals
in (121) cannot be calculated analytically within each element. When the collocation
node [doesn’t belong to the integrated element k, the integrals are regular and a
standard Gauss-Legendre quadrature is used, with up to 10 integration points for each
interval between two nodes.

When [does belong to the element k, r; tends to zero at one of the nodes of the
element, which leads to a weak logarithmic singularity of (7, in the integrand of [ZZJ (see
(95)). Although this integral is not singular, large variations of the integrand occur for
i

ey when [belongs to an element k with high curvature (like in the crest of a wave

approaching breaking). (it can be shown : 29 — L% when r; — 0). This leads to a
loss of accuracy in its regular integration.

Hence special techniques have been developed for computing both [C’ZJ and]fjlj.

i) Singular integrals for [51] : A kernel transformation developed for higher-
order elements is applied to the weakly singular [ZZJ which are then integrated by
a numerical quadrature exact for the logarithmic singularity. In the intervals where
r; — 0, we extract the singularity by adding and subtracting log | £ — & |. For each of
the integrals [ZZJ written in short as,

1, = [GOHOx)LHE S 1) = NP HEIH ()

¢

we get after some transformations,

I, = =g [o g A€ + G bor 66 —)
+ &p2 log §p2fk(§p2§/ + fpl)] d¢’

+ %/Ol[fplf]k(25}915) + prfk(fl + 2@25)] 10g & d¢’ (125)
_ &1

in which & is given by (100), in case of a m-node element, and &,; = élg—l,fpz = =

It can easily be shown, that the first integral in (125) is not singular. Hence a Gauss-

Legendre quadrature formula is used. The second integral in (125) is weakly singular

50

and is integrated by the Berthod-Zabhorowsky quadrature formula (Brebbia ?), which
provides the same error properties for the weakly singular logarithmic kernel as the
Gauss-Legendre formula does for non-singular integrals.

ii) Improved integrals for [fjl] : When r; — 0, although there is no singularity,
integrations of [flj are improved by performing a change of variable and an analytical
integration by part, before using the numerical quadrature. These both result in the
somewhat smoothing out of the large variations of the integrand over the element. The

change of variable is similar to the one performed by Longuet-Higgins & Cokelet %,

Zk(f) — 2
ak (&) — a

and is followed by an analytic integration by parts, which makes it possible to avoid

(126)

any numerical s-derivation of the integrand (unlike in °?). We find, for an m-node

element, that,

i = [2) x4 € de

0
becomes,
1 1Ny
In, = o= lir (=115 = i (1)8m; + S (Ouf(©) dg (127)
J T 1 5

Since uf can be singular when z*(¢) = z;, the formulae (126) and (127) are only valid
for elements in which the “element slope” | p1(1) | (i-e., slope of a straight line from
node 1 to node m) is less than 45°. If this is not the case, numerator and denominator
must simply be permuted in the definition (126) of y;, and the right hand side of (127)
multiplied by -1. The integral in (127) is regular and again calculated by the Gauss-
Legendre quadrature formula. Notice, terms such as (127) are zero for straight line
elements (since in (95), r-n =0 in %), and very small for gently curved ones.

ii1) General procedure : N, integration points are used in each element, and
N, is chosen to be even in order to avoid having integration points at ¢ = 0. In the

examples shown hereafter, up to 10 integration points are used per interval between

2 nodes. In regions of I'; with high curvature and concentration of nodes, however,

51

this may not be sufficient, mainly because of the rapid variation of % in the very
curved elements and of the Jacobian within the elements when nodes are getting close
to each other. The adaptive integration described in the next section is used for these

situations.

4.5.3 Adaptive integration

An adaptive numerical integration method is developed and used for improving the
accuracy of regular integrations made with respect to a collocation node x;, not be-
longing to the considered element k. from which the element is seen with too large
an intercept angle (say o > @pqz). This indeed leads to large variations of the inte-
gral kernels over the element which cannot quite be caught by regularly spaced Gauss
points (% being, again, the most sensitive term to this). Large intercept angles o
occur in the discretization for the elements close to the corners and also when the
distance between two boundaries tends to vanish (e.g. through time updating of the
fluid domain geometry during wave motion on a slope). In general also large angles
occur when the discretization mesh varies quite a lot from one part of the boundary
to another one (e.g. due to high ratio length over height of the fluid domain, or due to
the concentration of fluid particles-collocation nodes in some region of the flow).

The adaptive integration performs ns binary subdivisions of the element k into
segments within which the number of integration points (GP) is kept constant. The
subdivision procedure divides the reference element geometry (I'e = £ € [—1, +1]) into
27% equal segments of length 217"% until the intercept angle ay; of segment i seen from
the collocation point x; in the actual geometry, becomes smaller than a preset angle
Opmar (1€ o < Qag 30 = 1,...,27°). Then, each segment is itself mapped onto the
interval [—1,41]. Both types of integral over an element & in (121), say I* for [fjl] or

]51], can be written as,

1 &+
= [A = 5y | Aen

52

~ ns (4 1+ B(4,b) . ;1 —1
e =Ly CTT B = (128)
b=1

where F(€) represents the product of G (or %), a shape function and the Jacobian
J*. Integrals in (128) are computed by a regular Gauss quadrature, with respect to the
variable . Almost arbitrary accuracy can be achieved in the integrations provided ns is
chosen large enough (i.e., about 15 significant digits in double precision). To reduce the
computation time, however, the number of successive binary subdivisions is limited to
ns = 4 in the applications (i.e. 16 segments), and, based on our computing experience,
Omaz 18 selected equal to 40°. Notice, for ns = 0, the integration formula (128) reduces
to one segment of length 2, which corresponds to the usual regular integral over T'¢.

The adaptive integration (128) is computationally quite efficient over one element,
for a given ns, with respect to a given x;. The selection of the number of subdivisions ns
which satisfies the criterion on the intercept angle, for all the elements &k, with respect
to all the Np collocation points [, however, is computationally expensive. It requires
(27*)! computations of angles «y; for each couple of values (k,!) (to be compared with
Omaz), Which themselves require to perform the change of variable from the reference
element I to the actual geometry I'F.

It is therefore necessary to “a priori” restrict these operations to a number of pairs
(k,1) in the computational data. In general, the 8 elements defining the 4 domain
corners are selected, and also the elements on parts of the boundary discretization
which, one anticipates, will become close to each other in the following time steps (e.g.
tip of a plunging breaker, wave running down on a slope,...). These selections can be
and are, of course, interactively modified during the computations when the domain
geometry changes through the time evolution. Doing so, the extra computational
effort of performing adaptive integrations is, in general, reduced to a few percents of

the computation time per time step, used otherwise without them.

33

Sliding Element

2 N Boundary

in+s in+7
In In+] In+6

Figure 5: Sketch for the sliding element on the boundary.

4.6 Sliding element for s-derivatives

The representations of the field variables inside each element (isoparametric (99) and
quasi-spline (103)) only provide interelement continuity of the fields themselves, not of
their derivatives. This is also true for the geometry and for the normal vector, in case of
isoparametric elements. In case of quasi-splines, both the slope of the free surface and
the normal vector are continuous, but not the gradients of the field functions, which
are based on a first order shape function only.

The s-derivatives along the free surface are calculated in a special element pro-
viding local continuity of at least the 2nd order derivatives. The special element is
a 4th-order (5 node) isoparametric element, superimposed on the nodes of the dis-
cretization, but independent of the BEM interpolation functions, whose five nodes are
mapped, onto the reference element ¢ € [—1,1] by the Jacobian. Direction cosines and
derivatives are then computed at the central node of this element, corresponding on
the free surface to, say, node [. The whole element is then moved forward by one node,
to have its central node at next node [+ 1, before calculating new derivatives (hence
this process is named “sliding” derivation or “sliding” element).

Notice that due to corners at both extremities of the free surface, the sliding

54

element remains in the same place, for calculating derivatives at the three first or
at the three last nodes of I'y. When a space periodic problem is solved, however,

periodicity conditions are used to make the sliding process continuous.

4.7 Automatic grid refinement on a slope

It is observed that, during wave motion on a slope (runup-rundown), the size of the
last element on the free surface may become much smaller than the size of the first
neighboring element on the slope. This leads to somewhat less accurate integrations
close to the surface corner, even with the adaptive integration procedure. To improve
the accuracy of the integrations, the discretization on the slope is stretched, as sug-
gested by Klopman 17 1988, according to an exponential law which imposes the length
of the upper element on the wall (closest to the free surface) to be the same at all time
steps as the length of the last element on the free surface. The other elements on the
wall are, accordingly, becoming wider towards the bottom. This automatic grid refine-
ment, associated with the adaptive integration, increase the accuracy of the numerical

solution in the corner by several orders of magnitude.

4.8 Corner problems

4.8.1 Mathematical problem

When waves are generated by a wavemaker, there is a corner on the boundary, at
the intersection between the wavemaker and the free surface. The same situation also
occurs at the intersection of the free surface with other surface piercing structures, like
fixed slopes. The flow near the intersection with a moving solid body has given rise
to substantial concern in the literature. This was reviewed by Grilli & Svendsen 37, in
the particular context of wavemakers starting from a state of rest (“cold start”). The

principal conclusion of the review is, provided the initial acceleration of the wavemaker

is small with respect to gravity, there will be no strong singularity at the free surface

35

corner.
In the model, the wavemaker cold start is specified in such a way that the acceler-
ation remains small during the first few time steps of the computations. Doing so, no

singular behavior or instability of the solution is observed at the corner.

4.8.2 Numerical problem

Well-posedness of governing equations and boundary conditions must be ensured at

corners. On the free surface, both ¢ (or %) and % (or 88;—;;) are specified on the “body

side” (e.g., wavemaker, slope) of corners, whereas there is a different normal gradient,
to be calculated as part of the global solution, on the free surface side of corners. Double
nodes are used in the model to represent corners, for which coordinates of both nodes
are identical, but normal vectors differ. This makes it possible to express that each
node belongs to a different part of the boundary, with different boundary conditions.
Hence, % and 887:2—;; are explicitly different for both nodes of a corner, and two algebraic

expressions of the BIE’s (93) are derived for each corner. As an additional constrain,

continuity of ¢ (or %) is imposed explicitly in these algebraic expressions.

5t
In addition, natural kinematic or geometric relationships between ¢’s and %’s
(or, %’s and 88;—;;78) must be satisfied at corner double nodes— these are referred to as

compatibility relationships—, like uniqueness of the velocity vector, or a horizontal free
surface tangent at a fixed vertical solid boundary. Although these conditions should
automatically be satisfied by the numerical solution, it is not in general the case due to
numerical errors. Because there is no damping in the model, such errors may add up
through time updating, and lead to instability of the corner solution. Hence, errors are
reduced by explicitly imposing compatibility relationships to the solution, after each
time step.

Details of the numerical treatments of corners can be found in Grilli & Svendsen

37

56

4.9 Automatic selection of optimum time step

Accuracy of the computations is checked by computing the change in volume and total
energy of the computational domain at each time step. Errors are function of both the
resolution and the degree of the elements of the BEM discretization, and of the size of
the time step.

Grilli & Svendsen 3" used the model to compute propagation over constant depth
h of exact solitary waves, in a series of spatio-temporal discretizations. For these waves,
volume, total energy and speed of propagation can be calculated as a function of height,
with an accuracy of at least eight significant figures, by equations (38).

Results showed, for a given initial distance between nodes on the free surface Az,,

and for a constant time step Af,, numerical errors are proportional to At when the

mesh Courant number C, = Aty > 0.5 (with Az, = Ao and At = At\/%). This is

Az h

consistent with the second-order accuracy of the Taylor series (9) and (10) used in the
time integration. When C, < 0.5, errors cannot be further reduced by decreasing At’,
and become proportional to Az’ only. This corresponds to the effect of the spatial
discretization on the accuracy of the BEM solution.

For waves of rapidly changing shape, due to the Lagrangian time updating of
free surface nodes, the distance between nodes on the free surface may significantly
change at every time step. In fact, in some configurations of the flow, as in the jet of
breaking waves or during wave runup-rundown on a slope, for instance, this distance
may decrease considerably. Unless the time step is adjusted accordingly, any pre-set
criterion on the value of the Courant number, based on the initial distance between
nodes will be violated, and accuracy will rapidly deteriorate.

Hence, a varying time step procedure is introduced in the computations. At initial
time t/, the initial Courant number C, is selected equal or around 0.5 and, for any

subsequent time t’, time step is adjusted as,

A=A |1 ™", (129)

57

where A | ' [represents the minimum nondimensional distance between two nodes
on the free surface.

In typical applications, maximum relative errors on volume and total energy of a
wave propagating without change of form are on the order of 0.01%, even after 1000
time steps of propagation. For strongly unsteady waves and, particularly, for waves
close to breaking, errors may be larger. This is because discretization nodes gather
at some areas of the boundary where hydrodynamic jets are forming (e.g., crest of an
impending breaking wave), and scatter at some other areas (e.g., wave troughs), leading

to a less accurate description of the flow. Computations are generally interrupted when

errors become greater than 0.50%.

38

5 Computer Program

5.1 Introduction

A computer software in FORTRAN 77 was written, based on the equations of the
mathematical and numerical model presented in sections 2.3, and 4.
This software has three main sub-programs, performing pre-processing, processing

(the model itself), and post-processing tasks.

o Pre-processing programs are stored in module RADIAP.

The program GENER helps generating geometric data for simple domain geom-
etry, like a constant depth with a slope.

The program SOLWAVE generates initial data for exact solitary waves, based on
Tanaka’s ™ (1986) method (see section 3.1).

o The processing program RADIA, the model itself, contains 64 subroutines and
functions which, for convenience are split up between four main modules (RA-
DIAO, RADIAL, RADIA2, RADIA3), with each module containing several subrou-

tines.

Most arrays in these subroutines are declared with variable dimensions or are
specified in COMMON statements. A main routine MRADIA declares parameters,
performs fixed dimensioning of arrays and COMMON statements, and calls the
subroutine RADIA. Hence, changing the maximum size of problems that can
be solved with the model just requires modifying parameters in MRADIA and
recompiling it.

All modules of RADIA are to be compiled independently, and linked into one
executable file. Subroutines performing time consuming tasks have been written
in such a way, automatic vectorization should occur when the code is compiled
with a compiler and on a computer featuring such characteristics (e.g., FORTVS2

on the IBM-3090 or -9000; use options VEC and OPT(3)).

59

o Post-processing programs are also stored in module RADIAP.

The program CURMUL interactively creates data for plotting detailed results
on the boundary, and global results, as curves, under format of the commercial

graphic software TELEGRAF.

The program IFIELD interactively creates data for plotting results inside the
domain (internal field, velocity and pressure) under TELEGRAF format.

The program PRESHYD calculates equivalent hydrostatic pressure under a wave
running up a slope, and creates data for plotting them as curves, under TELE-

GRAF format.

The program DI3000 creates contour levels of pressure inside the domain, based

on subroutines from the commercial graphic library DI3000.

If TELEGRAF or DI3000 are not available on the system used, the generated data

file should be modified and used with some other graphic package.

The program code should be portable on any computer featuring a standard FOR-
TRAN 77 compiler, except for one machine dependent subroutine FILEINF (IBM-VM
system), which sets up size parameters of direct access files used for storing detailed
results of computations, for postprocessing purpose. This routine is used three times in
SAVE (subroutine in module RADIAO), two times in CURMUL, and once in IFIELD and
in PRESHYD, and should be replaced by the relevant routine for the specific operating
system used. The use of FILEINF is illustrated below,

CALL
FILEINF(IFRC, ’MAXREC’ ,ILMAX* (ISNIN+NOM))

CFILE=NFILES(1)//MDISK

60

OPEN (UNIT=JCURVE,STATUS="NEW’ ,ACCESS=’DIRECT’ ,FORM=

>UNFORMATTED’ ,RECL=12#MOT ,FILE=CFILE)

In this example, the maximum number of records MAXREC of file CFILE (opened
immediately after) is specified within the program as ILMAX*(ISNIN+NOM), which
varies with the size of the problem. Notice, the format of file name CFILE is also based
on the IBM-VM system, with three operands : filename (arbitrary), filetype (e.g., data,
exec,...), filemode (i.e., disk code). This format should also be adapted to the specific
operating system used.

Definition of the 50 or so sequential input/output files used in the model has also
been written for the IBM-VM environment, using .EXEC files. These files should be
re-defined for the specific system on which the program will be run. This, however,
should not pose problem.

Computer files, with complete source code, user’s manual, and applications are
available on request through the internet computer network (send Email to : grilli@mistral.oce.uri.edu

for inquiry).

5.2 Overview of the computer model

The wave model is implemented as the main processing program RADIA mentioned
above. In this program, the subroutine RADIA (called from the main program) per-
forms the main stages of model computation by calling a series of twelve specific sub-
routines. The flowchart in Fig. 6 corresponds to these subroutines, as successively
called in RADIA, and brief descriptions of the subroutines are presented in subsequent

sections. A general overview of the computations in RADIA is given in the following,

e The input of problem data specified by the user is performed in INPUTD. Data

61

are read and checked, from a sequential data file whose filename and filetype have

been supplied to the program.

Initialization of domain parameters is performed in subroutine INTIAL, which in
turn utilizes subroutines SLIDING, FSVELO, BEMK to define initial values for
the sliding derivation on the free surface (section 4.6), the double nodes at the

corners (section 4.7), and the boundary element matrices, respectively (section

4.4.5).

At this stage, values for the geometry and for (¢, %) have been specified on the
free surface, either from initial conditions (i.e., “cold start”, or specified wave),

or from previous computations.

Values of u, w, and g%f are computed in subroutine DUDTPR over the moving
boundaries (in general the free surface) as a function of s— and n—derivatives of
potential ¢. A prediction of 57 D“ and D—w is also made on lateral moving boundaries

(radiation conditions) (sectlons 4.2, and 4.4.2).

This represents the first step in a series of routines used in a loop over time, up

to tmax, or to a maximum number of iterations (loops) lomax.

Predicted pressure is computed on lateral Dirichlet boundaries in subroutine PRE-
FIX, when specified, and the value of 9% is calculated on all Dirichlet boundaries

(including the free surface).

Control is then passed for a first time to RESOL, in which boundary conditions

are updated for Laplace’s equation for a—f (section 3 for wave generation), and
82
the BEM analysis is performed, out of which either 2 5 or ﬁ are computed on

the boundary, whichever is unknown (sections 4.4., 4.5).

The subroutine D2UTPR computes updated value for D—if and Dw using the full

when

Taylor series (equation (27)), and estimates the value of 2 ‘4 oand 2

D12 Dt27

needed for a moving lateral boundary (radiation boundary).

62

In this case, predictor-corrector iterations are performed, and this estimate is
refined until the error is less than a preset value tolmaz, or the index pc is equal

to a maximum preset value pemaz.

o SAVE post-processes results of the computation, and stores them for postpro-

cessing. When there are internal field computations, INTERN computes internal

field variables.

e DPRFIX computes temporal gradient of pressure on lateral Dirichlet boundaries,

when required.
e WRRES prints results of computations when the listing option is selected.

e UPDTDB performs the final updating of the geometry and potential of moving
Dirichlet boundaries to time, ¢t + At (in general the free surface), using the full
solution at time ¢ and equations (87) and (88).

e The time increment based on the Courant number is determined by DTSTEP.

e Control is then passed for a second time to RESOL, in which geometry of lateral
boundary and boundary conditions are now updated for Laplace’s equation for ¢
(section 3 for wave generation), and the BEM analysis is performed, out of which

either ¢ or % are computed on the boundary, whichever is unknown (sections

44.,4.5).

This terminates the time loop, and operations are repeated from this point on-

ward.

The detailed flowchart for RESOL is given in Fig. 7. As mentioned above, this sub-
routine is called twice, once for solving each of the Laplace’s equations for ¢ (iflag=2),
or for % (iflag=1), whose solutions are needed for performing time and geometry up-

dating. Boundary conditions are set-up on lateral and bottom boundaries, and moving

63

lateral boundary geometry is also updated (only prior to solving for %). Details of

the flowchart for RESOL are discussed in the following,

o Lateral boundary conditions are updated in UPLABC.

o If flagv is set to 1, the bottom boundary conditions are updated in UPBOTC, and

new s-derivatives are computed in SLIDING.

Otherwise, if flagv is set to 2, the control is passed directly to the next step.

e FSVELO imposes compatibility conditions at double nodes on the free surface

(section 4.8.2).

o If flags is set to 1, the geometry has changed, and the BEM analysis is performed

in BEMK, out of which, new matrices are created.

e Internal source strengths are computed in SOUSTE, SOURCE, if sourc is assigned

a value of 1 (section 3.3).
e The final load vector is assembled next in ASSEMP (section 4.4.5).
e Double node compatibility is imposed on the load vector in DBNODP.

e The final system matrix is then solved by Kaletsky’s elimination method, in
SOLVE. Notice, the system matrix is kept in eliminated form from the solution
for % (iflag=1), and used in the solution for ¢ (iflag=2), for which only the load

vector is eliminated.

o And the solution is sorted by type, variable or its normal gradient, in SORT.

Flowchart for the boundary element analysis in BEMK is given in Fig. 8. Details
of the flowchart for BEMK are discussed in the following,

o If isplin(k) is set to 1 for boundary section k, a parametric spline analysis of
boundary section k is performed in SPLANA, for later use in setting up parameters

of two-node quasi spline elements (section 4.4.3).

64

The spline analysis is not required for BEM analysis of isoparametric elements.
e Computations then enter a loop over each of NELEM elements on the boundary.
o GAUSSP computes regular Gauss points and weights for numerical integration.

e Shape functions and their first and second derivative interpolation functions are

then computed for all the Gauss points in FUNF1, DFUNF1, D2FUNT.

e Once the interpolation functions are computed, a decision is made on whether
adaptive integration is required, on the basis of the intercept angle on the element.

Flag nsubm is set to 0 if no adaptive integration is required.

e For nsubm=0, BIMAT computes local k; and k, matrices (section 4.4.5), with
both regular and singular integrations (as in section 4.5.2), for the elements, and

saves intrinsic and geometric data for later post-processing of results in SAVE.

o When nsubm=1, adaptive integration is required, and BISMAT performs these
integrations on the element (as in section 4.5.3), in addition to computations

done in BIMAT.
e ASSEML does matrix assembling of local k4 and k,, into global K; and K.

e Once the above computations are performed on all elements, the rigid mode

technique is implemented by INTRCI (section 4.4.5).
e Final assembling of the system matrix K is done in ASSEMK (section 4.4.5).

e Double node compatibility conditions are finally imposed to the system matrix

in DBNODK. This completes the BEM analysis.

5.3 Preprocessing and generation of input data

Preprocessing essentially consists in defining,

65

)

‘ INPUTD ‘

J/ SLIDING
‘ INTIAL FSVELO
J/ BEMK

t<tmax : lo < lomax no
i/ yes START
[lo=lo+1 }

‘ DUDTPR ‘

L

pc=pc + 1 }

‘ PREFIX ‘

L

‘ RESOL ‘

L

‘ D2UTPR ‘

L

[toler < tolmax ; pc < pcmax ; lo>4 j

Joo

‘ SAVE INTERN

‘ DPRFIX ‘ SOUSTE

J, SOURCE

‘ WRRES ‘

$

‘ UPDTDB ‘

L

‘ DTSTEP ‘

$
R |

Figure 6: Flow chart for program RADIA

66

|

UPLABC
yes
flagv =1 UPBOTC
no
FSVELO SLIDING
yes
flags = 1 BEMK
no
w yes
sourc = 1 J SOUSTE
no
ASSEMP SOURCE
DBNODP
SOLVE
SORT

Figure 7: Flow chart for program RESOL

67

i

[K =1..4:ISPLIN(K) =

SPLANA

[IE = 1..NELEM } \L
GAUSSP
4[IP=1..NINTR
FUNF1
DFUNF1
D2FUN1
NSUB BIMAT
ASSEML BISMAT
INTRCI
ASSEMK
DBNODK

!

Figure 8: Flow chart for program BEMK

68

2 12

Figure 9: Definition of geometry and parameters for pre-processing program GENER

i) the computational domain geometry and discretization, by generating a set of
nodes on the boundary of the physical domain, and specifying boundary elements,

to interpolate between the nodes.

ii) the type of problem to be solved with the model, by assigning values to various

parameters in an input file.

5.3.1 Generation of domain geometry

For simple domain geometry, the first task (i) is performed with the help of the pre-
processing data generation program GENER, contained in the module RADIAP.
GENER assumes the domain to have the simple bottom geometry depicted in
Fig. 2 or 9, with a flat initial free surface (length Lr,), a constant depth area (length
Lp, —Lps —s (Lr, — Lr,); depth Lr,), in front of a slope s of angle #, and a small shelf
at the upper part of the slope (length Lrs; depth Lr,) (see Fig. 9 for definitions).
Input data for GENER are provided as four lines of freely formatted data in a

69

sequential file (fname.data),

1: MFl MF2 MF3 Mri]\41*421 Mri
[2: mp, mr, mr, mpi mrz mps
l3 : LF1 LF2 Lri @

4: nintm nsub

in which Mp denotes the number of elements on the specified boundary segment (Fig.
9), mr is the type of element (i.e., number of nodes per element, 2,3,...), Lr is the
length of the particular boundary segment, ¢ is the angle of the slope with the bottom
in degrees, nintm is the maximum number of Gauss points per element (normally
10), and nsub is the maximum number of subdivision for the adaptive integration (see
example in section 6).

GENER generates the node coordinates, defines the boundary elements connectiv-
ity and parameter matrix, and writes this data in a sequential output file : gener.data
(see example in section 6). Four lines of input parameters must be added at the top
of this file, to fully define a problem (see next section). Of these parameters, GENER
provides the first two : nom, nelem.

For the generation of exact initial solitary waves, the program SOLWAVE, also
in RADIAP, can be run to provide initial free surface geometry and kinematics for
a solitary wave of specified height H/h, with its crest located at an initial specified
location x,/h. Results from SOLWAVE are provided at specified boundary element
node coordinates, under the format used in the input data file for the model, and can
thus directly be substituted into the file gener.data previously created by GENER, with
a flat, non-moving free surface.

For other types of boundary geometry, the user must create its own mesh data
file, under the format described in the following section. Notice, in many cases, it is
possible to use GENER for generating part of the required mesh, and to edit and modify
the generated file for the actual bottom geometry (e.g., an obstacle on the bottom can

easily be added this way).

70

5.3.2 Input parameters

The second task (ii) is performed by defining a sequential input file for the problem,
that will be read in subroutine INPUTD. This subroutine reads user defined parameters
from a specified sequential input file, in the following format,

The following is a general description of user-defined input parameters listed in

the first 4 lines in the following table,

nom : Total number of nodes of the boundary element mesh
nelem : Total number of boundary elements
isave : Saving flag,

0 : no saving for postprocessing
1 : saving and postprocessing of global simplified results
2 : saving and postprocessing of detailed numerical results and saving of data
for plotting curves
lomaz : maximum number of time steps in the general time loop (Fig. 6)
pemaz : maximum number of predictor-corrector loops per time step (Fig. 6)
iptyp : type of wave generation,
0 : specification of wave potential on the free surface with possibly lateral cur-

rent U (e.g., exact solitary waves)

1 : generation of a sum of sine waves by a flap wavemaker, with initial damping

(see tdamp, and file paddle.data)
3 : generation of first-order solitary or cnoidal waves by a piston wavemaker
5 : generation of second-order Stokes waves by internal sources

6 : generation of second-order solitary waves by internal sources

71

INPUTD

Line Format Parameters

1 (1015,F10.0) | nom, nelem, isave, lomax, pemaz, iptyp,

nbs, iprint, init, ismoth, tolmax

2 (815,2F'10.0) | ibcond(1), isplin(1), ibcond(2), isplin(2),
ibcond(3), isplin(3), ibcond(4}), isplin(4),

almaxb, almaxi

3 (7F10.0) dit, tstart, tmazx, rho, cpress, cprest, ge

4 (5F10.0,515) | tdamp, del, de2, omega, voh/ulat, isoure,
nos, ifield, noi, nht

5-(4+nom) (nodes) (4F20.0) (x(i), z(1), phi(i), phin(i), i=1,...,nom)
(54+nom)- (515, 415) | (node(i,j), j=1,..., nnode(i)), nnode(i),
(44-nom+nelem) nintr(i), nsubm(i), nside(i)), i=1,...,
(elements) nelem)

(54+nom+nelem)- (3F10.0) (x5, 2, 801 = 1,...,n0s) (optional)
(44nom+nelem+nos)

(54+nom+nelem+nos)- (2F10.0) (24,2, = 1,...,n0i) (optional)
(44-nom+nelem+nos+noi)

Table 1: Parameters and formats for input file (filename.data), for the model, to be
read in subroutine INPUTD

72

nbs : number of segments between nodes on the bottom to which stretching is ap-
plied for the geometry updating, when specifying a wavemaker or a moving free

boundary, on a lateral boundary (< 150)
iprint : index for selective output listings,

0 : no output listing is created

n : output listing is printed for results generated at every n loops. Result types
will depend on the value of isave (0,1: simplified results; 2: detailed results),
and ifield (0 : no interior field results; 1 : print interior field results)

init ¢ initialization of predictor-corrector loops for radiation conditions,

1 : initialization data exist for radiation conditions and will be used

0 : ignored

When init=1, initialization data must be provided at the very end of the input

data file (see INPUTD for detail).

ismoth : when K = 2 or 3 (lateral boundaries), this parameter indicates the precision of
numerical computations, 4 to 17, involved in the predictor-corrector loop for the

radiation condition. Ignored when there are no radiation condition boundaries.

tolmaz : absolute tolerance for predictor-corrector loops, used when, pemax > 1 (Fig.
6). If toler < tolmax predictor-corrector looping stops, in which,

Du Du”

ot == 130
S =2 (130)

toler = |

Ignored when there are no radiation condition boundaries on lateral boundaries,

K =2 or 3.

ibcond(K) : type of boundary condition on boundary segment K ((1) free surface; (2)
leftward lateral boundary; (3) rightward lateral boundary; (4) bottom)

73

0 : Impermeable boundary ¢, = 0 (homogeneous Neuman condition)

1 : Dirichlet boundary condition (i.e., specified ¢ or %)

2 : Wavemaker boundary with geometry updating (non-homogeneous Neuman

condition function of the value of iptyp)

3 : plane impermeable boundary with exponential stretching of nodes (i.e.,

slope)

Notice, on the bottom (K = 4), a value 0 is selected for ibcond, and the geom-
etry is arbitrary. On lateral boundaries, when ibcond(k)=0 or 3, the boundary
must be plane, and a simple updating with node stretching is performed. When
ibcond(k)=2 on lateral boundaries, the geometry must also be plane, for a wave-
maker boundary. Finally, when ibcond(k)=1, the boundary is free (radiation
boundary), and the geometry is arbitrary.

isplin(K) : definition of general type of boundary elements for boundary segment K,

0 : no spline analysis, isoparametric elements, 2-5 nodes

1 : spline analysis performed on the geometry, quasi-spline elements, 2 nodes
almazb : limiting angle for adaptive integration on the boundary
almazi : limiting angle for adaptive integration for interior field calculations

dt : initial time step, for ¢t = ¢,, used to calculate initial Courant number by,

dt * \/ge x del

Co = | Ar|mn

with C, < 0.8. At later time steps, C, is assumed constant, and the time step dt

is modified as,

B Co |Ar|mzn

dt
Ve * del

74

tstart : initial time of stepping, i.e., t, =tstart. Notice, computations can be re-started

from earlier results calculated with the model, and saved through subroutine

START.

tmaz : maximum time of stepping, ¢t > tmax, will stop computations even if, loop

< lomazx (Fig. 6)

rho : fluid density in arbitrary consistent units, rho = 1, implies dimensionless quan-
tities
cpress : atmospheric pressure at the free surface I'y (K = 1), usually 0

cprest : atmospheric pressure gradient at the free surface I'y (K = 1), usually 0

ge : acceleration due to gravity in arbitrary consistent units, ge = 1, implies dimen-

sionless quantities

tdamp : time over which damping is performed for waves generated by a flap pad-
dle motion (iptyp=1; hyperbolic tangent damping, tdamp=t., in (70),(71)), or
damping coefficient for Stokes waves generated by internal sources (iptyp==6; ex-

ponential damping, tdamp=p in (85),(86))

0 : no damping
0 : time over which damping is ¢, = 1% (iptyp=1), or damping coefficient u
(iptyp=6).

del , de2: depth at boundary I's, and I's, respectively. del = 1, means dimensionless
quantities will be used, and del will be used as the reference depth everywhere.

omega : incident wave circular frequency with,

iptyp =1; nht=0 : single sine wave frequency for flap wavemaker generation

iptyp =3 : 0 for a solitary wave, and > 0 for a cnoidal wave

75

iptyp =5 : > 0 for a 2nd-order Stokes wave generated by internal sources

voh /ulat : flap paddle stroke velocity (vo), wave amplitude (h), or current velocity on

lateral boundary (wlat), with,

iptyp =1; nht=0 : single sine wave flap paddle stroke velocity at z = 0.
iptyp =0; ibcond(K)=0 : current velocity on lateral boundary K (as in (6))
iptyp =3 : solitary or cnoidal wave height

iptyp =5,6 : 2nd-order Stokes or solitary wave height generated by internal sources
isourc : flag for wave generation by internal sources,

0 : no generation by internal sources

1 : generation by internal sources

When isourc=1, waves will be generated according to iptyp= 5 or 6, and the
initial location of internal sources must be provided as input data at the end of

the input file (see below)
nos : number of internal sources specified along the vertical source line
ifield : flag for internal field computations,

0 : no internal field computations

1 : internal field computations

When ifield=1, the location of internal points must be provided as imput data
at the end of the input file (see below)

not : number of specified internal points at which internal fields will be calculated

nht : index for wave generation by a flap wavemaker,

76

0 : only one sine component of circular frequency w=omega will be generated,

with paddle stroke velocity :J};p =voh

n : number of sine components to be generated with equations (68)-(76).

When nht> 0, a file paddle.data must exist on the same disk as the general input
data, and contain the following information about the sine components to be

generated, formatted as,

Sine component : amplitude frequency phase

nht lines (3F20.0) : ap(ih) op(ih) sp(ih)

For internal source generation (isourc=1), and internal fields calculations (ifield=1),
locations of sources or internal points must be specified, successively, at the end of the

input file,

e for the sources : (4,2, 8,0 = 1,...,n0s) (3F10.0), in which z, denotes the con-
stant x-value for the vertical line of sources, and s; the strength of each sources.
Notice, for a cold start, only x, must be specified in the input data, and (s;, z;)
will be calculated in the model at every time step, depending on the value of
iptyp. All the values will be needed only when calculations will re-start from

previously calculated results saved through START.

e for the internal field points : (z;,2;,¢ = 1,...,n0t) (2F10.0), must be provided in

sequence in the input data file.

Initialization data, if required (init=1), will follow these two sets of data.
The following is a general description of input parameters listed after the first 4

lines in the above table,

(x(i), z(i), phi(i), phin(i), i=1,...,nom) : initial nodal coordinates (z,z), and initial
value of the potential phi, and normal gradient phin, for the nom elements in the

boundary discretization.

77

Notice, only the free surface values of the potential and of the normal gradient

will be used in calculations, and thus have to be specified at initial time ¢t = ¢,,.

(node(i,j), j=1,..., nnode(i)), nnode(i), nintr(i), nsubm(i), nside(i)), i=1,..., nelem) :
initial boundary element connectivity matrix, for the nelem elements of the BEM
discretization, with,
node (i,j) : a vector containing 2 to 5 node numbers for element i

nnode (i) : number of nodes for element ¢
nintr (i) : number of Gauss points for element ¢

nsubm (i) : maximum exponent of 2, for subdivisions in the adaptive integration
(0 : no need for subdivision is even tested; > 1 : intercept angle is checked
from element i to every node, versus almazb and/or almazi, and adaptive

integration is carried out, if needed, for element i, up to 27*“"() subdivision)

nside(i) : number (K'=1 to 4) for boundary segment to which element ¢ belongs

5.4 Subroutines and Functions

59 subroutines and 5 function are used in the program. They are listed in alphabetical
order in the following, and a brief description of their tasks is given. Sufficient internal
documentation is provided in each subroutine or function source code, to facilitate

comprehension.

5.4.1 Subroutines

AGM : Computes arithmetic and geometric mean tables, for elliptic integrals and
functions. First and second kind complete integrals are then calculated for the

given complementary parameter, 1 — m

ASSEMK : Assembles global K; and K, matrices into the system matrix K, based on

specified boundary condition types (Dirichlet or Neuman). When ibcond(k) = 1,

78

¢ (or %) is imposed, and when ibcond(k) # 1, %(01’ 887,‘2—;;) is specified on boundary
k

ASSEML : Assembles local matrices in the global K; and K, matrices.

ASSEMP : Assembles the right hand side (load vector) of the general system, based

on specified boundary condition types (Dirichlet or Neuman)

BEMK : Boundary element analysis. Computes K; and K,,, performs rigid mode
analysis on K, assembles the system matrix A, imposes double node compati-
bility, and boundary conditions for the 2D-BEM and introduces free coefficients
¢’s into K, (Fig. 8).

BIMAT : Computes local matrices k; and k,, for each element ie, and saves geomet-
ric and intrinsic data for the 2D-BEM. Used only if no adaptive integration is
required are required (nsubm=0) (Fig. 8)

BISMAT : Performs similar operations as BIMAT, but is called only when adaptive

integration is required (nsubm> 1) (Fig. 8)

CARAC1 : Computes z;,, 2y, NZ4p, nzi, and Ds;, at the integration points ip=1....,nintr

of the isoparametric element ie.

CARAS1 : Computes x;p, 2, ni,, n2;p and Ds;, at the integration points ip=1,...,nintr
of the quasi-spline element ie. The second derivatives with respect to x and z at

the extremities of each element have been previously determined in SPLINE.

CELES : Computes wave celerity from the linear dispersion relation,
2

ktanh(kh) = -
g

CHARAC : Calculates the complementary elliptic parameter for cnoidal waves, given
the wave height and period

79

CHSUB : Checks whether adaptive integration is required over each element ze. The
check is performed by determining whether the angle from which the element is
seen from node 1 = 1,...,nom is less than almaxb. Then, nsub(ie), the exponent
of 2 for the number of subdivisions required, is stored in the array lsub(nom) for

element e

CNIDAL : Implements the generation of cnoidal waves by a piston wavemaker ac-
cording to Goring’s first order KdV solution. The method is accurate for % > 20,

and % < 0.3
CUBICT : Fits a third-order 4-node polynomial, and computes %, for the bound-

ary conditions at extremities of the free surface, in the spline analysis in SPLANA

D2FUN1 : Computes second derivatives of shape functions with respect to their in-

trinsic coordinate 7, for one-dimensional isoparametric elements (2-5 nodes)

D2UTPR : Computes the corrected value of accelerations %—;“, %, based on kinemat-

i i 9¢ 9¢ 9°¢ ¢ 0224 0%¢ .) .
ics, as a function of &, 22, == == =2 =2 cosf3,sinf3 and (3’s. Also predicts

D?w
D2 °

D3u
D2

and based on current and previously calculated values of the accelera-

tion, for later use in % estimation in DPRFIX

DBNODK : Imposes corner double node compatibility in the general system matrix

K, according to specified boundary condition types (Dirichlet or Neuman) (see

ibcond(k))

DBNODP : Impose corner double node compatibility at domain double nodes, for
the right hand side load vector of the global system matrix

DFUNF1 : Computes first derivatives of shape functions with respect to their intrin-

sic coordinate 1, for one-dimensional isoparametric elements (2-5 nodes)

DKE : Computes m-derivatives of elliptic integrals K'(m) and E(m)

80

DPRFIX : For lateral radiation boundaries, computes the temporal gradient of pres-

sure on lateral Dirichlet boundaries, based on corrected accelerations (%, %),
D?w
D2 0

D3y
D2

and by integrating

and on predicted velocity of accelerations, namely

Euler equations in the tangential s direction along the boundary

DTSTEP : Fixes the time step At for each time loop, based on a constant Courant
number criterion set at initial time step. The maximum value of this Courant

number is limited to 0.8 for reasons of stability

DUDTPR : Computes (u, w) values over the boundary as a function of known %
and %. Also computes g%f for later use. Predicts %, %, based on current and

previously calculated values of u & w
ERRORS : Displays appropriate error messages

FCTS : Computes GHT(m) =0 and % at m to find the parameter m of a cnoidal

wave

FSVELO : Imposes compatibility condition at double nodes on the free surface. the
subroutine determines direction cosines for both nodes, and the potential deriva-

tive with respect to the s direction, for both nodes

FUNF1 : Computes shape functions with respect to their intrinsic coordinate 5, for

one-dimensional isoparametric elements (2-5 nodes)

GAUSSP : Computes values of Gauss points and weights, for the specified number
of integration points nintr, and calculates values of shape functions and their

derivatives at these points

IMPLAT : Updates lateral boundary conditions and geometry (with i flagv = 1), for

impermeable Neuman boundaries (ibcond(k)=0,> 3, and K = 2,3)

INTIAL : Performs geometry and potential initialization for all time step arrays.

This initialization is performed by calling in turn the subroutines SLIDING,

81

FSVELO, BEMK (Fig. 6). The sliding derivatives on all four boundaries, com-
puted in SLIDING, are stored in temmbbe. Double node compatibility is imposed
in FSVELO, and BEMK performs the initial boundary element analysis for the

specified initial geometry, to set up the integral common savef

INPUTD : Reads input data for 2D boundary element method, i.e. nodal coordi-
nates, element definitions, flag values to specify problem etc. The data is read
from a specified input file, filename.data, containing the data in the format de-

scribed in the Table above

INTERN : Computes internal fields ¢, %, %, gjgt, %, % and p at noi user-

specified points
INTRCI : Introduces free coefficients ¢ into K, based on the rigid mode technique

NEWTON : Computes zeros of GHT function, using a discrete Newton’s method.

Part of the m-derivatives are computed using finite differences

PADSIN : Simulation of a flap wavemaker oscillating on a lateral boundary. Bound-
ary conditions, or geometry and boundary conditions are updated, depending on
the value of iflagv. The paddle motion is damped(hyperbolic tangent function),

according to tdamp

PADSOL : Simulation of a piston wavemaker motion, based on first-order solitary or
cnoidal wave theory, specified on a lateral boundary. iflagv determines whether
both boundary conditions and geometry are updated or only the boundary con-

ditions are updated

PREDICT : Fits cubic temporal polynomials over nt — 1 steps, starting at nt — 1y.

For the component ip of y. Values of y or %{ are computed after fitting

PREFIX : Computes pressure on lateral Dirichlet boundaries based on predicted ac-

celerations (%—;“, %), by integrating Fuler equations in the tangential s direction

82

along the boundary. If initial data are not provided for prediction, the pressure
is assumed hydrostatic, till iloop = nt — 1. Computes % by Bernoulli’s equation

on all Dirichlet boundaries

PRESPR : Computes pressure or its temporal gradient on boundary K, by integrat-

ing the Euler equations in the s direction along K

RADIA : Performs main stages of computations (Fig. 6), by calling the correspond-
ing modules. The general algorithm for the solution of the boundary value prob-
lem is implemented in this subroutine. The program is modular, and each step

of the solution described in preceding sections is solved in different subroutines

RESOL : Updates boundary conditions and geometry if iflagv = 1, otherwise only
updates boundary conditions (Fig. 7). If iflags = 1 performs BEM analysis in
99

BEMK, double nodes, sources, global assembling and solves for either ¢ or =%

SAVE : Performs postprocessing of both boundary and internal fields, saves all re-
sults in direct access files. Specifically, SAVE computes the discharge through
boundaries, domain (or wave) volume, domain (or wave), kinetic, potential and
total energy, forces and moments acting on lateral boundaries (in both dimen-
sional and dimensionless forms), and the internal fields through calling INTERN.

It saves the data for generating and plotting result curves in the post-processing

SAVGEO : Saves geometry and shape functions of boundary element for all integra-

tion points. These values are stored in savef and used in SAVE for post-processing

SGDUDN : Computes local particular integral for j—z for 2D-BEM, set to 0 if the

element is a straight line element.

%, and of %, along each of the

SLIDING : Computes parameters of s-derivatives
four boundary subsections, as a function of domain geometry, and saves them

in tembbe in the form of shape functions. These computations use a sliding

83

fourth-order isoparametric boundary element, independent from the actual BEM
discretization, and the derivatives are being computed at the mid-node of the
sliding element, except at the 2 extremities of the free surface, where the element

stays unchanged for the 3 first and 3 last nodes

SOLITA : Goring’s first-order solution for solitary waves. The equations for the
motion of the wavemaker and its kinematics are solved iteratively by Newton’s

method

SOLVE : Computes the Kaletsky solution for a nonsymmetric, fully populated, linear
system of equations. The method provides the solution X; of the linear system

Aij *XJ‘ = BZ

SORT : Sorts the unknowns according to type of boundary conditions, after solution

in SOLVE

SOURCE : Performs domain integration to specify wave generation by an internal

line of sources

SOUSTE : Generates interior source strength according to wave type (2nd-order

Stokes or solitary wave), and problem, namely ¢ or %

SPLANA : Analysis of the domain free surface boundary geometry by cubic splines.
Since the free surface can be multivalued, two spline analyses are performed, for
both = and z, as functions of a parameter chosen to be the point index 7 of the

nodes

SPLINE : Performs spline analysis and saves j—i

START : Saves information required for re-starting calculations for the next iteration,
after stopping computations with the program. Results are saved in file start.data,
such as domain geometry, previous time step variables, interior sources and fields

etc... and the program is stopped. This procedure, of stopping and re-starting

84

computations, may be required due to memory limitations on the computer used

in the calculations

STRBOT : Performs stretching of bottom boundary geometry and nodes, close to the
lateral boundary, and over nbs intervals between nodes. The bottom is assumed

horizontal over the nbs intervals

TRAJEC : Computes displacement, velocity and acceleration of a piston wavemaker,
for generating a cnoidal wave. The initial stroke is 0, and the stroke varies from

0 to 2 * xpmax. Velocity and wave elevation are 0 at time ¢t = 0

UPBOTC : Updates boundary conditions and geometry on the bottom boundary
when iflagyv = 1, according to the value of iptyp and ibcond (Fig. 7)

UPDTDB : Updates geometry of moving Dirichlet boundaries, based on a second-
order Taylor expansion in time using the previously determined kinematics (u, w)
Dw Du

and (57, Jy)- The potential is also updated based on a second-order expansion

in terms of previously determined parameters (Fig. 6)

UPLABC : Updates boundary conditions or boundary conditions and geometry (iflagv
= 2/1), on lateral Neuman boundaries, depending on the value of iptyp and ibcond

(Fig. 7)

WRRES : Prints results when listing is required

5.4.2 Functions

ACN : Computes the inverse of the Jacobi elliptic cosine of argument u, and param-

eter m, acn(u,m).

ATANS : Returns the arctangent for subroutine ATANV, and checks for the indeter-

minate case %.

85

ATANYV : Returns the arctangent depending on the position in the OXZ coordinate

system. It is called in the local particular integration over the element ¢e, for j—z.
If the arctangent provides an indeterminate form, L ’Hospital’s theorem is applied

up to 2 times.

CN : Computes the Jacobi elliptic cosine of argument u, and parameter m, cn(u, m).
If 1 —m is less than 5 * 107%, a hyperbolic approximation is used to improve

numerical stability.

EINC : Computes the complete elliptic integral of the second kind, E(u,m), with

argument u and parameter m.

5.5 Program Execution

To run the program on a large application case, and saving all computed results, a
sufficient amount of disk space must be reserved (either physical or virtual). In the
IBM-VM operating system, a virtual disk space can be defined, that will exist only for
the current logon session.

The reserved disk space is used for storing result data files, for subsequent post-
processing computations. Some listing files will also be stored therein, to be printed if
required.

A typical IBM-VM session, is included below, for the case of a fully non-linear
solitary wave, with wave elevation and potential generated in the program, SOLWAVE.
Commands by the user are in boldface, computer outputs in verbatim, and comments
in dtalics.

A command file radia.exec has been created for making all the file definitions, and

loading and running all the program modules.

A Typical Session

(A virtual disk (type t3380 with 50 cylinders) is defined at first, for storing files containing program

86

results)

def t3380 as 210 cyl 50

def t3380 as 210 cyl 50
DASD 0210 DEFINED
Ready; T=0.01/0.01 14:35:06

(formatting the disk)

format 210 e

DMSFORB03R FORMAT will erase all files on disk E(210). Do you wish to continue?

Enter 1 (YES) or 0 (NO).

1
DMSFOR605R Enter disk label:

(any character will suffice)

e
Formatting disk E

50 cylinders formatted on E(210)
Ready; T=0.03/1.69 14:37:32

(disk status)

q disk
q disk
LABEL VDEV M STAT CYL TYPE BLKSIZE
RAVI 191 A R/W 18 3380 4096
E 210 E R/W 50 3380 4096
MNT190 190 S R/0 70 3380 4096

FILES BLKS USED-(%) BLKS LEFT BLK TOTAL

48 1721-64 979
0 6-00 7494
377 7269-69 3231

87

2700
7500
10500

MNT19E 19E Y/S R/0 120 3380 4096 550 15513-86 2487 18000
ACC19F 19F Z/S R/0 150 3380 4096 152 10679-47 11821 22500
Ready; T=0.01/0.01 14:38:40

(radia is the executable file radia.exec being called, stepO contains the initial model data (input
file step0.data), regarding the wave and domain geometry and the potentials, e is the temporary disk
on which temporary data files will be stored and a 1is the disk on which the input files required for

re-starting the program are stored.)

radia step0 e a

radia step0 e a

ERASE FIELD DATA E

File FIELD DATA E not found
+++ R(00028) +++

ERASE CURV1 DATA E

File CURV1 DATA E not found
+++ R(00028) +++

ERASE CURV2 DATA E

File CURV2 DATA E not found
+++ R(00028) +++

FI 4 DISK CURVE DATA E (BLKSIZE 80 LRECL 80
FI 5 DISK STEPO DATA A

FI 80 DISK PADDLE DATA A

FI 6 DISK STEPO LISTING E
FI 7 DISK START DATA A1l

FI 10 TERM

FI 13 DISK EPSC DATA E

FI 14 DISK EPSV DATA E

FI 15 DISK ET DATA E

FI 16 DISK OUTF DATA E

FI 18 DISK VOLU DATA A

FI 19 DISK QNF DATA E

FI 20 DISK QNR1 DATA E

FI 21 DISK QNR2 DATA E

88

FI 22 DISK EP DATA E
FI 23 DISK EK DATA E
FI 30 DISK GENDAT DATA E
FI 48 DISK FSLX1 DATA E
FI 49 DISK FSLZ1 DATA E
FI 50 DISK FSLX2 DATA E
FI 51 DISK FSLZ2 DATA E
FI 52 DISK FSLR1 DATA E
FI 53 DISK FSLP1 DATA E
FI 54 DISK MSLB1 DATA E
FI 55 DISK FSLR2 DATA E
FI 56 DISK FSLP2 DATA E
FI 57 DISK MSLB2 DATA E
FI 58 DISK HMAXT DATA E
FI 59 DISK HMAXX DATA A
FI 60 DISK TXMAX DATA E
FI 61 DISK XZMAX DATA A
FI 62 DISK GREEN DATA A
GLOBAL TXTLIB IMSL11A IMSL11B VSF2FORT CMSLIB UTILITY
File UTILITY TXTLIB * not found
+++ R(00028) +++
GLOBAL LOADLIB VSF2LOAD
LOAD MRADIA RADIAO RADIA1 RADIA2 RADIA3 (CLEAR
The following names are undefined:

STRVEL STRETA
+++ R(00004) +++

START
Execution begins...

Input Fm of DISK files 7

(File Mode of temporary disk files.)

89

Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Loop :
Ready; T=67.03/67.99 14:43:30

(temporary disk files generated)

flist * * e

© 0 ~N o 0O B~ O w N

e e e e T Y S S
© 00 ~N o o Pk w N =»r O

20

flist * * e

LVL 0 -——- E 210
TXMAX DATA
HMAXT DATA
MSLB2 DATA
FSLP2 DATA
FSLR2 DATA
MSLB1 DATA
FSLP1 DATA

E1
E1
E1
E1
E1
E1
E1

7500 BLKS 3380 R/W

90

22 FILES

e I s

80
80
80
80
80
80
80

20
20
20
20
20
20
20

1 OF
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92

14:
14:
14:
14:
14:
14:
14:

22

43
43
43
43
43
43
43

FSLR1
FSLZ2
FSLX2
FSLZ1
FSLX1
EK

EP
QNR2
QNR1
QNF
OUTF
ET
EPSV
EPSC
STEPO

Ready; T=0.01/0.02 14:44:58

(disk files generated on disk a.)

DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
DATA E1
LISTING E1

flist * * a

flist * * a

START
LOAD
GREEN
HMAXX
XZMAX
VOLU
FILE

Ready; T=0.01/0.04 14:48:16

DATA
MAP

DATA
DATA
DATA
DATA

Al
A5
Al
Al
Al
Al

FT99F001 A1

(End of Session.)

5.6 Output Files

< =M = = = = m = =T =m =™ =T = = T

e I s

80
80
80
80
80
80
80
80
80
80
80
80
80
80
133

80
100
80
80
80
80
80

20
20
20
20
20
20
20
20
20
20
20
20
20
20
1467

466
302
19
20
19
20
20

31

10

9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92

9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92
9/24/92

The following .data files are generated automatically by the program.

14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:
14:

14:
14:
14:
14:
14:
14:
14:

43
43
43
43
43
43
43
43
43
43
43
43
43
43
43

43
40
43
43
43
43
43

START : Data required for restarting the program, generated after a first set of iter-

ations

EPSC : Dimensionless error on continuity equation at every time step, obtained by

adding up flow rates (discharges) through each boundary segment
EPSYV : Dimensionless error on total volume of the domain at every time step

ET : Total energy at every time step. If nondimensional quantities are used and an
exact solitary wave is generated, the total energy is the one corresponding to the

wave only

EK : Kinetic energy at every time step. If nondimensional quantities are used and an
exact solitary wave is generated, the kinetic energy is the one corresponding to

the wave only

EP : Potential energy at every time step. If nondimensional quantities are used and
an exact solitary wave is generated, the potential energy is the one corresponding

to the wave only

VOLU : Total volume of computational domain at each time step. If nondimensional
quantities are used and an exact solitary wave is generated, the total volume is

the one corresponding to the wave only
OUTF : Sum of net fluxes through all four boundary segments at each time step
QNF : Volume flow through the free surface at each time step
QNR1 : Volume flow through lateral boundary 1 (K = 2) at each time step
QNR2 : Volume flow through boundary 2 (K = 3) at each time step
FSLX1 : Horizontal force on boundary 1 at each time step

FSLZ1 : Vertical force on boundary 1 at each time step

92

FSLX2 : Horizontal force on boundary 2 at each time step

FSLZ2 : Vertical force on boundary 2 at each time step

FSLR1 : Magnitude of force vector on boundary 1

FSLP1 : Angle of force vector on boundary 1 at each time step
MSLB1 : Moment about the bottom on boundary 1 at each time step
FSLR2 : Magnitude of force vector on boundary 2 at each time step
FSLP2 : Angle of force vector on boundary 2 at each time step
MSLB2 : Moment about the bottom on boundary 2 at each time step
HMAXT : Maximum value of free surface elevation at each time step

HMAXX : Maximum value of free surface elevation, and its position along the =

coordinate

TXMAX : The x position of the maximum value of free surface elevation, and its

variation with ¢ (time).

XZMAX : Maximum value of free surface elevation divided by the local depth, as a

function of z

GREEN : Tests for adherence to Green’s Law

5.7 Error and Warning Statements

Values of parameters and results are constantly tested within each subroutine, versus

exact or pre-specified values.
In case an error occurs, an eight character error code is transferred to the error
handling subroutine ERRORS (e.g., INPUTDO02), and the program is stopped. The

following message is printed by the program, prior to stopping,

93

PROGRAM STOP DUE TO ERROR : INPUTDO2

The six first characters in the error code contain the name of the subroutine in
which the error was found (e.g., INPUTD), and the last two characters contain the
error code (e.g., 02).

Errors codes, with definitions of errors, are listed within the source code of each

subroutine. In INPUTD, for instance, we find the following list,

CE ERRORS 01= Element, nodes, sources, or int. fields nb. out of

range
CE 02= Logical data are out of

range

CE 03= Boundary conditions are out of

range

CE 04= End of data in input

file

CE 05= Spline analysis is impossible with data
defined

CE 06= Element order is messed

up

Hence, the user can consult each subroutine code header, for the list of relevant

error codes.

In case the code definition (e.g., “Logical data are out of range”) is not sufficiently
clear, the user can look for the location of the call to the error routine in the subroutine
in which the error was found, and find out more details. For instance, when searching
for the error code INPUTDO02, in INPUTD’s source code, we find it to be stored in the
variable TEXTE2, and when searching for TEXTE2, we get to the following sequence
of FORTRAN code,

IF((IPTYP.LT.0.0R.IPTYP.GT.6).0R. (ISAVE.LT.0.0R.ISAVE.GT.2).0R.

(ISOURC.NE.O.AND.ISOURC.NE.1).0R.(IFIELD.NE.O.AND.IFIELD.NE.1))

94

THEN

CALL
ERRORS(TEXTE2)
C

END
IF
C

which gives us the full extent of the error check done in the program at this stage.
We for instance see above that the error code 02 in INPUTD is related to a wrong value

for IPTYP, ISAVE, ISOURC, or ISOURC in the input data.

95

6 Applications

6.1 Introduction

Over the past 5 years, many applications have been calculated with the model, for
various types of wave propagation, shoaling, and runup, and wave interaction with
emerged and submerged coastal structures or obstacles in the bottom.

Main types of applications are listed in the following, along with references to
publications in which the reader can find details of both computational and physical

aspects of the problems,

e Wave generation by a moving vertical boundary : Grilli & Svendsen 37

(1990) studied the generation of breaking waves by horizontally moving vertical
boundaries, using the present model. They analyzed the accuracy of results as a
function of both discretization and time step, and evaluated the performance of
corner compatibility relationships in the very demanding case where both lateral

and free surface boundaries take large displacements.

Grilli #* (1991) extended this method to the calculation of breaking bow waves,
and wave resistance coefficient of forward moving slender ships. This application
is also implemented in the present model, but has not been described in this

report.

e Wave runup over and reflection from a steep slope : Grilli & Svendsen
33, 35,36, 38 (1989,1990,1991) and Svendsen & Grilli ™ (1990), through careful nu-
merical experiments, extensively studied the runup on, and reflection of solitary
waves from steep slopes, and from vertical walls. They compared model results
to laboratory experiments, and in general found surprisingly good agreement

between both of these.

Similar cases are presented in the applications in section 6.2, for the runup of

a solitary wave of incident height % = 0.12, over two slopes of angle © = 20°,

96

and 45°, and in section 6.3, for the runup of a cnoidal wave of incident height

Ho _
ho

0.10, over a slope of angle © = 20°.
These applications were selected for sake of comparison with results obtained
by Liu et al. °° (1992) with their nonlinear model, as part of the present NSF

project.

Wave shoaling and breaking over a gentle slope : Grilli et al. ¢ (1991),
Otta et al. % (1993), and Grilli & Subramanya ** (1993) used the model to
calculate shoaling of solitary waves over a gentle slope, up to initiation of break-
ing. Recently, cases with periodic waves have also been calculated, to study the
kinematics and integral properties of breaking waves on beaches, very important

for surf-zone dynamics.

Grilli et al. * (1993), in particular, made a detailed study of shoaling of solitary
waves, up to breaking over various slopes, and compared their results to classical
Green’s and Boussinesq’s law, and to recent very careful laboratory experiments.
They concluded, whereas none of the theoretical “shoaling laws” could accurately
predict observed shoaling and breaking behaviors, the present fully nonlinear

model agreed with experiments up to the breaking point.

Otta et al. °° (1993), in addition, based on their calculations with the model,
developed a criterion for breaking of solitary waves over slopes, and analyzed the

kinematics of waves at breaking.

A similar case is presented in the application in section 6.4, for an incident solitary
wave of initial height hﬂ = 0.20, shoaling and (spilling) breaking over a slope
s =1:35.

Wave interactions with submerged obstacles : Accurate prediction of water
wave propagation over submerged obstacles is of prime importance in coastal
engineering. Submerged breakwaters are becoming increasingly used as both

aesthetic and economical means of shoreline protection against extreme storms

97

and tsunamis. Natural reefs and sandbars are frequent coastal features that
function as natural submerged breakwaters. In addition, the study of waves close
to the shoreline, and in the surf zone, requires that the offshore wave climate
is adequately “propagated” over any existing submerged obstacle, man-made or

natural.

Propagation of waves has been calculated with the present nonlinear model, over
three different types of submerged obstacles of various engineering implications.
Cases with both large incident waves or shallow submerged obstacles have been
solved that lead to strong nonlinear interactions between incident waves and
the obstacles, and to various instabilities and breaking of incident waves on, or
downstream of the obstacles. It is worth pointing out, these phenomena cannot
be modeled by any of the standard wave theories, and require a fully nonlinear

theory to be accurately described,

— Step in the bottom : The simplest possible steep obstacle on the bottom
is the step discontinuity between two constant depth regions. Numerous
studies of the interaction of a long wave with a step have been carried out
using various wave theories, from linear to mildly nonlinear, and numerical
models. The main motivation for these studies has been to answer the
question : How do long waves behave when propagating from deep water
into shallow water over the continental shelf 7 More specific questions have
also been addressed, by assuming the step represents a first approximation
for a wide crested obstacle in shallow water, like a bar, a reef, or even a

submerged breakwater.

In this line, Grilli et al. 2 (1992) have used the present model to study
strong nonlinear interactions—leading to breaking—of large solitary waves
with steps in the bottom. They compared numerical results to laboratory

experiments, and found fairly good agreement between both of these.

98

— Rectangular bar : After the steps in the bottom, rectangular obstacles have
the simplest possible geometry for representing submerged bars or break-
waters. One may expect, in fact, that most of the phenomena observed or
computed over rectangular bars are, at least qualitatively, also occurring for

obstacles of more complex geometry.

Driscoll et al. 17 (1993) studied the propagation of small amplitude normally
incident cnoidal waves, over an infinitely long submerged shallow bar, with
a rectangular cross-section. They compared laboratory experiments to first
and second-order analytic models, and to the present full nonlinear BEM
model. They found the BEM model could accurately predict the genera-
tion of higher-order harmonics, observed in laboratory, in the wave train

downstream of the obstacle.

— Submerged trapezoidal breakwaters : Submerged breakwaters used for shore-
line protection are usually built by dropping rocks from barges at selected
offshore locations. Breakwaters, hence, take an approximate trapezoidal
shape. The protection offered by submerged breakwaters consists in in-
ducing breaking and partial reflection-transmission of large incident waves,
while small wave propagation, and, in some cases, local navigation, can still

take place over the structure during normal conditions.

Cooker et al. ' (1990) used an extension of Dold & Peregrine’s '* nonlinear
model, to calculate solitary wave interaction with a submerged semicircu-
lar cylinder of radius R in water of depth h,. Results showed, a variety of
behavior occurs depending on wave height and cylinder radius. In short,
for small cylinders (}% < 0.5), waves essentially transmit and exhibit a tail
of oscillations. This is a regime of weak interactions. For larger cylinders
(% > 0.5), interactions are much stronger : small waves partially trans-
mit and reflect (crest exchange); medium waves undergo a stronger crest

exchange over the cylinder, and the first oscillation in their tail may break

99

backward onto the cylinder (direction opposite to propagation); and large
waves break forward (plunging), slightly after passing over the cylinder. A

limited number of experiments confirmed these theoretical predictions.

Grilli et al. *® (1993) extended the above study to submerged breakwaters
with a more realistic trapezoidal cross-section. Computations using the
present model were compared to laboratory experiments, for a large number
of solitary wave heights H, and for a breakwater geometry defined by : a
height h; = 0.8h,, a width at the crest b = hy, and two (seaward and
landward) 1:2 slopes. Results qualitatively agreed with earlier observations
by Cooker et al. '?, as far as crest exchange and breaking behaviors are
concerned. In all cases, a reflected wave also forms at the breakwater front

face, and starts propagating backward into the tank.

e Wave impact on coastal structures : Two cases with more realistic coastal
structures have been studied in earlier applications with the model, illustrating
its ability to predict shoaling of incident waves from deep to shallow water, over

a mild slope, and interaction with a structure in the shallow water region.

In addition, the model was able to accurately predict peak impact pressures
from breaking waves, on the vertical wall of mixed breakwater. Such numerical

simulations are helpful for designing coastal structures.

— Mized berm breakwaters : Most classical breakwaters used for shoreline or
harbor protection are constituted of a main trapezoidal breakwater, with
a small submerged berm at the toe of an emerged structure. Part of the
incident wave energy dissipates by breaking over the berm which, hence,

offers some protection to the main structure.

A similar case has been studied with the model by Grilli & Svendsen ¢
(1991), for which, unlike with traditional berm breakwaters, a small de-

tached submerged structure has simply been located slightly in front of the

100

main structure. The combination of the two structures is called a “mixed
berm breakwater”. This configuration, while offering the same degree of pro-
tection, may be more economical and simpler to build than classical berm

breakwaters.

— Mized vertical breakwaters : Mixed vertical breakwaters are composed
of a vertical concrete caisson, sitting on a wide berm made of rocks. They
function as vertical walls during high tide and as mound breakwaters during
low tide. Their upper section is designed to be safe against sliding and
overturning due to wave impact force. Laboratory and field experiments
show, impacts of normally incident breaking waves are the most severe. In
this case, the maximum impact force on the wall may rise up to 10 times

the hydrostatic force based on wave elevation at the wall.

Cooker ? (1990), and Cooker and Peregrine ' (1991), solving 2D fully non-
linear potential flows, confirmed these observations. Their model, however,
although very accurate, was limited to a vertical wall, and used a large inci-
dent long wave, with characteristics selected to create a large scale breaker

in the model.

Grilli et al. 227 (1992,1993) computed violent impact of breaking waves on
mixed vertical breakwaters, using the present nonlinear model. Laboratory

experiments were performed and compared to computations.

As pointed out in !, peak impact pressures are obtained for waves with
large height to depth ratio. This was achieved in 1!, by artificially introduc-
ing a very high incident wave in the model. The present model works for
arbitrary geometry and wave conditions, which permitted using both more
realistic incident waves, and a breakwater geometry closely reproducing the

experimental set-up.

Following are details of data and results for three specific applications of the model

101

to long wave shoaling, runup, and breaking over a plane slope.

Although the model can address much more general problems, as described above,
detailed applications presented here have been limited to these simple, more academic
cases, both for sake of simplicity, and because of the focus of the present NSF sponsored

research project on long wave runup.

6.2 Solitary wave runup on a steep slope

The computational domain and set-up for this problem are similar to the case sketched
in Fig. 2, except, due to the steep slope used in the present case, there is no need for,
and therefore there is no shallow shelf at the rightward extremity of the computational
domain.

The runup of a solitary wave of incident height % = 0.12, is calculated over two
different slopes of angle @ = 20°, and 45°. The incident wave is generated by simulating

a piston wavemaker on the leftward boundary (I'y).

Discretization data can automatically be generated for this simple case, using the
pre-processing program GENER with the following input data file. The case with a 20°
slope is first presented (see Fig. 9 and corresponding table for definition),

120 3 7 55 0 0
2 3 3 3 0 0
30.0 1.0 0.0 20.0
10 0

Values of the above parameters generate a discretization with 120 2-node elements
on the free surface (these elements will be later specified as quasi-spline type), three
3-node elements on the leftward boundary, seven 3-node elements on the rightward
boundary (i.e., the slope in the present case), and 55 3-node elements on the bottom.

The domain has a length 30.0, a constant depth 1.0, and a slope angle 20°. There
will be 10 Gauss points per element, and no pre-specified subdivisions for adaptive

integration.

102

Following is the (simplified) file gener.data generated by the pre-processing pro-
gram GENER, with the above data (see Table 1 for details of formats),

{\em (Total number of nodes and elements on the boundary; other data
in first 4 lines

are missing and have to be user-specified)}

264 185

(Nodes for boundary T'y; free surface)

.0000000000

(Nodes for boundary T's; slope)

103

0.0000000000 .0000000000 .0000000000
.0000000000
0.2500000000 .0000000000 .0000000000
.0000000000
0.5000000000 .0000000000 .0000000000
.0000000000
0.7500000000 .0000000000 .0000000000
.0000000000
1.0000000000 .0000000000 .0000000000
.0000000000
29.2500000000 .0000000000 .0000000000
.0000000000
29.5000000000 .0000000000 .0000000000
.0000000000
29.7500000000 .0000000000 .0000000000
.0000000000
30.0000000000 .0000000000 .0000000000

30.0000000000 0.0000000000 .0000000000
.0000000000
29.8037516129 -0.0714285714 .0000000000
.0000000000
29.6075032258 -0.1428571429 .0000000000
.0000000000
29.4112548387 -0.2142857143 .0000000000
.0000000000
27.8412677419 -0.7857142857 .0000000000
.0000000000
27.6450193548 -0.8571428571 .0000000000
.0000000000
27 .4487709676 -0.9285714286 .0000000000
.0000000000
27.2525225805 -1.0000000000 .0000000000
.0000000000
(Nodes for boundary T'4; bottom)
27.2525225805 -1.0000000000 0.0000000000
0.0000000000
27.0025225805 -1.0000000000 0.0000000000
0.0000000000
26.7525225805 -1.0000000000 0.0000000000
0.0000000000
0.5025225805 -1.0000000000 0.0000000000
0.0000000000
0.2525225805 -1.0000000000 0.0000000000

104

0.0000000000

0.0000000000 -1.0000000000 0.0000000000

0.0000000000

(Nodes for boundary T2, piston wavemaker)

0.0000000000
.0000000000
0.0000000000
.0000000000
0.0000000000
.0000000000
0.0000000000
.0000000000
0.0000000000
.0000000000
0.0000000000
.0000000000
0.0000000000
.0000000000

(Boundary Element connectivity matriz and parameters)

(Free surface)

-1.0000000000

-0.8333333333

-0.6666666667

-0.5000000000

-0.3333333333

-0.1666666667

0.0000000000

1 2 0 0 0 2 10 1
2 3 0 0 0 2 10 1
3 4 0 0 0 2 10 0
4 5 0 0 0 2 10 0
5 6 0 0 0 2 10 0
109 110 0 0 0 2 10 0

105

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.0000000000

110
111
112

120

134

111
112
113

121

123

135

(Bottom)

137
139
141

241
243
245

(Wavemaker)

138
140
142

242
244
246

124

136

139
141
143

243
245
247

248 249 250

250

261

262

262 253 254

10
10
10

10

10

10

10
10
10

10
10
10

10
10
10

106

We see, in the above file, GENER has generated a discretization with 254 nodes,
and 185 elements. The initial distance between nodes is Az, = 0.25 on the free surface,
0.167 on boundary I'y, 0.20 on boundary I's, 0.25 on boundary I'y. Element types are
as requested on each boundary segment.

Notice, in the above data, the number of subdivisions for adaptive integration has
been set to 1 (i.e., maximum 2 subdivisions if needed), for corner elements, and for
slopes elements, and for free surface elements above the slope. This was done using an

editor, after generation of the raw data.
The next task is now to specify values for all the parameters in the 4 first lines of
the input file, as described in Table 1. For the present application, these values have

been set as follows,

264 185 1 1200 1 3 4 100 0 0 0.000000
1 1 2 0 0 0 0 0 0.7 0.7
0.0900 0.00000 90.0000 1.0000 0.0000 0.0000 1.0000
0.0000 1.0000 1.0000 0.0000 0.1200 0 1 0
10

Details of the above parameter values are as follows,

e In the first line, we see, simplified data will be saved (1), we will calculate up to
1200 time loops (1200), a solitary wave will be generated using a piston wave-
maker (3), four intervals on the bottom will move with the wavemaker motion

(4), and results will be printed every 100 loops.

e In the second line, we see, the free surface is a Dirichlet boundary with quasi-
spline elements, the leftward lateral boundary is a wavemaker, and all other
boundaries are Neuman’s impermeable. Maximum angles for adaptive integration

are 0.7 rad.

o In the third line, we see, the initial time step At, = 0.09. The initial Courant
number is thus C, = At,/(Ax,/gh,) = 0.36 (with ¢ = h, = 1). The initial

107

time is t, = 0., the maximum time for stepping is ¢,,,, = 90.0, the water density

p = 1.0, and the gravity g = 1.0.

e In the fourth line, we see, the depth is constant to h, = 1.0 (with the unit value of
other parameters, we see, the problem is a nondimensional one), the wave height

is H, = H,/h, = 0.12.

These lines have to be placed at the top of the above listed input data file, using an
editor.

The data file can now be given a name (e.g., runup.data), and the problem is ready
to be run as described in section 5.5 (command : radia runup e a). Similar data can
be generated for the case with a 45° slope, by just changing the angle © in the data file
for GENER. The average CPU time used per time for this run is 3.3s, on an IBM9000,
i.e., 66min for the whole run of 1200 time loops.

Results for the free surface elevation at successive times are presented in Fig. 10
(20° slope), and 11 (45° slope). One sees, waves propagate from left to right, up to
about ¢t = 43, and 41, respectively. The maximum runup calculated on both slopes is
R, = 2.351 (at t = 43.07), and R, = 2.275 (at t = 41.16), respectively, which agrees
quite well with computations by Liu et al. °°, and experiments by Hall & Watts #
(1953). Waves then rundown, reflect on the slopes, and propagate backward into the
numerical tank, trailing a (well resolved) tail of oscillations behind them, and one sees,
these oscillations are more pronounced for the smaller slope. After time ¢ = 60, the
leading oscillations in the reflected waves are seen to reflect on the wavemaker.

Fig. 12 shows indicators of global accuracy of computations for each case, respec-
tively. These are the relative errors on total wave energy Ae/e, and volume Av/v, in
which e = 0.06762 and v = 0.83227 for the generated solitary wave, Av(?) is given
in file volu.data, and Ae(t) is given in file et.data. We see, both of these errors are
very small quantities for the initial stages of wave propagation (O(1077)), and then
gradually increase. Frrors both temporarily decrease during runup and rundown of the

waves on the slopes, and then increase to stabilize at about O(107%) or smaller.

108

Many detailed results can be saved, listed, plotted, and discussed for these cases,
as detailed in section 5. These, however, can not be listed in the present report due to

lack of space.

6.3 Cnoidal wave runup on a steep slope

The runup of a cnoidal wave of incident height % = 0.10, and period T'y/g/h, = 20
(i.e., w = 0.31416, for which L/h, ~ 20) is calculated over a slope of angle ©® = 20°,
using the same discretization and initial data as for the first case with a solitary wave

in the previous section.
More specifically, the 4 lines of parameters in the input file runup.data now look

as follows,

264 185 1 1200 1 3 4 100 0 0 0.000000
1 1 2 0 0 0 0 0 0.7 0.7
0.0900 0.00000 90.0000 1.0000 0.0000 0.0000 1.0000
0.0000 1.0000 1.0000 0.314186 0.1000 0 1 0

10

in which parameters omega and voh, have been set to the right value, and the rest
of the data is unchanged.

Results for the free surface elevation at successive times are presented in Fig. 13.
One sees, waves propagate from left to right, and a first crest runs-up the slope at
about t = 36, reflects and propagates back into the tank, interacts with the second
crest to produce a slightly higher runup for the second crest at about ¢ = 56, and so
forth.

Fig. 14 shows the relative error, AV/V, on total volume of the computational
domain (V' = 28.626), as a function of time. One sees, this error is very small during
all computations. Fig. 14 also shows the paddle trajectory x,(t), as calculated in the
program for generating the specified cnoidal wave, and the calculated runup at the

shoreline R(t). One sees, the first crest runs-up and down, to about twice its height,

109

/
/

o
N
[e0)

12 16 20 24 28 32

n (b)

\

o
N
0]

12 16 20 24 28

w
\V]

N T Y

/

Figure 10: Runup of a solitary wave of height H,/h, = 0.12, on a 20° slope. Axes
are non-dimensional with respect to depth h, and curves correspond to successive
dimensionless time ¢’ = a: 24; b: 28; ¢: 32; d: 36; e: 40; f: 44; g: 48; h: 52; i: 56; j:
60; k: 64; 1: 68.

110

/
1/

o
N
oo

12 16 20 24 28 32

o
N
0]

12 16 20 24 28

w
\V]

N T Y

T T T T T T T TTTT
=~

Figure 11: Runup of a solitary wave of height H,/h, = 0.12, on a 45° slope. Axes
are non-dimensional with respect to depth h, and curves correspond to successive
dimensionless time ¢’ = a: 24; b: 28; ¢: 32; d: 36; e: 40; f: 44; g: 48; h: 52; i: 56; j:
60; k: 64; 1: 68.

111

8 e e

7 :

6 H\ -

5 |

; N |

3 s T —— :

2 e R
25 30 35 40 45 50 55 60 65 70

-log el (b)

8 —frrrr e

7 :

6 - l -

s M o

Nk |

B s e i® s s :

2 ool e
25 30 35 40 45 50 55 60 65 70

Figure 12: Relative numerical error on total wave energy (- - - - -) ¢ = Ae/e, and
volume (———) ¢ = Awv/v, for the computations reported in : (a) Fig. 10; and (b)
Fig. 11.

112

and the second and third crests run-up to about 2.4 times the incident wave height,
while keeping the same rundown value. These results also fairly well agree with results

[. 59, as far as we can tell from their figure.

by Liu et a
Many detailed results can again be saved, listed, plotted, and discussed for this

case, but will not be shown in the preent report due to lack of space.

6.4 Solitary wave shoaling and breaking over a gentle slope

A case similar to those calculated by Grilli & Subramanya *? (1993), and Otta et

56 is presented in the following, for incident solitary waves of initial height % =

al.
0.10,0.15,0.20, shoaling and breaking over a 1:35 slope.

The computational domain is as sketched in Fig. 2. To improve accuracy of regular
integrations in the upper part of the slope where the domain geometry becomes very
narrow, a small shelf has been specified to the right of the domain, in depth ~o; = 0.1A,,
unlike in computations with steeper slopes reported in the previous sections. This is to
avoid elements on different parts of the boundary from getting too close to each other,
thus leading to a loss of accuracy of numerical integrations of the Green’s function
kernels. This change in geometry—as compared to a plain slope—does not affect
shoaling and breaking of a solitary wave, provided these occur as observed in the
present case, before reaching the shelf, i.e., for ;= < 41.5.

The free surface discretization has 180 two-node quasi-spline elements, with Az! =
0.25, and there are 100 quadratic elements on the bottom and lateral boundaries. The
total number of nodes is 384. The distance between nodes on the bottom is 0.5 in the
constant depth region, and reduces to 0.40, 0.25, 0.20, 0.15, and 0.10 on the slope, in
order to get increased resolution where depth decreases. The distance between nodes is
0.15 on the shelf bottom. Adaptive integration with up to 2'° subdivisions (as function
of the geometry) is specified on the free surface and on the bottom, for the elements
located between #' = 36 and 45. The mesh Courant number is C, = 0.50 and, hence,

At = 0.125. With these data, the CPU time is 10.2sec per time step (IBM9000).

113

| (a) |
0.2 F l T ! \/\]
] /]
01 a b e d S 71_% .
0 — — T~ ~ —]
0.1 / :
-0.2 I I I ‘i I I I L I I‘ I T \7 Xl
0 4 8 12 16 20 24 28 32

7 Xl
32

0.2 | Lx
0 4 8 12 16 20 24 28 32

Figure 13: Runup of a cnoidal wave of height H,/h, = 0.10 and period T’ = T/g/h, =
20, on a 20° slope. Axes are non-dimensional with respect to depth h, and curves

correspond to successive dimensionless time ¢/ = a: 24; b: 28; ¢: 32; d: 36; e: 40; f: 44;

g: 48; h: 52; 1 56; j: 60; k: 64; 1: 68.

114

0'4 T T T T T T T T T | T T T T T T T T T T T T T T J‘ % T T T T
0.3 |

N SN\

_0_1 :\\\\\\\\ 1 ;\\\\\\\\\\\\\\i %\\\\

R (b)
0'3 T T T T T T T E T T T T T T T T T T 1 1 “ ‘[!f!\

: YA A
VA Ve v

-0_3 7\\\\

-loglAV / VI
7.5 :\ T T T T T ‘t T T T T T T T T T T E T T T T

T | M | W
Pl | RATRIE
5.5 :V\ T | A o]

: | ANV

5 -
4.5 - v v b

4 E\\\\ L1 i\\\\ I 1 1 E\\\\ I I 1| | \\E t'

0 10 20 30 40 50 60 70 80 90

Figure 14: (a) Horizontal motion of piston wavemaker x,(¢) for cnoidal wave generation;
(b) runup at the slope R(); and (c) relative numerical error on computational domain

volume, AV/V for the computations reported in Fig. 13.

115

The incident solitary waves are generated on the leftward lateral boundary of the
domain, using the numerical piston wavemaker. Fig. 15 shows stages of wave shoaling
and breaking calculated for f—o = 0.20. During propagation, time step reduces down
to At’ = 0.020 at the time of breaking (¢ = 43.92). The total number of time steps is
680 and the average time step is 0.065.

In Fig. 15a, free surface profiles are shown at six different times, up to the instant
of wave instability by spilling breaking (last profile). Fig. 15b shows a blow-up of

the region over the slope where breaking occurs. Fig. 15a shows, breaking occurs at

x; = 36.2, with a wave height H, = 0.364, and a local ratio wave height over depth

Hy _

(“breaking index”) 7

1.38. This index is much larger than the usual design value
for gentle slopes (~ 0.80), and agrees to within 5% with measurements by Grilli et al.
% (1993). Such an agreement can only be obtained when full nonlinearity is used in
the equations.

Detailed results of calculations for the three wave heights show, maximum relative
errors on volume and total energy are less than 0.01% for 2’ < 28., i.e., more than half
the way up the slope. Note, for % = 0.10, the wave energy is e = 0.14977, and the vol-
ume is v = 1.09765. In the last stages of shoaling over the slope, however, discretization
nodes gather in highly curved regions of the boundary where hydrodynamic jets are
forming (e.g., crest of an impending breaking wave in Fig. 15b), and scatter at some
other areas (e.g., wave troughs), leading to a less accurate description of the flow, and
to larger errors. Fig. 15b shows, due to the rather long computational domain, only a
few nodes end up approximating the breaking wave jet on the free surface. This, hence,
limits the jet resolution or, more exactly, the period of time over which calculations
are able to accurately follow the jet further than the overturning point. To improve on
this, it would be necessary to either use regridding, or a finer initial discretization.

In the present application, computations have been interrupted when relative er-

rors become greater than 1.5%. The energy error first reaches this threshold. The last

wave profile shown in Fig. 15b corresponds to the time of maximum energy error.

116

~ x/h

1 o (a)
0.5 | | 3
b :
0 — %* — f\/ %N
-0.5 - 35 |
- 1 | | L | L I BT I
29 32 33 34 35 38 39
wh, (b)
0.5 ‘

0.25

-0.25 -

36

nl/h

x/h

38

0.4

0.3 -

0.2

0.1 jg/

0.0 =

-0.1 -

CO0000,

0]
000000y
C00000G

32.55; g3: 33.68; g4: 34.68; and gh: 36.91 (from Grilli et al.??).

117

Figure 15: Shoaling and breaking of a solitary wave with initial height H! = 0.20, over
a 1:35 slope. The wave is generated by a piston wavemaker at ' = 0. The slope starts
at 2’ =5 and plots in Fig. (a) correspond to profiles at time ¢’ = a: 37.17; b : 40.73; c:
43.48; d: 44.53; f: 44.94; f: 45.40; g: 46.00. Fig. (b) is a blow-up of last three profiles
in (a) with (o) denoting BEM discretization nodes. Fig. (c) shows a comparison of

computed (——) and measured (o) free surface elevation at gages at =’ = gl: 30.96; g2:

References

[1]

[12]

[13]

Abramowitz, M. & Stegun, [.A. Handbook of Mathematical Functions. Dover Pub. Inc.
New York, 1965.

Brebbia, C.A. The Boundary Flement Method for Engineers, John Wiley & Sons,
U.K., 1978.

Brorsen, M. & Larsen, J. Source Generation of Nonlinear Gravity Waves with the
Boundary Integral Method. Coastal Fngineering 11, 93-113, 1987.

Camfield, F.E. & Street, R.L. Shoaling of Solitary Waves on Small Slopes. ASCF,
WW95, 1-22, 1969.

Carrier, G.F. Gravity Waves on Water of Variable Depth. J. Fluid Mech. 24 (4),
641-659, 1966.

Carrier, G.F. & Greenspan, H.P. Water Waves of Finite Amplitude on a Sloping Beach.
J. Fluid Mech. 4 (1), 97-110, 1958.

Cointe, R. Numerical Simulation of a wave Channel. Engineering Analysis with Bound-
ary Elements 7 (4), 167-177, 1990.

Cointe, R. Quelques aspects de la simulation numérique d’un canal a houle. Thése de
Docteur de I’Ecole Nationale des Ponts et Chaussées, 284 pps., 1989.

Cooker, M. The Interaction Between Steep Water Waves and Coastal Structures. Ph.D.
Dissertation. School of Mathematics, University of Bristol, England, 1990.

Cooker, M. A Boundary-integral Method for Water Wave Motion Over Irregular Beds.
Engineering Analysis with Boundary Flements 7 (4), 205-213, 1990.

Cooker, M. and Peregrine, D.H. Violent Water Motion at Breaking-Wave Impact. In
Proc. 22nd Intl. Conf. on Coastal Engineering (ICCE22, Delft, The Netherland, July
90). Vol 1 , pps. 164-176. ASCE edition, 1991.

Cooker, M.J., Peregrine, D.H., Vidal, C. & Dold, J.W. The Interaction Between a
Solitary Wave and a Submerged Semicircular Cylinder. J. Fluid Mech. 215, 1-22,
1990.

Dean, R.G. & Dalrymple R.A. Water Wave Mechanics for Engineers and Scientists
Prentice-Hall, 1984.

118

[14]

[21]

[24]

Dold, J.W. & Peregrine, D.H. An Efficient Boundary Integral Method for Steep Un-
steady water Waves. Numerical methods for Fluid Dynamics 11 (ed. K.W. Morton &
M.J. Baines), pp. 671-679. Clarendon Press, Oxford, 1986.

Dommermuth, D.G. & Yue, D.K.P. Numerical Simulation of Nonlinear Axisymmetric
Flows with a Free Surface. J. Fluid Mech. 178, 195-219, 1987.

Dommermuth, D.G. & Yue, D.K.P., Lin, W.M., Rapp, R.J., Chan, E.S. & Melville,
W.K. Deep-Water Plunging Breakers : a Comparison between Potential Theory and
Experiments. J. Fluid Mech. 189, 423-442, 1988.

Driscoll, A.M., Dalrymple, R.A. & Grilli Harmonic Generation and Transmission Past
a Submerged Rectangular Obstacle. In Proc. 23rd Intl. Conf. on Coastal Engineering
(ICCE23, Venice, Italy, Oct. 92) Vol. 1, pps. 1142-1152. ASCE edition, 1993.

Fenton, J.D. & Rienecker, M.M. A Fourier Method for Solving Nonlinear Water-Wave
Problems : Application to Solitary-Wave Interactions. J. Fluid Mech. 118, 411-443,
1982.

Freilich, M.H. & Guza, R.T. Nonlinear Effects on Shoaling Surface Gravity Waves Phil.
Trans. R. Soc. Lond. A311, 1-41, 1984.

Goring D.G. Tsunamis - The Propagation of Long Waves onto a Shelf. W.M. Keck Lab-
oratory of Hydraulics and Water Resources, California Institute of Technology, Report
No. KH-R-38, 1978.

Gravert, P. Numerische Simulation Extremer Schwerewellen im Zeitbereich mit Direk-
ter Randelementmethode und Zeitschrittverfahren (Ph.D. Dissertation). Fortschritt-
Berichte VDI Verlag Diisseldorf, Reihe 7 (Strémungs-technik) No. 132. 1987.
Greenhow, M. Wedge Entry into Initially Calm Water. Applied Ocean Res. 9, 214-223,
1987.

Griffiths, M.W., Easson, W.J. & Greated, C.A. Measured Internal Kinematics for
Shoaling Waves with Theoretical Comparisons .J. Waterways, Port Coastal and Ocean
Fngng. 118 (3), 280-299, 1992.

Grilli, S. Wave Overturning Induced by Moving Bodies. Application to Slender Ship

Wave Resistance. Invited paper in Proc. 1st Intl. Conf. on Computational Modelling

119

[29]

[31]

of Free and Moving Boundary Problems (Southampton, England, July 91)(ed. L.C.
Wrobel & C.A. Brebbia) Vol. 1, pp. 75-90. Computational Mechanics Publications, de
Gruyter, Southampton, 1991.

Grilli, S. Modeling of Nonlinear Wave Motion in Shallow Water. Chapter 3 in Com-
putational Methods for Free and Moving Boundary Problems in Heat and Fluid Flow
(eds. L.C. Wrobel & C.A. Brebbia), pps. 37-65, Computational Mechanics Publication,
Elsevier Applied Sciences, London, UK, 1993.

Grilli, S., Losada, M.A. & Martin, F. Kinematics of Solitary Wave Breaking over Sub-
merged Structures : Comparison between Nonlinear Computations and Experimental
Results. In Proc. 4th Intl. Conf. on Hydraulic Engineering Software (HYDROSOFT92,
Valencia, Spain, July 92) (eds. W.R. Blain and E. Cabrera), Fluid Flow Modelling, pp.
575-586. Computational Mechanics Publications, Elsevier Applied Science. (invited pa-
per), 1992.

Grilli, S., Losada, M.A. & Martin, F. Wave Impact Forces on Mixed Breakwaters. In
Proc. 23rd Intl. Conf. on Coastal Engineering (ICCE23, Venice, Italy, October 92)
Vol. 1, pps. 1161-1174. ASCE edition, 1993.

Grilli, S., Losada, M.A. & Martin, F. Characteristics of Solitary Wave Breaking In-
duced by Breakwaters. J. Waterway, Port, Coastal, and Ocean Engng. (accepted for
publication), 1993.

Grilli, S., Losada, M.A., Martin, F. & Svendsen, I.A. Nonlinear Shoaling and Impact
of Waves on Coastal Structures. In Proc. 9th Engineering Mechanics Conf. (College
Station, Texas, May 92) (eds. L.D. Lutes and J.M. Niedzwecki), pp. 79-82. ASCE
edition.(invited paper), 1992.

Grilli, S. Skourup, J. & Svendsen, [.LA. The Modelling of Highly Nonlinear Waves :
A Step Toward the Numerical Wave Tank. Invited paper in Proc. 10th Intl. Conf. on
Boundary Elements, Southampton, England, Vol. 1 (ed. C.A. Brebbia), pp. 549-564.
Computational Mechanics Publication. Springer Verlag, Berlin, 1988.

Grilli, S. Skourup, J. & Svendsen, I.A. An Efficient Boundary Element Method for
Nonlinear Water Waves. Engineering Analysis with Boundary Elements 6 (2), 97-
107, 1989.

120

[32]

[34]

[35]

[36]

[38]

[39]

Grilli, S. & R. Subramanya Nonlinear Wave Modeling in very Shallow Water. In Proc.
15th Intl. Conf. on Boundary Elements in Engineering (BEMI15, Worcester, MA,
November 1993), 16pp. Computational Mechanics Publication, Elsevier (in press),
1993.

Grilli, S. & Svendsen, I.A. The Modelling of Nonlinear Water Wave Interaction with
Maritime Structures. Advances in Boundary Elements (Proc. 11th Intl. Conf. on
Boundary Elements, Cambridge, Massachusetts, USA), Vol. 2 (ed. C.A. Brebbia, J.J.
Connor), pp. 253-268. Computational Mechanics Publication. Springer Verlag, Berlin,
1989.

Grilli, S. & Svendsen, I.A. The Modelling of Highly Nonlinear Waves : Some Improve-
ments to the Numerical Wave Tank. Advances in Boundary Elements (Proc. 11th
Intl. Conf. on Boundary Elements, Cambridge, Massachusetts, USA), Vol. 2 (ed. C.A.
Brebbia, J.J. Connor), pp. 269-281. Computational Mechanics Publication. Springer
Verlag, Berlin, 1989.

Grilli, S. & Svendsen, [.A. Computation of Nonlinear Wave Kinematics during Propa-
gation and Runup on a Slope. Water Wave Kinematics, (Proc. NATO-ARW, Molde,
Norway, May 89) (ed. A. Torum & O.T. Gudmestad) NATO ASI Series E: Applied
Sciences Vol. 178, 387-412. Kliiwer Academic Publishers, 1990.

Grilli, S. & Svendsen, I.A. Long Wave Interaction with Steeply Sloping Structures. In
Proc. 22nd Intl. Conf. on Coastal Engineering (ICCE22, Delft, The Netherland, July
90) Vol. 2, pps. 1200-1213. ASCE edition, 1991.

Grilli, S. & Svendsen, I.A. Corner Problems and Global Accuracy in the Boundary
Element Solution of Nonlinear Wave Flows. Engineering Analysis with Boundary Fle-
ments, 7 (4), 178-195, 1990.

Grilli, S. & Svendsen, [.A. The Propagation and Runup of Solitary Waves on Steep
Slopes. Center for Applied Coastal Research, University of Delaware, Research Report
No. 91-4, 1991.

Grilli, S., Svendsen, [.A., Subramanya, R. & Veeramony J. Shoaling and Breaking of
Long Waves on Plane Beaches. Coastal Engineering (submitted for publication), 1993.

121

[40]

[42]

[43]

[44]

[48]

[49]

[50]

Grilli, S. Svendsen, [.A. & Otta, A.K. Corner Effects Using BEM for Nonlinear Waves.
In Computational Engineering with Boundary Elements (Proc. 5th Intl. Conf. on
Boundary Element Technology, BETECH90, University of Delaware, USA, July 90)
(ed. S. Grilli, C.A. Brebbia & A.H-D. Cheng) Vol. 1, pp. 101-118. Computational
Mechanics Publications, Southampton, 1990.

Hall, J.V. & Watts, J.W. Laboratory Investigation of the Vertical Rise of Solitary
Waves on Impermeable Slopes. Beach FErosion Board, US Army Corps of Engineer,
Tech. Memo. No. 33, 14 pp, 1953.

Hibberd, S. & Peregrine, D.H. Surf and Run-up on a Beach : a Uniform Bore, J. Fluid
Mech. 95 (2), 323-345, 1979.

Isaacson, M. de St. Q. Nonlinear Effects on Fixed and Floating Bodies. J. Fluid Mech.
120, 267-281, 1982.

Jansen, P.C.M. A Boundary Element Model for Nonlinear Free Surface Phenomena.
Delft University of Technology, Department of Ciwvil Engineering Report No. 86-2,
1986.

Kim, S.K., Liu, P.L.-F. & Liggett, J.A. Boundary integral Equation Solutions for
Solitary Wave Generation Propagation and Run-up. Coastal Fngineering 7, 299-317,
1983.

Kirby, J.T. Intercomparison of Truncated Series Solutions for Shallow Water Waves,
J. Waterways, Port, Coastal and Ocean Engng. 117 (2), 143-155, 1991.

Klopman, G. Numerical Simulation of Gravity Wave Motion on Steep slopes. Delft
Hydraulics Report No. H195, 1988.

Kobayashi, N. DeSilva, G.S. & Watson, K.D. Wave Transformation and Swash Oscil-
lation on Gentle and Steep Slope. J. Geoph. Res. 94 (C1), 951-966, 1989.
Kravtchenko, J. Remarques sur le calcul des amplitudes de la houle lineaire engendrée
par un batteur. In Proc. 5th Intl. Conf. on Coastal Engineering, pp. 50-61, 1954.
Liu, P.L., Cho, Y.S. & Kim, S.K. A Computer Program for Transient Wave Run-up
Research Report School of Civil and Environmental Engng., Cornell University, 1992.
Liu, P.L., Yoon, S.B. & Kirby, J.T. Nonlinear Refraction-diffraction of Waves in Shallow
Water, J. Fluid Mech. 153, 185-201, 1985.

122

[52]

Longuet-Higgins, M.S. & Cokelet, E.D. The Deformation of Steep Surface Waves on
Water - I. A Numerical Method of Computation. Proc. R. Soc. Lond. A350, 1-26,
1976.

Mei, C.C The Applied Dynamics of Ocean Surface Waves (2nd ed.). World Scientific,
New Jersey, 1983.

Nakayama, T. Boundary Element Analysis of Nonlinear Water Wave Problems. Intl.
J. Numer. Meth. Engng. 19, 953-970, 1983.

New, A.L., Mclver, P. & Peregrine, D.H. Computation of Overturning Waves. J. Fluid
Mech. 150, 233-251, 1985.

Otta, A.K., Svendsen, [.A. & Grilli, S.T. The Breaking and Runup of Solitary Waves
on Beaches. In Proc. 23rd Intl. Conf. on Coastal Engineering (ICCE23, Venice, Italy,
October 92) Vol. 2, pps. 1461-1474. ASCE edition, 1993.

Otta, A.K., Svendsen, [.LA. & Grilli, S.T. Unsteady Free Surface Waves in Region of
Arbitrary Shape. CACR, University of Delaware, Research Report 92-10, 153pp,
1992.

Pedersen, G. & Gjevik, B. Run-up of Solitary Waves J. Fluid Mech. 135, 283-299,
1983.

Peregrine, D.H. Long Waves on Beaches, J. Fluid Mech. 27 (4), 815-827, 1967.
Peregrine, D.H. Breaking Waves on Beaches, Ann. Rev. Fluid Mech. 15, 149-178,
1983.

Roberts, A.J. Transient Free-Surface Flows Generated by a Moving Vertical Plate. ¢)..J.
Mech. Appl. Math. 40 (1), 129-158, 1987.

Romate, J.E. The Numerical Simulation of Nonlinear Gravity Waves. Engineering
Analysis with Boundary Flements 7 (4), 156-166, 1990.

Seo, Seung Nam & Dalrymple, R.A. An Efficient Model for Periodic Overturning
Waves. Engineering Analysis with Boundary Elements 7 (4), 196-204, 1990.
Skjelbreia, J.E. Observations of Breaking Waves on Sloping Bottoms by Use of Laser

Doppler Velocimetry, W.M. Keck Laboratory of Hydraulics and Water Ressources, Cal-
ifornia Institute of Technology, Report No. KH-R-48. 1987.

123

[65]

Skourup, J., Grilli, S. & Svendsen, I.A. Modelling of Steep and Breaking Waves by the
Boundary Element Method. Inst. Hydrodyn. and Hydraulic Engng., Technical Univer-
sity of Denmark, Progress Report No. 68, 59-T1, 1988.

Skourup, J., Jonsson, 1.G. Grilli, S. & Svendsen, [.A. Computational Modelling of
Velocities and Accelerations in Steep Waves. In Water Wave Kinematics (Proc. NATO
ARW, Molde, Norway, May 89) (ed. A. Torum & O.T. Gudmestad), NATO ASI Series
E: Applied Sciences Vol. 178, 297-312. Kliiwer Academic Publishers, 1990.

Skourup, J., Jonsson, I1.G. Svendsen, [.A. Grilli, S. & Larsen, J. Non-Linear Water
Wave Modelling by a Boundary Integral Equation Method. In Proc. 23rd I.A.H.R.
Congress, Ottawa, Canada, August 89, Vol. C, pp. 359-366. National Research Council
Publication, Canada, 1989.

Skyner, D.J., Gray, C. & Greated, C.A. A Comparison of Time-stepping Numerical
Prediction with Whole-field Flow Measurements in Breaking Waves, Chapter in Water
Wave Kinematics (ed. A. Torum & O.T. Gudmestad), NATO ASI Series E: Applied
Sciences Vol. 178, 491-508, 1990.

Sobey, R.J. & Bando, K. Variations on Higher-Order Shoaling, J. Waterways, Port,
Coastal and Ocean Engng. 117 (4), 348-368, 1991.

Stiassnie, M. & Peregrine , D.H. Shoaling of Finite Amplitude Surface Waves on Water
of Slowly-varying Depth, J. Fluid Mech. 97, 783-805, 1980.

Su, C.H. & Mirie, R.M. On Head-on Collisions between two Solitary Waves. J. Fluid
Mech. 98 509-525, 1980.

Svendsen, I.A. & Grilli, S. Nonlinear Waves on Steep Slopes. J. Coastal Research SI
7, 185-202, 1990.

Synolakis, C.E. The Runup of Solitary Waves. J. Fluid Mech. 185, 523-545, 1987.
Tanaka, M. The Stability of Solitary Waves. Phys. Fluids 29 (3), 650-655, 1986.
Tanaka, M., Dold, J.W., Lewy, M. & Peregrine, D.H. Instability and Breaking of a
Solitary Wave. J. Fluid Mech. 185, 235-248, 1987.

Vinje, T. & Brevig, P. Numerical Simulation of Breaking Waves. Adv. Water Ressources
4, 77-82, 1981.

124

[77] Zelt, J.A. & Raichlen, F. A Lagrangian Model for Wave Induced Harbour Oscillations,
J. Fluid Mech. 213, 203-228, 1990.

125

