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We present a high-order adaptive time-stepping TVD solver for the fully nonlinear Boussinesq model of
Chen (2006), extended to include moving reference level as in Kennedy et al. (2001). The equations are
reorganized in order to facilitate high-order Runge-Kutta time-stepping and a TVD type scheme with a
Riemann solver. Wave breaking is modeled by locally switching to the nonlinear shallow water equations

when the Froude number exceeds a certain threshold. The moving shoreline boundary condition is imple-
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mented using the wetting-drying algorithm with the adjusted wave speed of the Riemann solver. The
code is parallelized using the Message Passing Interface (MPI) with non-blocking communication. Model
validations show good performance in modeling wave shoaling, breaking, wave runup and wave-
averaged nearshore circulation.
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1. Introduction

Boussinesq wave models have become a useful tool for model-
ing surface wave transformation from deep water to the swash
zone, as well as wave-induced circulation inside the surfzone.
Improvements in the range of model applicability have been
obtained with respect to classical restrictions to both weak disper-
sion and weak nonlinearity. Madsen et al. (1991) and Nwogu
(1993) demonstrated that the order of approximation in reproduc-
ing frequency dispersion effects could be increased using either
judicious choices for the form (or reference point) for Taylor series
expansions for the vertical structure of dependent variables, or
operators effecting a rearrangement of dispersive terms in al-
ready-developed model equations. These approaches, combined
with use either of progressively higher order truncated series
expansions (Gobbi et al., 2000; Agnon et al., 1999) or multiple level
representations (Lynett and Liu, 2004), have effectively eliminated
the restriction of this class of model to relatively shallow water,
allowing for their application to the entire shoaling zone or deeper.
At the same time, the use of so-called “fully-nonlinear” formula-
tions (e.g., Wei et al. (1995) and many others) effectively elimi-
nates the restriction to weak nonlinearity by removing the wave
height to water depth ratio as a scaling or expansion parameter
in the development of approximate governing equations. This ap-
proach has improved model applicability in the surf and swash
zones particularly, where surface fluctuations are of the order of
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mean water depth at least and which can represent the total verti-
cal extent of the water column in swash conditions. Representa-
tions of dissipative wave-breaking events, which do not naturally
arise as weak discontinuous solutions in the dispersive Boussinesq
formulation, have been developed usually following an eddy vis-
cosity formulation due to Zelt (1991), and have been shown to
be highly effective in describing surf zone wave height decay.
The resulting class of models has been shown to be highly effective
in modeling wave-averaged surf zone flows over both simple (Chen
et al., 2003; Feddersen et al., 2011) and complex (Geiman et al.,
2011) bathymetries. Kim et al. (2009) have further extended the
formulation to incorporate a consistent representation of boundary
layer turbulence effects on vertical flow structure.

Existing approaches to development of numerical implementa-
tions for Boussinesq models include a wide range of finite differ-
ence, finite volume, or finite element formulations. In this paper,
we describe the development of a new numerical approach for
the FUNWAVE model (Kirby et al., 1998), which has been widely
used as a public domain open-source code since it’s initial develop-
ment. FUNWAVE was originally developed using an unstaggered fi-
nite difference formulation for spatial derivatives together with an
iterated 4th order Adams-Bashforth-Moulton (ABM) scheme for
time stepping (Wei and Kirby, 1995), applied to the fully nonlinear
model equations of Wei et al. (1995). In this scheme, spatial differ-
encing is handled using a mixed-order approach, employing
fourth-order accurate centered differences for first derivatives
and second-order accurate differences for third derivatives. This
choice was made in order to move leading order truncation errors
to one order higher than the O(u?) dispersive terms (where i is
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ratio of a characteristic water depth to a horizontal length, a
dimensionless parameter characterizing frequency dispersion),
while maintaining the tridiagonal structure of spatial derivatives
within time-derivative terms. This scheme is straightforward to
develop and has been widely utilized in other Boussinesq models.
Kennedy et al. (2000) and Chen et al. (2000) describe further as-
pects of the model system aimed at generalizing it for use in mod-
eling surf zone flows. Breaking is handled using a generalization to
two horizontal dimensions of the eddy viscosity model of Zelt
(1991). Similar approaches have been used by other Boussinesq
model developers, such as Nwogu and Demirbilek (2001), who
used a more sophisticated eddy viscosity model in which the eddy
viscosity is expressed in terms of turbulent kinetic energy and a
length scale. The presence of a moving shoreline in the swash zone
is handled using a “slot” or porous-beach method, in which the en-
tire domain remains wetted using a network of slots at grid reso-
lution which are narrow but which extend down to a depth
lower than the minimum expected excursion of the modelled free
surface. These generalizations form the basis for the existing public
domain version of the code (Kirby et al., 1998). Subsequently, sev-
eral extensions have been made in research versions of the code.
Kennedy et al. (2001) improved nonlinear performance of the mod-
el by utilizing an adaptive reference level for vertical series expan-
sions, which is allowed to move up and down with local surface
fluctuations. Chen et al. (2003) extended the model to include
longshore periodic boundary conditions and described it’s applica-
tion to modeling longshore currents on relatively straight coast-
lines. Shi et al. (2001) generalized the model coordinate system
to non-orthogonal curvilinear coordinates. Finally, Chen et al.
(2003), Chen (2006) provided revised model equations which cor-
rect deficiencies in the representation of higher order advection
terms, leading to a set of model equations which, in the absence
of dissipation effects, conserve depth-integrated potential vorticity
to O(u?), consistent with the level of approximation in the model
equations.

The need for a new formulation for FUNWAVE arose from recog-
nition of several crucial problems with the existing code. First, the
original model proved to be noisy. or at least weakly unstable to
high wavenumbers near the grid Nyquist limit. In addition, both
the implementation of the eddy viscosity model for surf zone wave
breaking and the interaction of runup with beach slots proved to
be additional sources of noise in model calculations. In the original
unstaggered grid finite difference scheme, these effects led to the
need for periodic application of dissipative filters, with the fre-
quency of filtering increased in areas with active breaking. The
overall grid-based noise generation was found to stem from several
sources. First, Kennedy et al. (2001, personal communications),
during development of a High Performance Fortran (HPF) version
of the code on an early linux cluster, discovered that the noise
was partially due to implementation of boundary conditions and
could be alleviated to an extent. At the same time, the curvilinear
model developed by Shi et al. (2001) was implemented using a
staggered grid for spatial differencing, and the resulting code was
found to be less susceptible to the general grid noise problem.
A comparison of noise levels in the original FUNWAVE, the stag-
gered grid scheme of Shi et al., and the corrected boundary condi-
tion formulation of Kennedy may be found in Zhen (2004).

Additional sources of noise related either to the eddy viscosity
formulation or interaction between the flow and beach “slots” re-
main less well analyzed or understood. In addition, the perfor-
mance of the slots themselves has been called into question in
several cases involving inundation over complex bathymetry. Slots
which are too wide relative to the model grid spacing may admit
too much fluid before filling during runup, and cause both a reduc-
tion in amplitude and a phase lag in modeled runup events. At the
other extreme, slots which are too narrow tend to induce a great

deal of numerical noise, leading to the need for intermittent or
even fairly frequent filtering of swash zone solutions. Poor model
performance in comparison to data for the case of Lynett et al.
(2010), described below in Section 4.3, was the determining factor
in the decision to pursue a new model formulation.

A number of recently development Boussinesq-type wave mod-
els have used a hybrid method combining the finite-volume and fi-
nite-difference TVD (Total Variation Diminishing)-type schemes
(Toro, 2009), and have shown robust performance of the shock-
capturing method in simulating breaking waves and coastal inun-
dation (Tonelli and Petti, 2009, 2010; Roeber et al., 2010; Shiach
and Mingham, 2009; Erduran et al., 2005, and others). The use of
the hybrid method, in which the underlying components of the
nonlinear shallow water equations (which form the basis of the
Boussinesq model equations) are handled using the TVD finite vol-
ume method while dispersive terms are implemented using con-
ventional finite differencing, provides a robust framework for
modeling of surf zone flows. In particular, wave breaking may be
handled entirely by the treatment of weak solutions in the
shock-capturing TVD scheme, making the implementation of an
explicit formulation for breaking wave dissipation unnecessary.
In addition, shoreline movement may be handled quite naturally
as part of the Reiman solver underlying the finite volume scheme.

In this paper, we describe the development of a hybrid finite
volume-finite difference scheme for the fully nonlinear Boussinesq
model equations of Chen (2006), extended to incorporate a moving
reference level as in Kennedy et al. (2001). The use of a moving ref-
erence elevation is more consistent with a time-varying represen-
tation of elevation at a moving shoreline in modeling of a swash
zone dynamics and coastal inundation. A conservative form of
the equations is derived. Dispersive terms are reorganized with
the aim of constructing a tridiagonal structure of spatial deriva-
tives within time-derivative terms. The surface elevation gradient
term are also rearranged to obtain a numerically well-balanced
form, which is suitable for any numerical order. In contrast to pre-
vious high-order temporal schemes, which usually require uniform
time-stepping, we use adaptive time stepping based on a third-
order Runge-Kutta method. Spatial derivatives are discretized
using a combination of finite-volume and finite-difference meth-
ods. A high-order MUSCL (Monotone Upstream-centered Schemes
for Conservation Laws) reconstruction technique, which is accurate
up to the fourth-order, is used in the Riemann solver. The wave
breaking scheme follows the approach of Tonelli and Petti
(2009), who used the ability of the nonlinear shallow water equa-
tions (NLSWE) with a TVD solver to simulate moving hydraulic
jumps. Wave breaking is modeled by switching from Boussinesq
to NSWE at cells where the Froude number exceeds a certain
threshold. A wetting-drying scheme is used to model a moving
shoreline.

The paper is organized as follows. Section 2 shows derivations
of the conservative form of theoretical equations with a well-
balanced pressure gradient term. The numerical implementation,
including the hybrid numerical schemes, wetting-drying algo-
rithm, boundary conditions and code parallelization, are described
in Section 3. Section 4 illustrates four model’s applications to prob-
lems of wave breaking, wave runup and wave-averaged nearshore
circulations. Conclusions are made in Section 5.

2. Fully-nonlinear Boussinesq equations

In this section, we describe the development of a set of Bous-
sinesq equations which are accurate to O(u?) in dispersive effects.
Here, u is a parameter characterizing the ratio of water depth to
wave length, and is assumed to be small in classical Boussinesq
theory. We retain dimensional forms below but will refer to the
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apparent O(u?) ordering of terms resulting from deviations from
hydrostatic behavior in order to identify these effects as needed.
The model equations used here follow from the work of Chen
(2006). In this and earlier works starting with Nwogu (1993), the
horizontal velocity is written as

u=u,+u,(2) (1)
Here, u, denotes the velocity at a reference elevation z = z,, and

1
Wy(2) = (z4, —2)VA+ 5 (22 -7*)VB (2)

represents the depth-dependent correction at O(u?), with A and B
given by

A=V (hu,)

B=V-u, 3)

The derivation follows Chen (2006) except for the additional effect
of letting the reference elevation z,, vary in time according to

z,=Cth+pn 4)

where h is local still water depth, # is local surface displacement
and ¢ and g are constants, as in Kennedy et al. (2001). This addition
does not alter the details of the derivation, which are omitted
below.

2.1. Governing equations
The equations of Chen (2006) extended to incorporate a possi-

ble moving reference elevation follow. The depth-integrated vol-
ume conservation equation is given by

n+V-M=0 (5)
where
M = H{u, + u,} (6)

is the horizontal volume flux. H = h + 7 is the total local water depth
and 1, is the depth averaged O(u?) contribution to the horizontal
velocity field, given by

u, :%/j{ uy(2)dz
:<§_%(h2—hn+n2)>w+(zw%(h—”l))w‘ (7)

The depth-averaged horizontal momentum equation can be written
as

W, + (U, - Viu, + g8V +Vi +V, + V3 +R=0 (8)

where g is the gravitational acceleration and R represents diffusive
and dissipative terms including bottom friction and subgrid lateral
turbulent mixing. V; and V, are terms representing the dispersive
Boussinesq terms given by

22 1,’2
V, = {5* VB +szA} v [73[ + nAt} 9)
t

Vo= V{ @ - s DM+ 5@ - P VB 5B

(10)

The form of (9) allows for the reference level z, to be treated as a
time-varying elevation, as suggested in Kennedy et al. (2001). If this
extension is neglected, the terms reduce to the form given originally
by Wei et al. (1995). The expression (10) for V, was also given by
Wei et al. (1995), and is not altered by the choice of a fixed or mov-
ing reference elevation.

The term V3 in (8) represents the O(u?) contribution to the
expression for @ x u=wi* x u (with ¥ the unit vector in the z
direction) and may be written as

V; = woi’ x Uy + woi° x U, 11
where

o = (V x Uy) ¥ = Uy — Uy (12)
Wy = (V x W) -1 = zyx(Ay +2,By) — Zyy(Ax + 2,Bx) (13)

Following Nwogu (1993), z, is usually chosen in order to opti-
mize the apparent dispersion relation of the linearized model rel-
ative to the full linear dispersion in some sense. In particular, the
choice o =(z4/h)?|2 +z4/h=—-2/5 recovers a Padé approximant
form of the dispersion relation, while the choice o = —0.39, corre-
sponding to the choice z, = —0.53h, minimizes the maximum error
in wave phase speed occurring over the range 0 < kh < w. Kennedy
et al. (2001) showed that allowing z, to move up and down with
the passage of the wave field allowed a greater degree of flexibility
in optimizing nonlinear behavior of the resulting model equations.
In the examples chosen here, where a great deal of our focus is on
the behavior of the model from the break point landward, we
adopt Kennedy et al.’s “datum invariant” form

z,=-h+pH=(B-Dh+pn=Ch+(1+0n (14)

with {=-0.53 as in Nwogu (1993) and =1 + { = 0.47. This corre-
sponds in essence to a ¢ coordinate approach, which places the ref-
erence elevation at a level 53% of the total local depth below the
local water surface. This also serves to keep the model reference
elevation within the actual water column over the entire wetted ex-
tent of the model domain.

2.2. Treatment of the surface gradient term

The hybrid numerical scheme requires a conservative form of
continuity equation and momentum equations, thus requiring a
modification of the leading order pressure term in the momentum
equation. A numerical imbalance problem occurs when the surface
gradient term is conventionally split into an artificial flux gradient
and a source term that includes the effect of the bed slope for a
non-uniform bed. To eliminate errors introduced by the traditional
depth gradient method (DGM), a so-called surface gradient method
(SGM) proposed by Zhou et al. (2001) was adopted in the TVD
based-Boussinesq models in the recent literatures. Zhou et al. dis-
cussed an example of SGM in 1-D and verified that the slope-
source term may be canceled out by part of the numerical flux
term associated with water depth, if the bottom elevation at the
cell center is constructed using the average of bottom elevations
at two cell interfaces. Zhou et al. also showed a 2D application,
but without explicitly describing 2D numerical schemes. Although
this scheme can be extended into 2D following the same procedure
as in 1D, it was found that the 2D extension may not be trivial in
terms of the bottom construction for a 2D arbitrary bathymetry.
Kim et al. (2008) pointed out that the water depth in the slope-
source term should be written in a discretized form rather than
the value obtained using the bottom construction, implying that
their revised SGM is valid for general 2D applications.

For the higher-order schemes, such as the fourth-order MUSCL-
TVD scheme (Yamamoto and Daiguji, 1993; Yamamoto et al., 1998)
used in the recent Boussinesq applications, the original SGM and
the revised SGM may not be effective in removing the artificial
source. This problem was recently noticed by some authors, such
as Roeber et al. (2010), who kept a first-order scheme (second-
order for normal conditions) for the numerical flux term and the
slope-source term in order to ensure a well-balanced solution,
without adding noise for a rapidly varying bathymetry. The
imbalance problem can be solved by a reformulation of this term
in terms of deviations from an unforced but separately specified
equilibrium state (see general derivations in Rogers et al., 2003
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and recent application in Liang and Marche, 2009). Using this tech-
nique, the surface gradient term may be split as

HV =¥ |80P + 20m)| - g1V 1s)

which is well-balanced for any numerical order for an unforced, still
water condition.

2.3. Conservative form of fully nonlinear Boussinesq equations

For Chen’s (2006) equations or the minor extension considered
here, H u, can be used as a conserved variable in the construction
of a conservative form of Boussinesq equations, but this results in a
source term in the mass conservation equation, such as in Shiach
and Mingham (2009) and Roeber et al. (2010). An alternative
approach is to use M as a conserved variable in terms of the phys-
ical meaning of mass conservation. In this study, we used M,
instead of Hu,, in the following derivations of the conservative
form of the fully nonlinear Boussinesq equations.

Using M from (6) together with the vector identity

V-uv)=Vu-v+(V-vju (16)
allows (8) to be rearranged as
MM
M;+V- < ) +gHVy = H{t,, + u, - Vi, + i - Vu,
-V; -V, —-V; —R} 17)

Following Wei et al. (1995), we separate the time derivative dis-
persion terms in V; according to

V=V, +V] (18)
where

v, “VBHNA v[’”’ B+17A} 19)
and

Vi =V, (A+nB) (20)

Using (15), (19) and (20), the momentum equation can be
rewritten as

MM 1
:H{ﬁzﬁu“.vaz+ﬁ2.Vua—v;I—v’{—v2—v3 - R}

+gnVh
(21)

A difficulty usually arises in applying the adaptive time-
stepping scheme to the time derivative dispersive terms i, and
V)., which was usually calculated using values stored in several
time levels in the previous Boussinesq codes such as in Wei et al.
(1995) and Shi et al. (2001). To prevent this, the equation can be
re-arranged by merging the time derivatives on the right hand side
into the time derivative term on the left hand side, giving

MM
Vi +V- { } +V{2g(n2 +2hn)}
=n(Vy —) + H(u, -y + 0 - Vu, — Vi =V, — V5 —R)
+gnVh (22)
where
V= H(u, +V3) (23)

In (22) 5 can be calculated explicitly using (5) as in Roeber et al.
(2010). Egs. (5) and (21) are the governing equations solved in this
study. As V is obtained, the velocity u, can be found by solving a
system of equation with tridiagonal matrix formed by (22), in
which all cross-derivatives are moved to the right-hand side of
the equation.

3. Numerical schemes

3.1. Compact form of governing equations

We define
u, = (u,v)
u, = (Uy, Vy)
M= (P,Q) = H[u+ U, v+ V4]
Vi = (U, V)
Vi = (U7 V)
V; = (Uz, V3)

V=(0.7) = H[(u+ Uy, (v + V})]

The generalized conservative form of Boussinesq equations can be
written as

oY

at +V-0(¥)=S (24)
where ¥ and @(W) are the vector of conserved variables and the
flux vector function, respectively, and are given by

n Pi+Qj
v |0, o-| [F+igm?+2nm]i+ i (25)
v B+ (9 +1g(n? + 2nh)j
0
S— | gn%+ v, +HRy (26)

gn5 + v, +HR,
where

‘//x = 'h(U'1 - U4)

+ H(UU4‘X + Z/U4_y + Ugly + V4Lly - U/ll — U, — U3) (27)
Uy =1, (Vi = Va)
+ H(UV4AX + UV4,y + Usvy + V4Z/y — U/l/ -V, - V3) (28)

The expanded forms of (U},V),(U],V)), (U2, V2),(Us,V3) and
(U4, V4) can be found in Appendix A. For the term R, the bottom
stress is approximated using a quadratic friction equation. For mod-
eling wave-generated nearshore currents such as rip current and
alongshore current (Chen et al, 1999, 2003), a Smagorinsky
(1963)-like subgrid turbulent mixing algorithm is implemented.
The eddy viscosity associated with the subgrid mixing is deter-
mined by breaking-induced current field. The detailed formulations
can be found in Chen et al. (1999). The Smagorinsky subgrid mixing
is used in the model application to predicting wave-averaged near-
shore circulation described in Section 4.4.

3.2. Spatial discretization

A combined finite-volume and finite-difference method was ap-
plied to the spatial discretization. Following Toro (2009), two basic
steps are needed to achieve the spatial scheme. The first step is
to use a reconstruction technique to compute values at the cell
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interfaces. The second step is to use a local Riemann solver to get
numerical fluxes at the cell interfaces.

For the flux terms and the first-order derivative terms, a high-
order MUSCL-TVD scheme is implemented in the present model.
The high-order MUSCL-TVD scheme can be written in a compact
form including different orders of accuracy from the second-to
the fourth-order, according to Erduran et al. (2005) who modified
Yamamoto et al’s (1998) fourth-order approach. In x-direction,
for example, the combined form of the interface construction can
be written as follows:

Bhoaa =91+ 3 |1~ KOZIA B + (1 KL /DA G ] (29)
W= 00— g [ KDL Ga + (1= KOL /DA Gy 2] (30)

where ¢, 12 is the constructed value at the left-hand side of the
interface i + 1 and ¢f , , is the value at the right-hand side of the
interface i — 1. The values of A*¢ are evaluated as follows:

A i1 = A1 — Ko i12/6

Adip1p = di1 — i

N dis1p = Adiizp — 2A¢ii1)2 + Adivy
Adiirj = minmod(Ad;_1,, Adiy1/2, Adiisy)
Aiaip = minmod(A¢;. 15, Adiys/2, Adi_1)2)
Adi3 = minmod(Ad; 3, Adi_12, Adii1)2)

1)

In (31), minmod represents the Minmod limiter and is given by
minmod(j, k, I) = sign(j) max{0, min[|j|, 2 sign(j)k, 2 sign(j){]}.
(32)

K1 and x5 in (29) and (30) are control parameters for orders of the
scheme in the compact form. The complete form with (x,x3) = (1/
3,1) is the fourth-order scheme given by Yamamoto et al. (1998).
(r1,7¢2) =(1/3,0) yields a third-order scheme, while the second-
order scheme can be retrieved using (x1,k32) =(—1,0).

x(r)in (29) and (30) is the limiter function. The original scheme
introduced by Yamamoto et al. (1998) uses the Minmod limiter as
used in (31). Erduran et al. (2005) found that the use of the van-
Leer limiter for the third-order scheme gives more accurate results.
Their finding was confirmed by using the present model in the
benchmark tests for wave runup conducted by Tehranirad et al.
(2011). The van-Leer limiter can be expressed as

T

1 =75 (33)
where
A*¢i+1/2
r=— 34
A ¢i71/2 G4

The numerical fluxes are computed using a HLL approximate
Riemann solver

D) if ;>0
oY ¥ ={ o (Y ¥ if 5 <0<si (35)
RA if sg<0
where
SRO(‘I’L) — S[_@(‘FR) +SLSR(‘YR - ‘I’L)
o' (¥, ¥ = (36)

SR —SL

The wave speeds of the Riemann solver are given by

50

—6— model V2
45f| — — —ideal

40t

3571

307

25¢

speedup

2071

15}

10t 7/ 1

0 10 20 30 40 50
number of processors

Fig. 1. Variation in model performance with number of processors for a
1800 x 1800 domain. Straight line indicates arithmetic speedup. Actual perfor-
mance is shown in the curved line.

s.=min(V"-n—/g(h+n) u — /@), (37)
sg = max(VR-n+\/g(h+n)f us + 9,), (38)
in which us and ¢@; are estimated as
1
=5V + Vo) nt Ve +ht = /g0 +h)t (39)
g+ +\/gm+m* (vt _vR).n
o y v L= (40)

and n is the normalized side vector for a cell face.

Higher derivative terms in 1, and s, were discretized using a
central difference scheme at the cell centroids, as in Wei et al.
(1995). No discretization of dispersion terms at the cell interfaces
is needed due to using M as a flux variable. The Surface Gradient
Method (Zhou et al., 2001) was used to eliminate unphysical oscil-
lations. Because the pressure gradient term is re-organized as in
Section 2.2, there is no imbalance issue for the high-order MUSCL
scheme.

3.3. Time stepping

The third-order Strong Stability-Preserving (SSP) Runge-Kutta
scheme for nonlinear spatial discretization (Gottlieb et al., 2001)
was adopted for time stepping. The scheme is given by

v =9 AL~V - 0¥ +S1)
3 1
@) — Zwpn 4~ |g) _\. M @)
v = 2w +4[\1' +At( V-o¥")+S )} (41)

¥l = %‘l'” +§ [¥® + At(-V - 0(¥?) +5")]

in which ¥" denotes ¥ at time level n. ¥ and ¥'® are values at
intermediate stages in the Runge-Kutta integration. As W is
obtained at each intermediate step, the velocity (u, 7) can be solved
by a system of tridiagonal matrix equations formed by (22). S needs
to be updated using (u, 7,7) at the corresponding time step and an
iteration is needed to achieve convergence.

An adaptive time step is chosen, following the Courant-
Friedrichs-Lewy (CFL) criterion:
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Fig. 2. Comparisons of wave height (upper panel) and wave setup (lower panel) between measured data and model results for a plunging breaker case of Hansen and
Svendsen (1979) with grid resolutions of dx = 0.0125 m (dash-dot line), 0.025 m (solid line) and 0.050 m (dashed line). The results of Kennedy et al. (2000) are also shown for

comparison (crosses).
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(42)

At = Cmin | min

where C is the Courant number. C=0.5 was used in the following
examples.

3.4. Wave breaking and wetting-drying schemes for shallow water

The wave breaking scheme follows the approach of Tonelli and
Petti (2009), who successfully used the ability of NSWE with a TVD
scheme to model moving hydraulic jumps. Thus, the fully nonlin-
ear Boussinesq equations are switched to NSWE at cells where
the Froude number exceeds a certain threshold. Following Tonelli
and Petti, the ratio of surface elevation to water depth is chosen
as the criterion to switch from Boussinesq to NSWE. That means
that all dispersive terms, V; in (23) and ¢, and ¢, in (26) are zero
at grid points where the wave is breaking. The threshold value was
set to 0.8 in all model tests in Section 4 according to model valida-
tions against experimental data, which is also consistent with
Tonelli and Petti (2009).

The wetting-drying scheme for modeling a moving boundary is
straightforward. The normal flux n - M at the cell interface of a dry
cell is set to zero. A mirror boundary condition is applied to the
fourth-order MUSCL-TVD scheme and discretization of dispersive
terms in yy, Y, at dry cells. It may be noted that the wave speeds
of the Riemann solver (37) and (38) for a dry cell are modified as

sg=V'-n+2\/g(h+n" (right dry cell) (43)
and

10 T
dx =0.025m
gt — — —dx=0.050m t=19.9's 7

2 4 6 8 10 12

Fig. 3. Snapshots of surface elevation at t = 17.4, 18.6 and 19.9 s from models with
grid resolutions of dx = 0.025 (solid lines) and 0.050 m (dashed lines).

s.=VE-n—\/gh+n)f

sg=VE.n+2y/gh+n"  (left dry cell)

(44)

3.5. Boundary conditions and wavemaker

We implemented various boundary conditions including wall
boundary condition, absorbing boundary condition following Kirby
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Fig. 4. Model/data comparisons of wave height (upper panel) and wave setup (lower panel) for grid resolution dx = 0.025 m. Spilling breaker case from Hansen and Svendsen

(1979). Solid line-present model; x’s- Kennedy et al. (2000), eddy viscosity model.

et al. (1998) and periodic boundary condition following Chen et al.
(2003).

Wavemakers implemented in this study include Wei et al.’s
(1999) internal wavemakers for regular waves and irregular waves.
For the irregular wavemaker, an extension was made to incorpo-
rate alongshore periodicity into wave generation, in order to elim-
inate a boundary effect on wave simulations. The technique exactly
follows the strategy in Chen et al. (2003), who adjusted the distri-
bution of wave directions in each frequency bin to obtain along-
shore periodicity. This approach is effective in modeling of
breaking wave-induced nearshore circulation such as alongshore
currents and rip currents.

3.6. Parallelization

In parallelizing the computational model, we used a domain
decomposition technique to subdivide the problem into multiple
regions and assign each subdomain to a separate processor core.
Each subdomain region contains an overlapping area of ghost cells
three-row deep, as required by the fourth order MUSCL-TVD
scheme. The Message Passing Interface (MPI) with non-blocking
communication is used to exchange data in the overlapping region

Wave Paddle Wave Gauges
-«
1 2 3 12
v i
- A T T T T L
47
o 1:20
A

<« I0m ——»

Fig. 5. Experiment layout of Mase and Kirby (1992).

between neighboring processors. Velocity components are ob-
tained from Eq. (22) by solving tridiagonal matrices using the par-
allel pipelining tridiagonal solver described in Naik et al. (1993).

To investigate performance of the parallel program, numerical
simulations of an idealized case are tested with different numbers
of processors on the Linux cluster Chimera located at University of
Delaware. The test case is set up in a numerical grid of 1800 x 1800
cells. Fig. 1 shows the model speedup versus number of processors.
It can be seen that performance scales nearly proportional to the
number of processors, with some delay caused by inefficiencies
in parallelization, such as inter-processor communication time.
Chimera nodes consist of 48 cores, so the present simulations on
48 or less cores do not test inter-node communication perfor-
mance on the system.

4. Model tests

The model has been validated extensively using laboratory
experiments for wave shoaling and breaking, as described in the
FUNWAVE manual by Kirby et al. (1998), and a suite of benchmark
tests for wave runup. The interested reader is referred to Shi et al.
(2011) and Tehranirad et al. (2011). In this paper, we will present
four test cases, with a focus on examining the shock-capturing
scheme for modeling wave breaking, the wetting—drying algorithm
for wave runup, and the model capability in predicting wave-in-
duced nearshore circulation. The fourth-order scheme of Yamam-
oto et al. (1998) is used in all the test cases. The effect of using
adaptive time stepping is demonstrated in the wave runup case.

4.1. Breaking waves on a beach

Hansen and Svendsen (1979) carried out laboratory experi-
ments of wave shoaling and breaking on a beach. Waves were
generated on a flat bottom a 0.36 m depth, and the beach slope
was 1:34.26. The experiments included several cases including
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plunging breakers, plunging-spilling breakers and spilling break-
ers. In this paper, we simulate two typical cases: a plunging break-
er and a spilling breaker, respectively. The wave height and wave
period are 4.3 cm and 3.33 s, respectively, for the plunging case,
and 6.7 cm and 1.67 s for the spilling case.

Although the shock-capturing breaking algorithm used in Bous-
sinesq wave models has been examined by previous researchers
(e.g., Tonelli and Petti, 2009; Shiach and Mingham, 2009 and oth-
ers), there is a concern about its sensitivity to grid spacing. Erduran
et al. (2005) discussed numerical diffusivity caused by several types
of limiters in a TVD scheme. In this study, we intended to examine
the grid spacing effect on prediction of breaking wave height. We
adopted three grid sizes, dx=0.05m, 0.025m and 0.0125m,
respectively, for each cases. Fig. 2 shows comparisons of wave
height and wave setup between measured data and numerical re-
sults from model runs with different grid sizes. Results from the
previous version of FUNWAVE with the same breaking parameters
as in Kennedy et al. (2000) are also plotted in the figure for compar-
ison. The wave breaking location of wave setup/setdown predicted
by the three runs are in agreement with the data, however, the pre-
dicted maximum wave heights are slightly different. Results from
dx = 0.025 m and 0.0125 m grids are very close, indicating a conver-
gence with grid refinement. All three models underpredict the peak
wave height at breaking and overpredict wave height inside of the
surfzone. This prediction trend was also found in Kennedy et al.
(2000) as shown in the figure. 10% and 9.2% underpredictions of
peak wave height can be found in the tests with dx = 0.025 m and
0.0125 m, respectively, while Kennedy et al. (2000) underpredicted
the peak wave height by 10% with dx = 0.02 m. The present model
with a coarser grid (dx = 0.05 m) underpredicted the peak wave
height by 17%. Numerical errors for wave height prediction over
all measurement locations were estimated using the relative root-
mean-square-error (RMSE) normalized by the measured maximum

wave height. The relative RMSEs for dx = 0.050, 0.025 and 0.0125 m
are 8.2%, 6.8% and 6.0%, respectively. For predictions of wave setup/
set down, the relative RMSE was normalized by the range of setup/
set down. They are 10.8%, 9.6% and 9.0%, respectively, for dx = 0.050,
0.025 and 0.0125 m.

To find the cause of the large underprediction of peak wave
height in the coarser grid model, in Fig. 3, we show snapshots of
surface elevation from model results with dx=0.025m and
0.050 m at different times. The model with the finer grid resolution
switched from the Boussinesq equations to NSWE around t=19.9 s
(the model with the coarser grid switched slightly later) at the
point where the ratio of surface elevation to water depth reached
the threshold value of 0.8. Then, a wave is damped at the sharp
front and generates trailing high frequency oscillations. The com-
parison of wave profiles at an early time (i.e. t = 18.6 s) shows that
the coarser grid model underpredicts wave height before the Bous-
sinesq-NSWE switching, indicating that the underprediction is not
caused by the shock-capturing scheme, but by the numerical dissi-
pation resulting from the coarse grid resolution.

It should be mentioned that there is a discontinuity at the point
switching between the Boussinesq equations and NSWE, as
pointed by one of reviewers. The discontinuity is expected to be
small as kh is small in shallow water. In the present case, for exam-
ple, a switch occurs at kh = 0.38, where the ratio of dispersive wave
phase speed to non-dispersive phase speed (./gh) is 0.98.

For the spilling breaker case, the models with three different
grid sizes basically predicted slightly different wave peaks as in
the plunging wave case. Fig. 4 shows results from dx = 0.25 m, with
comparisons to measured data and Kennedy et al.’s (2000) results.
The relative RMSEs for wave height prediction are 8.5% from the
present model and 7.4% from Kennedy et al. (2000). The relative
RMSE’s for wave setup/set down prediction are 8.5% and 13.0%,
respectively, from the present model and Kennedy et al.
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Fig. 8. Bathymetry contours (in meters) and measurement locations used in model simulations for OSU tank bathymetry (Lynett et al., 2010). Circles: pressure gauges,

triangles: ADV.
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4.2. Irregular wave shoaling and breaking on a slope

To study irregular-wave properties during shoaling and break-
ing, Mase and Kirby (1992) conducted a laboratory experiment
for random wave propagation over a planar beach. The experimen-
tal layout is shown in Fig. 5, where a constant depth of 0.47 m on
the offshore side connects to a constant slope of 1:20 on the right.
Two sets of random waves with peak frequencies of 0.6 Hz (run 1)
and 1.0 Hz (run 2) were generated by the wavemaker on the off-
shore side. The target incident spectrum was a Pierson-Moskowitz
spectrum. Wave gauges collected time series of surface elevation at
depths h =47, 35, 30, 25, 20, 17.5, 15, 12.5, 10, 7.5, 5, and 2.5 cm.

The present case has been previously studied using an eddy vis-
cosity model for breaking waves by Kennedy et al. (2000). The
present model was set up following Kennedy et al. (2000), who
used an internal wavemaker located at the toe of the slope, where

0.0161
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dt (s)
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Fig. 10. Time step variation.

surface elevation is measured by gauge 1. The internal wavemaker
signal was constructed following Wei et al. (1999), using low and
high-frequency cutoffs of 0.2 Hz and 10.0 Hz. The simulation time
is the same as the time length of data collection. The computa-
tional domain extends from x =0 m to 20 m, with a grid size of
0.04 m. The toe of the slope starts at x=10 m. A sponge layer is
specified at the offshore side boundary, to absorb reflected waves,
but no sponge layer is needed on the onshore boundary, which dif-
fers from Kirby et al. (1998) who used the slot method combined
with a sponge layer at the end of the domain.

We present the model results for run 2 and compare them with
the experimental data measured at the other 11 gauges shown in
Fig. 5. Fig. 6 shows model results (dashed lines) and measured data
(solid lines) from t=20s to t=40s at those gauges. Both model
and data show that most waves start breaking at a h = 15 cm depth.
Except for small discrepancies in wave phases, the model repro-
duces the measured waveform quite well. The standard deviation
of the predicted surface elevation are calculated at all 11 gauges
and compared to the data. The relative computational errors are
between 0.4 ~ 7.5%. The relative RMSE of standard deviation calcu-
lated over the 11 gauges is 5.4%.

Third moment statistics of surface elevation provide a good
evaluation of model skill in reproducing wave crest shape. Normal-
ized wave skewness and asymmetry were calculated for both mea-
sured and modeled time series of surface elevation according to
the following formulations,

3
skew = (1;?>3>/2 \
5
_ (Hm) @
asym (”12)3 7

where H denotes the Hilbert transform, () is the time-averaging
operator, and the mean has been removed from the time series of
surface elevation.

Fig. 7 shows the skewness and asymmetry predicted by the
present model, the original FUNWAVE (Kirby et al., 1998) and
experiment data. We see, the both models predicted skewness
and asymmetry reasonably well, with a slight overprediction of
wave skewness inside the surf zone. The relative RMSE for skew-
ness prediction, which is normalized by the measured maximum
value, is 6.6% from the present model and 7.1% for Kirby et al.
The relative RMSEs for asymmetry prediction are 12.1% and 7.4%
from the present model and Kirby et al., respectively.

It is worth mentioning that Kirby et al. (1998) employed fre-
quent use of numerical filtering, especially after wave breaking,
so that the model run was stable over the entire data time series.
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Fig. 11. Model/data comparisons of time series of surface elevation at (top) Gauge 1-Gauge 9. Solid line: model, dashed line: data.

The present model did not encounter any stability problem and
utilizes no filtering.

4.3. Solitary wave runup on a shelf with a conical island

To examine the wetting-drying method used in the present
model versus the slot method used in Kennedy et al. (2000), Chen
et al. (2000), we performed a simulation of the solitary wave runup
measured recently in a large wave basin at Oregon State Univer-
sity’s O.H. Hinsdale Wave Research Laboratory (Lynett et al.,
2010). The basin is 48.8 m long, 26.5 m wide, and 2.1 m deep. A
complex bathymetry consisting of a 1:30 slope planar beach con-
nected to a triangle shaped shelf and a conical island on the shelf
was used and is shown in Fig. 8. Solitary waves were generated
on the left side by a piston-type wavemaker. Surface elevation
and velocity were collected at many locations by wave gauges
and ADV’s in alongshore and cross-shore arrays. Fig. 8 shows wave
gauges (circles) and ADV’s (triangles) used for model/data compar-
isons in the present study. Gauge 1-9 were located at (x,y)=
(7.5,0.0) m, (13.0,0.0)m, (21.0,0.0) m, (7.5,5.0) m, (13.0,5.0) m,
(21.0,5.0) m, (25.0,0.0) m, (25.0,5.0) m and (25.0,10.0) m, respec-
tively. ADV 1-3 were located at (13.0,0.0) m, (21.0,0.0) m and
(21.0,—5.0) m, respectively.

The modeled bathymetry was constructed by combining the
measured data of the shelf and the analytical equation of the cone,
which was used for the design of the island in the experiment. The
computational domain was modified by extending the domain

from x=0.0 m to —5.0 m with a constant water depth of 0.78 m
in order to use a solitary wave solution as an initial condition.
The width of the computational domain in the y direction is the
same as OSU’s basin. Grid spacing used in the model is 0.1 m in
both directions. A solitary wave solution based on Nwogu's ex-
tended Boussinesq equations (Wei, 1997) was used with centroid
located at x=5.0 m at time t=0s. The wave height is 0.39 m, as
used in the laboratory experiment.

Fig. 9 shows results of computed water surfaces att=6.4s,8.4 s
and 14.4 s, respectively. The wave front becomes very steep as the
wave climbs on the shelf, which was well captured by the model.
The wave scattering pattern is clearly seen in the bottom panel
of Fig. 9. Wave breaking on the shelf was observed in the labora-
tory experiment and was also seen in the model. Fig. 10 shows
the variation in time stepping during the simulation. The time step
dropped to a minimum, at around t=6.5s, as the wave collided
with the island (top panel of Fig. 9). The local Froude number
reached a maximum at t = 6.5 s, reducing the value of the time step
based on (42).

Fig. 11 shows time series of modeled surface elevations and
measurements at Gauge 1-9 (from top to bottom). Good agree-
ment between model and data is found at the gauge in front of
the island (Gauge 1, top panel), as the model successfully predicts
the solitary wave propagation and its reflection from the shore. The
model also captures the collision of edge waves propagating
around the two sides of the island, as indicated at the gauge behind
the island (Gauge 3). The model predicts the timing of wave
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Fig. 13. Wave spectrum S(f,0) in m?/(Hz x deg) from the offshore ADCP at 13 m
water depth, averaged over the entire yearday 124. 0 has been rotated so that the
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collision well but over-predicts the peak of wave runup. The mod-
el/data comparisons at Gauges 5, 6, 8, and 9, which are located at
the north-side shelf, indicates that the model predicts wave refrac-
tion and breaking on the shelf reasonably well. The averaged RMSE

normalized by the maximum measured wave amplitude is 7.5%
with the maximum RMSE of 11.2% at Gauge 2 and the minimum
RMSE of 3.7% at Gauge 1.

Fig. 12 shows model/data comparisons of velocity time series of
velocity u component at ADV 1 (top panel), ADV 2 (second panel),
ADV 3 (third panel), and »component at ADV 3 (bottom panel). The
model predicts the peak velocity and the entire trend of velocity
variation in time at measurement locations. An underprediction
of the seaward velocity is found at ADV 2. The velocity in the y-
direction was not compared at ADV 1 and ADV2 because the mea-
sured values were too small. The relative RMSEs calculated at ADV
1 and ADV 2 are 10.5% and 14.8%, respectively. The relative RMSE
at ADV 3 is 9.3% for u prediction and 20.0% for v prediction.

4.4. Wave-averaged nearshore circulation

Boussinesq models have been used to model rip currents (Chen
et al., 1999; Johnson and Pattiaratchi, 2006; Geiman et al., 2011)
and alongshore currents (Chen et al., 2003; Feddersen et al.,
2011) in field surfzone situations. Recently, Feddersen et al.
(2011) compared results of waves and currents from the Bous-
sinesq model FUNWAVE-C with observations during five surfzone
dye release experiments. The comparisons indicated that the Bous-
sinesq model reproduced well the observed cross-shore evolution
of significant wave height, mean wave angle, bulk directional
spread, mean alongshore current, and the frequency-dependent
sea-surface elevation spectra and directional moments. Geiman
et al. (2011) conducted a numerical study on wave averaging
effects on estimates of the surfzone mixing, using the phase-
resolving Boussinesq model FUNWAVE and the wave averaged
model Delft3D. Results from both models were compared to field
observation at the RCEX field experiment (Brown et al., 2009; Mac-
Mahan et al., 2010). Their study showed that each model is able to
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Fig. 14. Snapshots of wave surface elevation field (left panel) and vorticity field (right panel). The dashed line represents the approximate outer limit of the surfzone.
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reproduce 1-h time-averaged mean Eulerian velocities consistent
with field measurements at stationary current meters. However,
the spatial distribution of wave height inside the surfzone was
different between the two models, due to the different mecha-
nisms for wave breaking.

To check the breaking scheme used in the present model and its
consequences regarding wave-induced currents, we set up the
present model in the same way as in Geiman et al. (2011), except
that no sponge layer was applied for the present model at the
shoreline position. The model used a grid size of dx=dy=1m
and a north-south periodic boundary condition in a computational
domain of 732 m x 684 m. An internal wavemaker for directional
irregular wave generation was located at 540 m away from the
shoreline. The directional spectra observed at 13 m water depth
during the instrument deployment was divided into 23 x 31 bins
as shown in Fig. 13. The calculated RMS wave height H,,; = 0.65 m
and period Ty, = 10.5s.

Snapshots of model sea-surface elevation and vorticity are
shown in Fig. 14. Waves approach the beach in a closely shore-nor-
mal direction with narrow directional spreading, as expected based
on the wave spectrum input. Breaking wave-generated vortices are
mostly confined to the surfzone as shown in the right panel of
Fig. 14.

Fig. 15 shows wave-averaged currents calculated by 1-h averag-
ing over modeled (u,,v,). The red arrows show the wave-averaged
velocities observed at measurement locations, L1-L5 in the along-
shore array and C1-C5 in the cross-shore array. The model shows a
good agreement with the data. Both the model and the data indi-
cate that the mean circulation pattern is tied to the rip channels.

Fig. 16 shows the comparison between the RMS wave height
calculated from the model at y =65 m and the data (circles) at
the measurement locations C1, C2, C4 and C5, marked in Fig. 15.
A fairly good agreement is obtained in the model/data comparison
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Fig. 17. Comparison of surface elevation spectra at wave gages of the alongshore
array (L1-L5) and the cross-shore array (C1,C2 and C4).

with RMSE of 16.4%, 12.3%, 10.5% and 11.4%, respectively, for C1,
C2, C4 and C5. In consideration of the lower resolution
(2m x 2m) used in Geiman et al.,, we have also run the present
example using 2 m x 2 m grid resolution in the present model.
The difference in wave height prediction between the two models
with different resolutions is basically minimal as demonstrated in
Fig. 16.

In Fig. 17, model and observed wave surface spectra are com-
pared at the alongshore measurement array L1-L5 and the cross-
shore array C1,C2 and C4. With a peak frequency around 0.7 Hz,
both the model and data show lower harmonics generated in the
range from 0.2 Hz to 0.4 Hz. Slight under-predictions of wave spec-
tra are found in all the surfzone gages.

The present model results were found to be essentially similar
to the results obtained using the original FUNWAVE in Geiman
et al. (2011) and showed a similar agreement with the data, sug-
gesting that the shock-capturing breaking scheme has comparable
skill to the artificial eddy viscosity formulation in modeling break-
ing wave-induced circulation.

5. Conclusions

A new version of the FUNWAVE model was developed based on
a more complete set of fully nonlinear Boussinesq equations with
the vertical vorticity correction derived by Chen (2006) and a
time-varying reference elevation introduced by Kennedy et al.
(2001). The equations were reorganized in order to facilitate a hy-
brid numerical scheme, which includes the third-order Runge-
Kutta time-stepping and the MUSCL-TVD scheme up to the
fourth-order accuracy within the Riemann solver. Wave breaking
is modeled by locally switching to the nonlinear shallow water
equations where the Froude number exceeds a certain threshold.
The wetting-drying method was implemented to model a moving
shoreline, instead of the slot method used in the previous FUN-
WAVE model. The code was parallelized using MPI with non-block-
ing communication.

Benchmark tests verified the model’s capability in simulating
wave shoaling, breaking, and wave-induced nearshore circulation.
These suggested the following advantages of the new model versus
the previous version of FUNWAVE:

(1) The adaptive time stepping is more efficient in a simulation
where the local Froude number varies over a large range. The
constant time step used in the previous FUNWAVE version is
usually selected on an ad hoc basis due to unpredictable
supercritical fluid conditions.

(2) The shock capturing scheme is robust not only in the treat-
ment of wave breaking, but also in the suppression of
numerical instabilities, especially in modeling wave break-
ing. No filtering is needed in the present model.

(3) The wetting-drying method is better adapted than the slot
method to modeling the swash zone and coastal inundation.

In addition, the model accurately predicted wave runup against
a suite of benchmark test data (Tehranirad et al., 2011).
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Appendix A. Expansions of V;,V],V,,V; and V,

The expanded forms of (U, V}), (U7, V)), (U, V2),(Us,V3) and
(U4,V4) can be written as
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Uy =5 (1 B)’h* (U + vyy) — (1 = B)h[(hu), + (h),,)]

N —
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where
Wy = vy — U, (54)
O = (1= Hly{[(hu), + (ho),], + boh(u + 2,),)

— (1= By (), + (ho), ), + bahu -+ 0,),) (55)
Us = G —B +%ﬁ2>h2(um + Uy) + <ﬁ - %)h[(hu)m + (ho),]

+ { K% y +ﬁ2)hn + Gﬂz —%>n2} (Upe + Vsy)

(3 itk + (o)1} (56)

V= (% - B+ %ﬂ2>h2(uxy + vy) + aoh[(hu),, + (hv), ]

+ { [(é— ﬁ+ﬁz>h”l + (%ﬁz —%>772} (Uy + vyy)

#(#-3)n[ g + |} (57)

References

Agnon, Y., Madsen, P.A., Schiffer, HA., 1999. A new approach to high-order
Boussinesq models. J. Fluid Mech. 399, 319-333.

Brown, J., MacMahan, J., Reniers, A.J.H.M., Thornton, E., 2009. Surf zone diffusivity
on a rip-channeled beach. ]. Geophys. Res. 114, C11015. doi:10.1029/
2008JC005158.

Chen, Q., 2006. Fully nonlinear Boussinesq-type equations for waves and currents
over porous beds. J. Eng. Mech. 132, 220-230.

Chen, Q., Dalrymple, R.A., Kirby, ].T., Kennedy, A.B., Haller, M.C., 1999. Boussinesq
modelling of a rip current system. J. Geophys. Res. 104, 20617-20637.

Chen, Q., Kirby, J.T., Dalrymple, RA., Kennedy, A.B., Chawla, A., 2000. Boussinesq
modeling of wave transformation, breaking and runup. II: 2D. J. Waterway Port
Coastal Ocean Eng. 126, 48-56.

Chen, Q., Kirby, ]J.T., Dalrymple, R.A., Shi, F., Thornton, E.B., 2003. Boussinesq
modeling of longshore currents. J. Geophys. Res. 108 (C11), 3362. doi:10.1029/
2002JC001308.

Erduran, K.S,, Ilic, S., Kutija, V., 2005. Hybrid finite-volume finite-difference scheme
for the solution of Boussinesq equations. Int. J. Numer. Methods Fluids 49,
1213-1232.

Feddersen, F., Clark, D.B., Guza, R.T., 2011. Modeling surfzone tracer plumes, Part 1:
waves, mean currents, and low-freqency eddies. J. Geophys. Res. 116, C11027.
doi:10.1029/2011JC007210.

Geiman, ].D., Kirby, ].T., Reniers, AJ.H.M., MacMahan, J.H., 2011. Effects of wave
averaging on estimates of fluid mixing in the surf zone. ]. Geophys. Res. 116,
C04006. doi:10.1029/2010JC006678.

Gobbi, M.F,, Kirby, J.T., Wei, G., 2000. A fully nonlinear Boussinesq model for surface
waves. II. Extension to O(kh?). J. Fluid Mech. 405, 181-210.

Gottlieb, S., Shu, C.-W., Tadmore, E., 2001. Strong stability-preserving high-order
time discretization methods. SIAM Rev. 43 (1), 89-112.

Hansen, J.B., Svendsen, L.A., 1979. Regular waves in shoaling water: Experimental
data. Series Paper 21, ISVA, Technical Univ. of Denmark, Denmark.

Johnson, D., Pattiaratchi, C., 2006. Boussinesq modelling of transient rip currents.
Coastal Eng. 53, 419-439.

Kennedy, A.B., Chen, Q., Kirby, ].T., Dalrymple, R.A., 2000. Boussinesq modeling of
wave transformation, breaking and runup. I: 1D. J. Waterway Port Coastal
Ocean Eng. 126, 39-47.

Kennedy, A.B., Kirby, ].T., Chen, Q., Dalrymple, R.A., 2001. Boussinesq-type equations
with improved nonlinear performance. Wave Motion 33, 225-243.

Kim, D.H., Cho, Y.S., Kim, H.J., 2008. Well balanced scheme between flux and source
terms for computation of shallow-water equations over irregular bathymetry. J.
Eng. Mech. 134, 277-290.

Kim, D.H., Lynett, P.J., Socolofsky, S.A., 2009. A depth-integrated model for weakly
dispersive, turbulent, and rotational fluid flows. Ocean Model. 27, 198-214.
Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., Dalrymple, R.A., 1998. FUNWAVE 1.0,
Fully nonlinear Boussinesq wave model. Documentation and user’s manual.
Research Report CACR-98-06, Center for Applied Coastal Research, Department

of Civil and Environmental Engineering, University of Delaware.

Liang, Q., Marche, F., 2009. Numerical resolution of well-balanced shallow water
equations with complex source terms. Adv. Water Res. 32, 873-884.

Lynett, P.J., Liu, P.L.F., 2004. A two-layer approach to wave modelling. Proc. Roy. Soc.
London A 460, 2637-2669.

Lynett, P.J., Swigler, D., Son, S., Bryant, D., Socolofsky, S., 2010. Experimental study of
solitary wave evolution over a 3D shallow shelf. In: Proceedings of the 32nd
International Conference on Coastal Engineering, ASCE, Shanghai, Paper No. 32.

MacMahan, J., Brown, ]., Brown, ], Thornton, E., Reniers, A., Stanton, T., Henriquez,
M., Gallagher, E., Morrison, ]., Austin, M.J., Scott, T.M., Senechal, N., 2010. Mean
Lagrangian flow behavior on open coast rip-channeled beaches: new
perspectives. Mar. Geol. 268, 1-15.

Madsen, P.A,, Murray, R., Serensen, O.R., 1991. A new form of the Boussinesq
equations with improved linear dispersion characteristics. Coastal Eng. 15, 371-
388.

Mase, H., Kirby, ].T., 1992. Hybrid frequency-domain KdV equation for random wave
transformation. In: Proceedings of the 23rd Internatinal Conference on Coastal
Engineering, ASCE, New York, pp. 474-487.

Naik, N.H., Naik, V.K., Nicoules, M., 1993. Parallelization of a class of implicit finite
difference schemes in computational fluid dynamics. Int. J. High Speed Comput.
5, 1-50.

Nwogu, 0., 1993. An alternative form of the Boussinesq equations for nearshore
wave propagation. J. Waterway Port Coastal Ocean Eng. 119, 618-638.

Nwogu, O., Demirbilek, Z., 2001. BOUSS-2D: A Boussinesq wave model for coastal
regions and harbors. ERDC/CHL TR-01-25, Coastal and Hydraulics Laboratory,
USACOE Engineer Research and Development Center, Vicksburg, MS.


http://dx.doi.org/10.1029/2008JC005158
http://dx.doi.org/10.1029/2008JC005158
http://dx.doi.org/10.1029/2002JC001308
http://dx.doi.org/10.1029/2002JC001308
http://dx.doi.org/10.1029/2011JC007210
http://dx.doi.org/10.1029/2010JC006678

F. Shi et al./Ocean Modelling 43-44 (2012) 36-51 51

Roeber, V., Cheung, K.F., Kobayashi, M.H., 2010. Shock-capturing Boussinesq-type
model for nearshore wave processes. Coastal Eng. 57, 407-423.

Rogers, B.D., Borthwick, A.G.L., Taylor, P.H., 2003. Mathematical balancing of flux
gradient and source terms prior to using Roe’s approximate Riemann solver. J.
Comput. Phys. 192, 422-451.

Shiach, J.B., Mingham, C.G., 2009. A temporally second-order accurate Godunov-
type scheme for solving the extended Boussinesq equations. Coastal Eng. 56,
32-45.

Shi, F., Dalrymple, R.A., Kirby, ].T., Chen, Q., Kennedy, A., 2001. A fully nonlinear
Boussinesq model in generalized curvilinear coordinates. Coastal Eng. 42, 337-
358.

Shi, F., Kirby, J.T., Tehranirad, B., Harris, J.C., 2011. FUNWAVE-TVD, documentation
and users’ manual. Research Report, CACR-11-04, University of Delaware,
Newark, Delaware.

Smagorinsky, J., 1963. General circulation experiments with the primitive
equations. I. The basic experiment. Mon. Weather Rev 91, 99-165.

Tehranirad, B., Shi, F., Kirby, J.T., Harris, J.C., Grilli, S., 2011. Tsunami benchmark
results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 1.0.
Research Report No. CACR-11-02, Center for Applied Coastal Research,
University of Delaware.

Tonelli, M., Petti, M., 2009. Hybrid finite volume-finite difference scheme for 2DH
improved Boussinesq equations. Coastal Eng. 56, 609-620.

Tonelli, M., Petti, M., 2010. Finite volume scheme for the solution of 2D
extended Boussinesq equations in the surf zone. Ocean Eng. 37, 567-
582.

Toro, E.F., 2009. Riemann solvers and numerical methods for fluid dynamics: a
practical introduction, third ed. Springer, New York.

Wei, G., 1997. Simulation of water waves by Boussinesq models. Ph.D. dissertation,
University of Delaware, 202 pp.

Wei, G., Kirby, ].T., 1995. A time-dependent numerical code for extended Boussinesq
equations. J. Waterway Port Coastal Ocean Eng. 120, 251-261.

Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R., 1995. A fully nonlinear Boussinesq
model for surface waves: Part I. Highly nonlinear unsteady waves. J. Fluid Mech.
294, 71-92.

Wei, G., Kirby, ].T., Sinha, A., 1999. Generation of waves in Boussinesq models using
a source function method. Coastal Eng. 36, 271-299.

Yamamoto, S., Daiguji, H., 1993. Higher-order-accurate upwind schemes for solving
the compressible Euler and Navier-Stokes equations. Comput. Fluids 22, 259-
270.

Yamamoto, S., Kano, S., Daiguji, H., 1998. An efficient CFD approach for simulating
unsteady hypersonic shock-shock interference flows. Comput. Fluids 27, 571-
580.

Zelt, J.A., 1991. The runup of nonbreaking and breaking solitary waves. Coastal Eng.
15, 205-246.

Zhen, F., 2004. On the numerical properties of staggered vs. non-staggered grid
schemes for a Boussinesq equation model. MCE Thesis, Department of Civil and
Environmental Engineering, University of Delaware.

Zhou, J.G., Causon, D.M., Mingham, C.G., Ingram, D.M., 2001. The surface gradient
method for the treatment of source terms in the shallow-water equations. J.
Comput. Phys. 168, 1-25.



	A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation
	1 Introduction
	2 Fully-nonlinear Boussinesq equations
	2.1 Governing equations
	2.2 Treatment of the surface gradient term
	2.3 Conservative form of fully nonlinear Boussinesq equations

	3 Numerical schemes
	3.1 Compact form of governing equations
	3.2 Spatial discretization
	3.3 Time stepping
	3.4 Wave breaking and wetting–drying schemes for shallow water
	3.5 Boundary conditions and wavemaker
	3.6 Parallelization

	4 Model tests
	4.1 Breaking waves on a beach
	4.2 Irregular wave shoaling and breaking on a slope
	4.3 Solitary wave runup on a shelf with a conical island
	4.4 Wave-averaged nearshore circulation

	5 Conclusions
	Acknowledgements
	Appendix A Expansions of ? and V4
	References


