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Abstract
A review of Boundary Integral Equation methods used for long wave runup prediction

is presented in this chapter.
In Section 1, a brief literature review is given of methods used for modeling long wave

propagation and of generic methods and models used for modeling highly nonlinear waves.
In Section 2, fully nonlinear potential flow equations are given for the Boundary Element
Model developed by the author, including boundary conditions for both wave generation
and absorption in the model. In Section 3, details are given for the generation of waves
in the model using various methods (wavemakers, free surface potential, internal sources).
In Section 4, the numerical implementation of the author’s model based on a higher-order
Boundary Element Method is briefly presented. In Section 5, many applications of the
model are given for the computation of wave propagation, shoaling, breaking or runup
on slopes, and interaction with submerged and emerged structures. The last application
presented in this Section is the Benchmark #3 problem for the runup of solitary waves on
a vertical wall that was proposed as part of the “International Workshop on Long-wave
Runup Models (San Juan Island, WA, USA, 09/95). Finally, Appendices A to F give more
details about various aspects of the numerical model.

1. Introduction

1.1. Modeling of long wave propagation, shoaling, breaking and runup

Over the past forty years, ocean wave propagation, shoaling, breaking or runup over a
slope, have been the object of numerous theoretical and numerical studies, particularly for
the case of—essentially two-dimensional—long waves or swells generated by wind (wind
waves) or earthquakes (tsunamis).

Main approaches pursued were based on using : (i) linear or nonlinear Shallow Water
Wave equations (Carrier and Greenspan 8 1958, Carrier 7 1966, Camfield and Street 6

1969, Hibberd and Peregrine 50 1979, Kobayashi et al. 57 1989, and Synolakis 89 1990);
(ii) Boussinesq or parabolic approximations of Boussinesq equations (Peregrine 72 1967,
Pedersen and Gjevik 71 1983, Freilich and Guza 24 1984, Zelt and Raichlen 97 1990, and



Kirby 55 1991) a. Most of the methods used in these works, however, are based on first-
or low-order theories whose assumptions—for instance small amplitude, mildly nonlinear
waves, or mild bottom slope—may no longer be valid for waves that, due to shoaling, may
be close to breaking at the top of a slope (i.e., strongly nonlinear) before they run-up or
break on the slope.

Until recently, state-of-the-art methods used for predicting characteristics of highly
nonlinear waves shoaling over a sloping bottom up to impending breaking (e.g., shoaling
coefficients, breaker height and kinematics), were based on higher-orderexpansion methods
originally developed for waves of permanent form over constant depth (Stiassine and
Peregrine 84 1980, Peregrine 73 1983, Sobey and Bando 82 1991). These methods, however,
by nature cannot include effects of finite bottom slope or changes of wave form during
shoaling. Long waves, in particular, are known to become strongly asymmetric when
shoaling over a gentle slope and approaching breaking (e.g., experiments by Skjelbreia 78

1987, Grilli et al.41 1994), an effect that is not included in the above approaches. Griffiths
et al. 28 1992, compared measurements of internal kinematics of periodic waves shoaling
up a 1:30 slope with predictions of the 5th-order Stokes theory, the 9th- and higher-order
streamfunction theory, and the full nonlinear model by New et al. 65. They found that
horizontal velocities were correctly predicted by most theories below still water level but b

, in the high crest region, low-order theories underpredicted velocities by as much as 50%
whereas predictions of the fully nonlinear theory were quite good up to the crest c. Grilli
et al.41 1994 showed that computations with a fully nonlinear potential model quite well
predicted the shape of solitary waves during shoaling over a 1:35 slope, as measured in
well-controlled laboratory experiments. The agreement was within 2%, both in time and
space, up to the breaking point. The same computations also showed that, even for long
waves, horizontal velocities under a shoaling wave crest eventually become significantly
non-uniform over depth (in some cases by more than 200%), an effect which is neglected
in (first-order) nonlinear shallow water wave theories.

Grilli et al.40 1994 and Wei et al.93 1995 recently compared predictions of classical
(i.e., weakly nonlinear and weakly dispersive) and modified (i.e., with improved dispersion
characteristics and/or full nonlinearity) Boussinesq models (BM) to the full nonlinear
potential flow solution—used as a reference—for the shoaling of solitary waves over slopes
1:100 to 1:8, up to the breaking point. They found that, in the region of large nonlinearity
where the ratio wave height over depth is larger than 0.5, the classical BM significantly
overpredicts crest height and particle velocity. This model also predicts spurious secondary
troughs behind the main crest. The fully nonlinear BM, however, was found much more
accurate in predicting both wave shape and horizontal velocity under the crests, from bottom
to surface. Similar conclusions were reached for the propagation of highly nonlinear undular
bores over constant depth.

aThe reader can find details on various wave theories and summaries of some of the above referenced works
in Mei 63 1983, and Dean and Dalrymple 17 1984.
bsee Ref.17 for definitions of these wave theories.
cNote that these comparisons were only done for a mild slope (i.e, with limited bottom effect) and for cases
in which breaking occurred by spilling. The authors pointed out that “all theories are grossly in error when
compared to severe plunging breakers”.
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Fig� �� Instability by plunging breaking of a large sine wave over constant depth h� as computed
with the model by Grilli et al. 36� ����� Initial wave height is H�h � 0�333� length L�h � 1�85�
and period T

p
g�L � 2�50� A periodicity condition is used in the model on lateral boundaries� to

create a situation similar to that examined by Longuet�Higgins and Cokelet 62� Symbols ��� denote
BEM discretization nodes� identical to individual �uid particles whose motion is calculated in time�

In the above studies, it is thus seen that a correct representation of both the shape
and kinematics of strongly nonlinear long waves can only be achieved when using highly
or fully nonlinear models, i.e., models in which no approximation are introduced for the
free surface boundary conditions. Even for long waves with very small nonlinearity when
approaching the deep water end of a slope, it is also seen that long distances of propagation
over a gentle slope can make such waves both strongly asymmetric and nonlinear towards
the top of the slope, whether they subsequently break or simply run up the slope.

These conclusions justify using fully nonlinear models for studying shoaling, runup or
breaking, of large long waves close to the shore.

1.2. Modeling of highly nonlinear waves

Over the past twenty years, considerable efforts have been devoted to developing
increasingly accurate and efficient models for fully nonlinear water waves at sea. Starting
with the key work by Longuet-Higgins and Cokelet62 1976, the most successful approaches
so far have been based on describing the physical problem based on potential flow theory
(i.e., neglecting both viscous and rotational effects on the wave flow) while keeping full
nonlinearity in the free surface boundary conditions (i.e., a “Fully Nonlinear Potential
Flow” (FNPF) model). Most methods have also used a representation of the flow that
allows for multi-valued free surface elevations appearing during breaking (i.e., a mixed
Eulerian-Lagrangian representation; see Fig. 1). Despite its intrinsic limitations, potential
flow theory has been shown in many applications to model the physics of wave propagation
and overturning in deep water, and wave shoaling up to breaking or runup over slopes, with
a surprising degree of accuracy (e.g., Dommermuth et al.20, Grilli30, and Grilli et al.41�47�48;
see below for a discussion).

Many quite exhaustive reviews of the relevant literature have been published to date
and can be consulted for more information (e.g., Grilli30, Grilli et al.36�38, Peregrine73�74,
Yeung95). For the purpose of introducing the present numerical model and its applications
to long wave propagation and runup, the following is a brief description of the main steps in
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Fig� 	� Generation and shoaling over a �
�� slope of numerically exact periodic waves �streamfunction

waves� with initial height Ho�ho � 0�1 and period T
p
g�ho � 3�55� as computed by Grilli and

Horrillo 31� To achieve zero�mass��ux and thus constant volume in the computational domain� waves
are generated on top of an opposite current equal to the mean mass transport velocity� An absorbing
beach �AB� of length l� with counteracting free surface pressure� is speci
ed for x�l � 38 over a shelf
of depth h1 � 0�05�

the development of FNPF models that will identify key elements of the problem. Starting
with Longuet-Higgins and Cokelet 62, the problem was first formulated in deep water by
assuming that waves were two-dimensional in the vertical plane—i.e., long crested—and
periodic in space, thus making it possible to use conformal mapping techniques which
wrap the computational domain on itself and eliminate the need for lateral boundaries in
the model. Doing so, deep water plunging breakers could be calculated up to touch down
of the jet on the free surface (Fig. 1). Along this line, various increasingly accurate and
stable numerical formulations were proposed for both deep and constant water depth, and
applications sometimes also included periodic structures (Dold and Peregrine 18, New et
al.65, and Vinje and Brevig 92) d. Results of such computations were compared to laboratory
measurements and found to agree with them up to the latest stages of wave breaking, thus
confirming the validity of the FNPF approach to model the physics of wave breaking far
from the shore (e.g., Dommermuth et al. 20).

Most of the previous and similar models—except perhaps the improvement of Dold
and Peregrine’s model by Cooker13 and Cooker et al.15—due to their intrinsic nature, were
unable or had the greatest difficulties generating and propagating waves over complex
bottom topography. This, however, is required for solving problems of wave shoaling and
breaking in shallow water and over beaches, and problems of wave interaction with coastal
structures and runup on slopes. To solve such problems, models working in the so-called
physical space must be used which brings additional problems of wave generation and/or
wave absorption in the computational domain and of treatment and representation of corners
in the modeled boundary (these aspects are discussed in individual Sections below). Early
works that addressed problems of wave generation by a wavemaker in the physical space
are the model by Kim et al.54 which, however, was limited to non-breaking (single-value
elevation) waves, and the model by Lin et al.60, who used and improved Vinje and Brevig’s
formulation but somewhat restricted their scope of application. More recent models working

dAlso note the somewhat different method introduced by Zaroodny and Greenberg 96, and Baker et al.5, based
on a vortex sheet approach.



in the physical space can accommodate almost arbitrary incident waves, complex bottom
topography, and moving boundaries (e.g., Cointe10, Grilli et al.36�39, Klopman56, Ohyama
and Nadaoka67). An example of such recent computations for the shoaling and absorption
of periodic waves over a gentle slope is given in Fig. 2.

In most FNPF applications to date, the governing (Laplace’s) equation is solved using
a higher-order Boundary Element Method (BEM), either based on Green’s identity or on
Cauchy integral theorem formulations, and on time integrating the free surface boundary
condition using either a time marching predictor-corrector method 62�92 (Runge-Kutta and/or
Adams-Bashforth-Moulton schemes) or a Taylor series expansion method18�36. The FNPF
model by Grilli et al.36�39�46, which will be used in the present applications, was developed in
the physical space following the strategy of deep water and constant depth nonlinear wave
models mentioned above (e.g., Dold and Peregrine 18). It is based on a mixed Eulerian-
Lagrangian representation with full nonlinearity in the free surface boundary conditions.
FNPF equations are solved by a BEM based on Green’s identity, which easily accounts for
arbitrary bottom topography and almost arbitrary incident wave conditions. Development
of this model was carried out under a 2D formulation, which makes the model directly
applicable to shoaling and breaking and/or runup over arbitrary slopes of normally incident
long crested waves, without any approximation on the wave shape or on the free surface
boundary conditions e. Many validations (both analytical and experimental) of Grilli et
al.’s model and of its more recent improved versions were carried out, mostly using solitary
waves, for : (i) shallow water wave generation, propagation, and reflection, by Grilli and
Svendsen45�47; (ii) wave runup over a steep slope, by Svendsen and Grilli87; (iii) shoaling
and breaking over both gentle and steep slopes, by Grilli et al.41�48; (iv) wave impact on a
mixed breakwater, by Grilli et al.33�35; and (v) wave propagation over a submerged obstacle,
by Grilli et al.32�34.

For completeness, other fully nonlinear wave models used for calculating wave prop-
agation and runup on slopes (most of them based on boundary integral formulations) will
be mentioned. These models have either inherently been limited to non-breaking waves
(Fenton and Rienecker 23 1982, Nakayama 64 1983, Liu et al.61 1992) or have repre-
sented extensions (e.g., to axisymmetric problems) or variant of existing methods—mostly
by18�62�92—(Isaacson 51 1982, Jansen 53 1986, Dommermuth and Yue 19 1987, Gravert 26

1987, Greenhow 27 1987, Tanaka et al. 91 1987, Romate 76 1990, Seo and Dalrymple 77

1990).
Detailed equations and numerical procedures for Grilli et al.’s wave model are presented

in Sections 2,3, and 4, and applications of the model to cases of long wave propagation in
shallow water and runup on slopes are presented in Section 5.

eNote that all elements in Grilli et al.’s model were selected to allow implementation of a three-dimensional
model as a direct extension of the 2D formulation. This is unlike 2D FNPF models based on complex variable
formulations. Such extensions of FNPF models in the physical space to three-dimensional problems have
already been proposed by Romate 75�76 1990, Yue94 1992, and Broeze3 1993, but still face challenges posed
by the formidable size of the computational problem as well as problems of both representation of the free
surface and boundary conditions at intersections between side walls and the free surface.



2. Mathematical model

Governing equations for the two-dimensional FNPF model by Grilli et al. 36�46 and its
most recent extensions are presented in the next subsections. Full nonlinearity is maintained
in the free surface boundary conditions, and time integration of these conditions is based
on higher-order Taylor expansions, for both the free surface position and the potential.
No-flow boundary conditions are prescribed along solid boundaries of the domain (bottom,
coastal structures) and arbitrary waves are generated in the model, either by specifying an
initial wave on the free surface, either by simulating a wavemaker at the open-sea boundary
of the computational domain (as in laboratory experiments), or by using a line of internal
sources. Finally, wave energy absorption can be specified in the model using an absorbing
beach.

2.1. Governing equations and solid boundary conditions

The velocity potential ��x� t� is used to describe inviscid irrotational 2D flows in the
vertical plane �x� z�, where the velocity is given by u �r� � �u�w�. Continuity equation
in the fluid domain ��t�, with boundary ��t�, is a Laplace’s equation for the potential (see
Fig. 3 for definitions),

r2� � 0 in ��t� (1)

On the free surface �f �t�, � satisfies the nonlinear kinematic and dynamic boundary
conditions,

Dr

Dt
� u �r� on �f �t� (2)

D�

Dt
� �gz � 1

2
r� �r�� pa

�
on �f �t� (3)

respectively, with r the position vector of a free surface fluid particle, g the acceleration
due to gravity, z the vertical coordinate (positive upwards, and z � 0 at the undisturbed
free surface), pa the atmospheric pressure, and � the fluid density. The material derivative
is defined as,

D

Dt
� �

�t
� u �r (4)

Along the stationary bottom �b and other fixed boundaries denoted as �r2, a no-flow
condition is prescribed as,

r� � n � ��

�n
� 0 on �b and �r2 (5)

in which n is the unit outward normal vector.

2.2. Boundary conditions for wave generation
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Fig� �� Typical computational domain for wave shoaling over a slope� with de
nition of various
boundaries� The domain has a slope s� terminated by a shelf of depth h1 at its upper part �case
where waves break before reaching the top of the slope�� The sketched free surface pro
le corresponds

to a cnoidal wave of initial height Ho�ho � 0�2 and period T
p
g�ho � 25� generated by a piston

wavemaker on boundary �r1�t��

In models developed in the physical space, it is necessary to generate waves at one
extremity of the computational domain. Kim et al.54, Lin et al.60, Cointe10, Dommermuth
et al.19�20, and Grilli et al.36 generated waves in their FNPF models using surface-piercing
numerical wavemakers. Brorsen and Larsen4 proposed a different approach for generating
waves using internal sources, which was also used by Grilli and Svendsen43 and Ohyama
and Nadaoka66 in their models.

When using a wavemaker to generate waves, there is a corner in the model, at the
intersection between the wavemaker and the free surface, separating boundary segments
with both different boundary conditions and normal directions. Possible singularity of the
flow near such an intersection has given rise to substantial concern in the literature. Grilli and
Svendsen46 reviewed such singularity problems and showed that, in the particular context
of wavemakers starting from a state of rest (“cold start”), provided the initial acceleration
of the wavemaker is small with respect to gravity and corner boundary conditions are well-
posed in the model, numerically speaking, there will be no strong singularity at the free
surface corner (at least in the FNPF regime). Thus, in the applications, they used an initial
damping function for the wavemaker motion in such a way that the acceleration remain small
during the first few time steps of the computations. They also ensured well-posedness of
governing equations and boundary conditions on both sides of corners using a double-node
representation combined with (continuity and compatibility) conditions expressing that
potential and velocity are unique at corners (see Grilli and Svendsen46 for more details).
Many validations of Grilli and Svendsen’s model were conducted for numerical piston or
flap type wavemakers, particularly with solitary waves (e.g., Grilli et al.33�34�36�41�45�46�47).
Extensions of compatibility relationships that further improve numerical accuracy at corners
were proposed by Otta et al.70 and Svendsen et al.88, and their application and validation
for the wavemaking problem was further discussed by Grilli and Subramanya39.

Assuming “numerically well-posed” wavemaker boundary conditions, it is well known,
however, that a clean finite amplitude wave cannot be generated using solid wavemakers,
whether in laboratory tanks or in nonlinear wave models (see, e.g., Mei63 p. 578). Essen-



tially, due to wave nonlinearity, higher-order harmonics are being generated that modulate
the shape of the wave one intends to generate. This is because sinusoidal waves or other
first-order solutions like Boussinesq solitary waves are not exact solutions of the fully non-
linear problem. To overcome this difficulty and generate “clean” finite amplitude waves
in their model, Grilli and Svendsen46 used the numerically exact method by Tanaka90 to
generate solitary waves, and Klopman56, Subramanya and Grilli85, and Grilli and Horrillo31

used the exact periodic wave solution of the FNPF problem (i.e., a streamfunction wave
(SFW) solution; Dean and Dalrymple17 p. 305) to generate periodic waves f.

In the present model,waves are thus generated either by prescribing a wavemaker motion
on the “open sea” boundary �r1�t� of the computational domain, either by prescribing the
elevation and potential on the free surface of a known “exact” wave solution of flow
equations, or by using an internal line of sources.

General boundary conditions for these three types of wave generation are given in the
following. Generation of specific waves is discussed in Section 3.

2.2.1. Plane wavemaker

A plane wavemaker motion x � xp�z� t� can be specified on the moving boundary
�r1�t� to generate waves as in laboratory experiments. In this case, normal velocity is
specified over the surface of the paddle as,

��

�n
� up � n �

�xp

�tq
1 � ��xp

�z
�2

on �r1�t� (6)

in which the right hand side represents the normal paddle velocity. Eq. (6) is developed in
Section 3 for the case of piston or flap wavemakers.

2.2.2. Exact wave solutions

“Numerically exact” permanent form solutions of the FNPF boundary value problem
over constant depth (eqs. (1)-(5); i.e., solitary or streamfunction waves) can be generated
either by specifying their potential ��x� to� and elevation ��x� to� on the free surface �f �to�
at initial time to (solitary waves), or by specifying their horizontal velocity and acceleration
�u�z�� �u��t� along a vertical wavemaker boundary (streamfunction waves).

For exact solitary waves, normal velocity is also prescribed to U�t� over the fixed
vertical lateral boundaries �r1, �r2. We thus get,

� � ��x� to� � z � ��x� to� on �f �to�

��

�n
� U�t� on �r1, �r2 (7)

in which overbars denote prescribed values.

fNote that SFW’s were also used in periodic FNPF models by Skourup et al.80 and Grilli et al.36.



Streamfunction waves, unlike linear periodic waves, have a non-zero horizontal mass
flux. When specified at one extremity of the model, such waves thus lead to a continuous
accumulation of water in the computational domain. In Klopman’s56 computations, only
steep slopes were modeled in fairly short computational domains and waves were computed
over a few periods only. Hence, water accumulation was small and did not cause any
apparent problem. In Subramanya and Grilli’s85 shoaling computations, however, with a
longer computational domain and for a larger number of wave periods, water accumulation
resulted in a significant increase in the mean water level that clearly affected wave shape.
For the corresponding coastal problem, one would expect an offshore return flow to occur
under wave troughs (undertow) and cancel the incoming wave mass flux at some distance
from the shore, thereby ensuring constant water volume in the nearshore region. Hence,
water accumulation in the computational domain is non-physical and should be prevented.
Grilli and Horrillo31 1995 proposed a method for achieving zero-average-mass flux in a
SFW generation which they implemented and tested in their model. In this method, a
depth uniform current, equal and opposite to the wave mean mass transport velocity is
superimposed to the SFW g.

For generating SFW’s, a vertical wavemaker boundary is horizontally moved at one
extremity of the model, following the motion, xp�t� � x1�t�, of the first node on the free
surface, and wave kinematics is specified along the vertical boundary according to the SFW
solution. Wave phase at time t is thus calculated along the wavemaker as,

��t� � k �xp�t� � c t� � �o (8)

where �o is an initial shift to the location of “zero-up-crossing ” towards the wave crest, for
which both wave elevation and horizontal velocity are zero. To avoid problems due to the
“cold start” of the wave generation, the SFW velocity field is multiplied by a (“tanh-like”)
damping function D�t� smoothly varying between 0 to 1 over a specified number of wave
periods. Boundary conditions on the wavemaker boundary thus read,

��

�n
� �u��� z�D�t� on �r1�t� � fx � xp�t�; z � ��ho� ��xp�t���g

�2�

�t�n
� �u��� z� �D�t� � �u

�t
��� z�D�t� (9)

where u and �u��t are calculated using both the coefficients and the wave characteristics
obtained from Dean’s17 streamfunction solution h.

2.2.3. Internal sources
gNote that since a current affects wave characteristics due to Doppler effects, SFW’s have to be calculated
by iteration so as to satisfy the zero-mass-flux condition as well as the streamfunction wave equations (see
details in Ref.31).
hAcceleration terms have been mentioned in Eq. (9) since they will be needed in the model, as described
below in Section 2.4.



The traditional way of generating waves by specifying a velocity distribution or the
motion along part of the boundary has the disadvantage that this boundary also reflects
waves propagating towards the boundary, from inside the computational domain (such as
the scattered wave field from a structure). This is a major problem in any physical model.
In a computational model, this can be avoided to a large degree by generating waves by
internal sources (an idea first suggested by Brorsen and Larsen 4, for a linear wave model).
If oscillating sources are distributed along a vertical, say, line placed a short distance inside
the fluid domain, waves will be generated and will propagate away from the sources in
both directions. The waves moving into the computational domain are the ones we are
interested in. On the other hand waves scattered from structures inside the computational
domain will essentially pass through the sourceline. Those scattered waves, along with
waves generated away from the domain, should be leaving the domain through its open
sea boundary. Hence, a radiation condition or an absorbing beach should also be specified
with this type of wave generation (see, Grilli and Svendsen43, Otta et al. 70, Ohyama and
Nadaoka66, and Grilli and Horrillo31, for detail).

When sources (or sinks which are negative sources) are introduced in the fluid domain,
Laplace’s equation (1) becomes the Poisson equation,

r2� � b�x� t� in ��t� (10)

where b�x� t� is the density of a known distribution of sources inside the domain ��t�.
Values of b�x� t� are discussed in Section 3 for the generation of specific waves in the
model.

2.3. Boundary condition for wave absorption

Energy absorption may be necessary in a FNPF model to calculate shoaling of a train
of waves for sufficiently long time over a slope, whether these waves break and/or runup
on the slope. As discussed above, absorption may also be necessary for the generation of
waves by an internal line of sources.

Within the frame of potential flow theory, no purely dissipative process can be used to
absorb the energy of incident waves. To overcome this difficulty, two main approaches were
proposed in the literature mostly for the absorption of linear waves or weakly nonlinear
long waves : (i) wave radiation through an open boundary (e.g., Engquist and Majda22,
Israeli and Orszag52, Orlanski68, Sommerfeld83); and/or (ii) wave damping directly on the
free surface or within a so-called “sponge layer” (e.g., LeMehaute59, Larsen and Dancy58).
No general method has yet been proposed for the absorption/radiation of fully nonlinear
transient waves. Instead, some rather heuristic boundary conditions were proposed.

Along the line (i), Lin et al.60 matched exterior linear solutions to the nonlinear interior
solution at finite distance. Dommermuth and Yue19 used the same method as Lin et
al.’s to compute the forced heaving motion of an axisymmetric cylinder. Some of the
radiation conditions developed for linear waves are also applicable to fully nonlinear waves
of permanent form like solitary or streamfunction waves. Grilli et al. 36, for instance,
developed an implicit iterative radiation condition based on Sommerfeld’s83 condition. A
more accurate explicit approach was proposed by Otta et al.70 who combined Orlanski’s68



radiation condition with the incident wave field kinematics calculated at internal nodes in
the model, close to the radiation boundary. The method worked well for periodic waves
but only showed limited success when applied to irregular waves.

Along the line (ii), Larsen and Dancy58 developed a sponge layer method based on the
idea of an “absorbing beach” (AB), first suggested by LeMehaute59. They only implemented
the method in a (weakly nonlinear) Boussinesq model but their method was later used by
Ohyama and Nadaoka66 in a FNPF model. Similar methods were successfully used by
Baker et al.5 and Cointe10 in their FNPF models, and by Subramanya and Grilli85 and
Grilli and Horrillo31, who implemented an AB with active control of the beach parameter
in their FNPF model. Boundary conditions for the latter AB are briefly presented in the
following. In this case, the AB is always located at the top of a slope but the same principle
can be (and has been) used to generate waves at an open ocean boundary in combination
with a distribution of internal sources (Ohyama and Nadaoka66) or to simulate bottom
discontinuities—like shelf-breaks or reefs—inducing local energy loss in incident waves.

The principle of the AB is similar to the ideas developed in Refs.5�10 : a negative work
is created against incident waves over a given section of the free surface by specifying an
external counteracting pressure, pa � P , in the dynamic free surface condition (3) (with
z � �), which effectively extracts energy from the incident wave train. For shoaling
problems, the AB is located in the model over a shallow shelf region of maximum depth
h1 in the upper part of the slope (Fig. 2). In most earlier approaches, P was specified
proportional to the free surface potential � but this could result in creating a positive work
in the AB in some cases and, hence, lead to increased wave energy in the beach. In order
for the AB to always produce a negative work against the wave motion and thus to always
remove energy from the wave train, as suggested by Cao et al.9, the external pressure is
defined here as proportional to the normal particle velocity, ����n, along the free surface.
The modified dynamic free surface condition thus reads,

D�

Dt
� 1

2
r� �r�� g� �

P

�
� 0 (11)

with,

P �x� �� t� � ��x� t�
��

�n
���x� t�� (12)

in which �, the beach absorption function, varies smoothly along the AB as,

��x� t� � �o�t� �
q
gh1 �

x� xl
l

�� (13)

where � � 2 to 3 and �o is a non-dimensional beach absorption coefficient. In earlier
approaches, �o was specified as constant (e.g., Refs.5�9�10). To optimize absorption of
incident wave energy in the AB and make it easier, at a later stage, to deal with irregular
waves, Grilli and Horrillo31 adaptively calculated �o in the model as a function of time (i.e.,
for each time step in the model) for the AB to exactly absorb the period-averaged wave
energy entering the beach over time step �t. Details and validation of adaptive energy
absorption in the AB can be found in Ref.31.



2.4. The time integration

Free surface boundary conditions (2) and (3) are integrated at time t, to establish both
the new position and the relevant boundary conditions on the free surface, at a subsequent
time t � �t (with �t being a small time step). In the model, this is done following the
approach introduced by Dold and Peregrine 18, using Taylor expansions for both the position
r�t� and the potential ��r�t�� on �f �t�. Series, truncated to N th-order, are expressed in
terms of the material derivative (4) and of time step �t, as,

r�t��t� � r�t� �
NX
k�1

��t�k

k!
Dk

r�t�

Dtk
�O���t�N�1� (14)

for the free surface position, and,

��r�t��t�� � ��r�t�� �
NX
k�1

��t�k

k!
Dk��r�t��

Dtk
�O���t�N�1� (15)

for the potential. The last terms in Eqs. (14) and (15) represent truncation errors. The
time updating of the free surface geometry described by Eq. (14) actually corresponds to
following the motion of fluid particles in time. This procedure is often referred to as a
“Mixed Eulerian-Lagrangian” formulation.

Second-order series are used in the present case (N=2). Higher-order Taylor series,
however, have successfully been used by others to provide highly accurate solutions for
periodic problems (e.g., Dold and Peregrine 18 (N=3), and Seo and Dalrymple 77 1990
(N=4)).

First-order coefficients in Eqs. (14) and (15) are obtained, based on Eqs. (2) and (3),
using � and ��

�n
as provided by the solution of Laplace’s equation (1) at time t. Second-order

coefficients are expressed as D

D t
of (2) and (3), and are calculated using the solution of a

second elliptic problem of the form (1) for ( ��

�t
, �2�

�t�n
). This is because all time derivatives of

the potential satisfy Laplace’s equation. Higher-order series would simply require that more
Laplace’s equations are solved for higher-order time derivatives of �. Detailed expressions
of the coefficients of Taylor series (14) and (15) are given in Appendix A, in a curvilinear
coordinate system �s�n� defined along the boundary (Fig. 3).

No-flow boundary conditions for a second Laplace’s equation for ��

�t
are readily obtained

along solid boundaries, as,

�2�

�t�n
� 0 on �b and �r2 (16)

The boundary condition at the free surface is obtained from Eqs. (3) and (4) as,

��

�t
� �1

2
r� �r�� pa

�
� gz on �f �t� (17)

which indicates that ��

�t
can be specified on the free surface as a function of known geometry

and potential at time t.



When �r1�t� represents a wavemaker boundary moving at velocity up�xp�t�� t�, we
have by (6),

�2�

�t�n
�

�

�t
�up � n�

or,

�2�

�t�n
� �

d �up � n�
d t

� up �r�up � n�� on �r1�t� (18)

in which, d

d t
� �

�t
� up �r, denotes time derivative following the motion of the boundary

xp�t�. This boundary condition is further developed in Section 3.
When waves are generated by a line of internal sources, the time derivative of the source

strength �b

�t
�x� t� is introduced in a Poisson equation of the form (10), for ��

�t
.

2.5. Discussion of model assumptions and limitations

No approximations other than potential flow theory have been made in the model. In
particular, unlike analytical or numerical expansion wave theories (see, Dean and Dalrymple
17), no small parameter, periodicity, or permanent form wave conditions,have been assumed.
This makes the present model valid from deep to shallow water and for arbitrary length
waves.

The main limitations—inherent to potential flow theory—of this type of model are that
bottom friction and flow separation cannot be modeled, and that computations have to be
interrupted shortly after breaking of a wave first occurs. These limitations are discussed in
the following :

� Long wave theory shows that bottom friction should attenuate long waves in shallow
water, whereas short waves should be relatively unaffected.
For solitary waves shoaling over gentle bottom slopes, however, experiments by
Camfield and Street 6 showed that “bottom roughness has no measurable effect”.
This was later confirmed in other experiments by Grilli et al. 41 (see Fig. 14 and
applications in Section 5.4). The likely reason for this is that bottom friction only
becomes significant when wave height is large and this only occurs in a small region
over the slope, just before the wave starts breaking.
For large solitary waves running up a steep slope, Grilli and Svendsen44�45�47 and
Svendsen and Grilli 87 compared their nonlinear computations to experiments and
found that frictional effects were also negligible. In this case, the distance of propa-
gation over steep slopes was likely too small for friction to significantly affect waves,
despite their large amplitude.
Hence, bottom friction is not an important factor when wave height and/or distance
of propagation are small.

� Flow separation over obstacles on the bottom is significant for steep obstacles (like
steps or rectangular bars) of large height to depth ratios, and for high waves (Grilli et
al. 32�33 1992; see Figs. 5-8 in Section 5.2).



Flow separation leads to an energy loss at the obstacle that reduces wave height
downstream of the obstacle. As mentioned before, although not yet tested in the
model, localized energy loss could be specified to model dissipation at steps and
obstacles on the bottom based on the energy absorption method used by Grilli and
Horrillo31 for their absorbing beach.

� When a wave starts overturning, a small horizontal jet forms in the highest region
of the wave crest (Figs. 1 and 4). The jet curls up on itself and falls towards
the free surface. Breaking occurs when the tip of the falling jet impinges on the
free surface, leading to a local violation of continuity equation manifesting itself
by strongly unstable numerical results. Hence, computations with the model are in
essence limited to prior to the time such an impact of a wave on the free surface
first occurs. Because of potential flow theory hypotheses, however, computationally
accurate results may not be physically realistic up to that stage. This is discussed
below.
Dommermuth et al. 20 compared wave profiles calculated using a FNPF model
to experimental results for deep water overturning breakers. They concluded that
potential theory is valid up to the moment the tip of the breaker jet hits the free
surface (i.e., slightly further in time than in the situation illustrated in Fig. 1).
Skyner et al. 81 confirmed this conclusion and compared computed and measured
velocities inside plunging breakers. The good agreement they found for the velocities
further confirmed the validity of potential flow theory.

� For a train of solitary or periodic waves shoaling over a sloping beach, the front wave
of the train is also the steepest wave that first breaks in the shallower water. Hence,
the model can be used to calculate detailed shoaling coefficients over the length of the
beach, up to the point the front wave breaks (breaker line). In this case, computations
are not greatly affected by the limitation of the model to the first breaking wave,
discussed above.
For periodic waves, computations can be pursued for a longer time by using an
absorbing beach in the upper slope region of the model (Subramanya and Grilli 85,
Grilli and Horrillo31). Doing so, waves can shoal the slope up to a very large fraction
of their breaking height and then be absorbed in the beach. A quasi-steady state
can thus be reached in the model for which characteristics of fully nonlinear waves
shoaling over a slope (or more complex bottom geometry) can be calculated.
For irregular wave trains and/or complex bottom geometry, breaking is likely to occur
almost anywhere in the shoaling region, due to nonlinear interactions between wave
components and between waves and bottom geometry. Hence, computations may
have to be stopped when breaking first occurs, and this limitation may reduce the
utility of the model in its present form for addressing these situations.

� Finally, runup of non-breaking waves on steep or gentle slope can be accurately
calculated in a FNPF model (e.g., Grilli et al.41, Grilli and Svendsen44�45�47, Svendsen
and Grilli87), again, provided wave reflection does not make another incoming wave
break, or a thin jet of water is not expelled at runup (like, e.g., in the computations
with a vertical wall in Cooker12, Cooker and Peregrine14, and Grilli et al.33�35), or
breaking does not occur during the backwash (like in Grilli and Svendsen47, Svendsen



and Grilli87, Otta et al.69).

3. Wave generation in the model

3.1. Exact solitary waves

Tanaka 90 proposed a method to calculate numerically exact solitary wave solutions of
the FNPF problem in constant depth ho. This method has been implemented in the model
to specify initial exact solitary waves for which surface elevation and potential are directly
prescribed on the free surface i, using (7).

In the applications with solitary waves, standard dimensionless variables, x�� z�� t� and
c�, will be used with definitions,

x� �
x

ho
� z� �

z

ho
� t� � t

s
g

ho
� c� �

cp
gho

� F (19)

in which c denotes wave celerity and F is the wave Froude number. For solitary waves,
initial wave height Ho is identical to the maximum elevation above z � 0, and we further
denote by, H � � H�ho, the nondimensional wave height. Details of Tanaka’s method are
given in Appendix B.

3.2. Exact periodic waves

The streamfunction wave (SFW) theory was introduced by Dean16 (see also Dean and
Dalrymple17) to calculate numerically exact periodic solutions of the FNPF problem in
constant depth ho. The original method worked in a coordinate system moving with the
wave celerity, c � L�T (with L the wavelength and T the wave period), and accounted for
the presence of a depth-uniform current U .

A streamfunction wave solution is thus defined as,

	��� z� �
NX
j�1

X�j� sinh jk�ho � z� cos j� � �U � c�z (20)

where, � � k �x � c t�, is the wave phase and X�j� is a set of N coefficients that are
numerically calculated, along with L � 2
�k, to satisfy free surface boundary conditions
(2) and (3), and specified wave height and period �H�T �.

Horizontal velocity is easily obtained from Eq. (20) in the original coordinate system
as a function of depth as,

u��� z� � ��	
�z

� c � �
NX
j�1

�jk�X�j� cosh jk�ho � z� cos j� � U (21)

i In applications, initial exact solitary waves are specified far enough from lateral boundaries of the model for
U �t� � 0 to be assumed with sufficient accuracy.



Noting that, ����t � �c k, local horizontal acceleration is obtained as,

�u

�t
��� z� � �c

NX
j�1

�jk�2 X�j� cosh jk�ho � z� sin j� (22)

Equations (21) and (22) are used to specify the kinematics of an incident SFW over a
vertical wavemaker boundary located at, x � xp, in the model (Eq. (9)).

Following the method by Grilli and Horrillo31, current U can be specified as opposite
to the direction of wave propagation, with a magnitude such as to generate zero-mass-flux
SFW’s in the model.

3.3. Wave generation by a plane wavemaker

3.3.1. Introduction

An oscillating paddle wavemaker can be specified on boundary �r1�t� to generate
waves the same way as in laboratory wave tanks. The wavemaker motion xp�t� and
velocity up�xp�t�� t� required to generate specific incident waves can be obtained from
first-order wave theory (i.e., Boussinesq theory for long waves and first-order Stokes theory
for periodic short waves) j.

Waves generated with a first-order method propagate without change of form only in a
model solving first-order theory equations. In the present fully nonlinear model—or for this
respect in a laboratory wavetank—such waves are not expected to correspond to permanent
form solutions (for this matter, a SFW solution would be needed). Goring 25, for instance,
found that solitary waves of small amplitude (H � � 0�2) generated by a piston wavemaker
in a wave flume kept their shape constant within a very small margin. For such small
waves, the first-order wave profile is quite close to an exact solitary wave. For steeper
waves (H � � 0�2), however, Goring found that solitary waves shed a tail of oscillations
behind them as they propagated down the flume. Similarly, in computations with their
model, Grilli and Svendsen 47 observed that waves of significantly large height generated
by a wavemaker adjusted their shape as they propagated down a numerical tank. Such
results were reproduced in many different numerical set-ups and found to agree quite well
with corresponding laboratory experiments (Grilli and Svendsen 47, Grilli et al. 32�33�34�41,
Svendsen and Grilli 87).

3.3.2. General wavemaker boundary condition

General boundary conditions for ��

�n
and �2�

�t�n
can be derived for any specified wavemaker

motion and velocity, based on Eqs. (6) and (18). The latter equation for �2�

�t�n
includes a

time derivative with respect to the rigid body motion that needs to be carefully derived.

jNote that second-order corrections can also be applied to wavemaker motion in the model as done in
laboratory flumes (e.g., Skourup79 1995).



This was done by Cointe 11 for the motion of a rigid body of arbitrary shape. In the case of
a plane rigid body like a wavemaker, Cointe’s expression reads,

�2�

�t�n
� �

��
� � n� � �

� ��
�
� � s�� ��

�s
�� �2�

�n�s
�
�
� � s� � �2�

�s2
�
�
� � n� (23)

in which � denotes the position vector for points on the wavemaker surface, � is the angle
of rotation around point xg, and dots denote absolute time derivatives with respect to the
body motion, d�d t, defined as in Eq. (18).

Expressions for the velocity and the acceleration of boundary points �
�
��
��
�� can be

derived for various types of wavemakers as a function of wavemaker stroke xp and used in
Eq. (23) to specify boundary conditions in the model. This is done in Appendix C for both
piston and flap type wavemakers.

In the next two sections, expressions of wavemaker stroke used for generating first-order
waves in the model are discussed.

3.3.3. Generation of long waves by a piston wavemaker

In a long wave of permanent form over constant depth ho, due to mass conservation,
we have at any instant,Z �

�ho

u dz � ca� �Qs � ucho (24)

in which ca is the propagation speed of the wave in a fixed frame of reference, ��x� t� is the
wave elevation above still water level, Qs is the nonlinear mass flux averaged over a wave
period, and uc is the speed of the current defined as the averaged particle velocity below
wave trough level.

For a first-order long wave, the right hand side of Eq. (24) simply reduces to c�, where c
is the speed of the wave relative to the water, so that Eq. (24) becomes the simpler expression
used, e.g. by Goring 25, for determining the motion required by a piston wavemaker to
generate a specified water surface elevation immediately in front of the wavemaker. Since
the piston motion creates a depth uniform horizontal velocity up�xp�t�� t�, Eq. (24) reduces
to,

up�t� �
c�

ho � �
(25)

which means that a surface elevation � can be generated by specifying the piston velocity
up as defined above. In this case, horizontal piston motion xp�t� is given by,

xp�t� �
Z t

0

c ��x� 
 �

ho � ��x� 
 �
d
 (26)

Developments of this equation for generating first-order solitary or cnoidal waves are
given in Appendix D.

As mentioned before, this method will only generate accurate permanent form long
waves for sufficiently small initial wave height (i.e., smaller than � 0�2ho). This is
illustrated in the applications in Section 5.



3.3.4. Generation of a sum of periodic sine waves by a flap wavemaker

As commonly done in laboratory experiments, a sum of sine waves can be generated in
the model using a flap wavemaker in water of depth ho and specifying boundary conditions
based on first-order Stokes theory.

To do so, the paddle stroke xp�t� is specified as the sum S�t� of n sine functions of
frequency 2
�i, phase �i, and amplitudes Ai. The latter are related (in a linear sense) to
corresponding wave component amplitudes ai to be generated, by a linear transfer function,
T ��i� ho�, which can be obtained from wavemaker theory (e.g., Dean and Dalrymple 17).
Furthermore, a smooth start of the wavemaker, with small initial acceleration, is ensured
by multiplying xp�t� by a damping function D�t� varying from 0 to �1� �z� over a given
time 2 t�z . For �z � 1, the damping function gives a smooth transition from 0 to 	 S�t�
over a time 2 t�z .

We thus get,

xp�t� � S�t�D�t� with S�t� �
nX
i�1

Ai �1� cos ��i t� �i���2

ai � Ai T ��i� ho� with T �ki��i� ho�� ho� �
4 sinh2 kiho

2kid� sinh 2kiho
(27)

with, Hi � 2ai, the wave height (predicted by linear wave theory) and ki��i� ho�, the
wavenumber of a given sine wave component to be generated obtained using the linear
dispersion relation as,

ki tanh kiho �
�2
i

g
(28)

Detailed expressions for D�t� and resulting wavemaker boundary conditions are given
in Appendix E.

As discussed before, due to nonlinearities, it is well known that free second and higher-
order harmonics will be created when monochromatic waves of finite amplitude propagate
down a tank (see, e.g., Mei 63). This is illustrated in the applications in Section 5.

3.4. Wave generation by an internal line of sources

Using a BIE representation based on free space Green’s function, Poisson equation (10)
transforms into (see Section 4.2),

��xl���xl� �
Z
��x�

�
��

�n
�x�G�x�xl�� ��x�

�G�x�xl�

�n
� d��x�

�
Z
��x�

b�x� t�G�x�xl� d��x� (29)

where b�x� t� denotes the source field contribution. Eq. (29) can be solved by a Boundary
Element Method (BEM) (see Section 4.3.) but, in the present case, besides boundary
integrals, domain integrals must be calculated to account for the source field contribution.



For a vertical line of sources with linear density q�s�x�� t� (with s�x� measured along
the line ��), the source contribution in Eq. (29) reduces to,Z

�
b�x� t�G�x�xl� d� �

Z
��
q�s�x�� t�G�x�xl� d�� (30)

In two dimensions, a line of sources with continuously varying strength creates a
velocity normal to the line equal to q�2. Thus, specification of the strength of the source
distribution q is straightforward if particle velocities are known along the line for the waves
to be generated. In most cases, it is sufficient to specify the source strength only at Ns

points along the line ��. In this case, only point sources of strength Bs�t� are specified
along a vertical line from bottom to surface at say, x � xs, thus defining Ns segments of
constant strength,

Bs�t� � 2
��xs� t� � ho

Ns

uw�xs� zs� t� ;s � 1� � � � � Ns (31)

whereuw�xs� zs� t� denotes the mean horizontal velocity of the wave within the s-th segment
and � � ��xs� t� is the wave elevation above the source line (a stretching is applied to the
line to account for changes in wave elevation above the line). Hence, in Eq. (30), we have,

q�s�x�� t� �
NsX
s�1

Bs�t���x� xs� ;s � 1� � � � � Ns (32)

where ��x�xs� denotes a Dirac function at point xs and, due to the sifting property of the
Dirac function, Eq. (30) simplifies into,

Z
�
b�x� t�G�x�xl� d� �

NsX
s�1

Bs�t�G�xs�xl� (33)

This method of wave generation makes it possible to model any wave motion for which
particle velocity distribution is given along a chosen bottom-to-surface line. Two such
cases are detailed in Appendix F.

4. Numerical Model

4.1. Time stepping method

If initial conditions are known at time t on the free surface boundary � f �t�, i.e., the
position r�t� and the potential ��t�, together with relevant boundary conditions on the rest
of the boundary, one can calculate ��

�n
and the time derivatives ��

�t
and �2�

�t�n
along �f �t� by

solving two Laplace’s equations of the type (1) for� and ��

�t
, expressed in the same geometry

k. At this stage, both the free surface position and potential can be updated to subsequent
time, t��t, using Taylor series expansions (14) and (15), truncated to second-order in �t
(N � 2). Lateral boundary conditions (e.g., wavemakers) are then updated, if needed, to

kThis is done in the model using a Boundary Element Method (BEM), as detailed in the following Sections.



complete a full time stepping loop. The whole process is repeated to carry computations
further in time.

Coefficients in the Taylor series are expressed as function of f�, ��

�n
, ��

�s
, �2�

�n�s
, �2�

�s2 , ��

�t
,

�2�

�t�n
, �2�

�t�s
, �, ��

�s
, pa,

Dpa
D t
g along the free surface, using equations (A.7), (A.14), (A.15)

and (A.21) developed in Appendix A, with s and n given by (A.1),(A.2) as a function of �,
the angle between s and the x-axis. Tangential s-derivatives of field variables that appear
in some of these coefficients are computed within a 4th-order “sliding” polynomial on the
boundary. At the intersection between the free surface and a moving wavemaker bound-
ary, the accuracy of the s-derivatives is in general not sufficient and special relationships
developed by Grilli and Svendsen 46 (“compatibility conditions”) are used for calculating
derivatives l.

More specifically, for any given time t, values of ��

�n
and the geometry are specified

along lateral boundaries depending on the specific problem under consideration m. These
boundary conditions, together with the specification of � on the free surface at time t,
define a first Laplace problem which is solved to calculate � or ��

�n
along � (whichever is

unknown). Following this, ��

�t
is specified on the free surface using Bernoulli equation (17)

as,

��

�t
� � 1

2
��
��

�s
�2 � �

��

�n
�2� � 1

�
pa � gz�r� on �f �t� (34)

in which all right hand side variables and the geometry are known at time t. Depending
on the type of conditions along the rest of the boundary, �2�

�t�n
is similarly specified and a

second Laplace problem is solved to calculate ��

�t
or �2�

�t�n
whichever is unknown n. At this

stage, both the geometry and values of f�, ��

�n
, ��

�t
, �2�

�t�n
g are known at time t along the

boundary and the free surface updating to subsequent time t��t can proceed as described
above.

These operations are globally referred to as “time stepping” at time t, with time step
value being �t.

4.2. Transformation of Laplace’s equations into BIE’s

In the model, Laplace’s equations for � and ��

�t
are transformed into Boundary Integral

Equations (BIE) using third Green’s identity and free space Green’s function G defined as,

r2G�x�xl� � ��x�xl� � 0 (35)

in which ��x�xl� is a Dirac function at point xl of domain �. With definition (35), third

lThese relationships were later extended by Otta et al.70, Svendsen et al.88, and Grilli and Subramanya39, and
the extended expressions are used in the applications of the model in Section 5.
mBoundary motion and ��

�n
can for instance be calculated using Eq. (C.5) for a piston wavemaker and ��

�n
is

invariably zero along solid boundaries.
nSince both Laplace problems are expressed for the same boundary geometry ��t�, the additional computa-
tional effort required to solve the second problem is quite small.



Green’s identity for the potential � reads,

��xl� �
Z
��x�

�G�x�xl�
��

�n
�x�� ��x�

�G

�n
�x�xl� � d��x� (36)

in which the “sifting” property of the Dirac function has been used to eliminate the domain
integral. In two-dimensions, the solution of Eq. (35) yields (e.g., Brebbia 2)

G�x�xl� � � 1
2


log j x� xl j (37)

Thus, Green’s function G�x�xl�, also referred to as fundamental solution of Laplace’s
equation, has a logarithmic singularity when point x approaches point xl.

A system of BIE’s for values of ��xl� is obtained by selecting a set of points xl on
the boundary. Doing so, some of the integrals in Eq. (36) become strongly singular and
the “extraction” of such singularities (in a Cauchy Principal Value sense) creates so-called
jumps in the potential value when moving from inside the domain to the boundary (e.g.,
Brebbia 2). After some transformations, weakly singular BIE’s corresponding to Laplace
problems for � and ��

�t
are derived as,

��xl���xl� �
Z
��x�

�
��

�n
�x�G�x�xl�� ��x�

�G

�n
�x�xl�� d��x�

��xl��xl� �
Z
��x�

�
�2�

�t�n
�x�G�x�xl�� �x�

�G

�n
�x�xl�� d��x� (38)

in which x � �x� z� and xl � �xl� zl� are points on boundary � and ��xl� is a geometric
coefficient function of the angle of the boundary at point x l which contains the jumps in
potential value mentioned above.

Other integral equations approaches can be (and have been) proposed for solving po-
tential flow equations in FNPF models. Cauchy Integral theorem can be used to derive
BIE’s for the complex velocity potential (e.g. Dold and Peregrine18, Vinje and Brevig92). A
vortex sheet method can also be used to derive BIE’s for the vorticity density (Biot-Savart
equations; Zaroodny and Greenberg96 and Baker et al.5).

In all cases singular BIE’s are obtained which are discretized into algebraic equations
and numerically evaluated (see next Section).

4.3. Discretization and solution of Boundary Integral Equations

The numerical solution of the two BIE’s (38) requires both the selection ofN collocation
nodes xl along the entire boundary (discretization), to describe the variation of boundary
geometry as well as boundary conditions and unknown functions of the problem, and
interpolation functions to describe this variation in between the collocation nodes. In the
present model, this is done using a Boundary Element method (BEM) (Brebbia 2) in which
the variation of all quantities is represented by means of shape functions or splines and
the boundary is divided into M elements, each of which contains two or more nodes. In
the applications in Section 5, quadratic isoparametric elements (Grilli, et al.36) are used
on lateral and bottom boundaries, and cubic elements ensuring continuity of the boundary



slope are used on the free surface. In these elements, geometry is modeled by a cubic
spline approximation and field variables are interpolated between each pair of nodes on
the free surface either using linear shape functions (Quasi-spline elements (QS); Grilli
and Svendsen46) or the mid-section of a four-node “sliding” isoparametric element (Mixed
Cubic Interpolation (MCI); Grilli and Subramanya39).

Using a set of boundary elements, each boundary integral is transformed into a sum of
M integrals over each element. Non-singular integrals are computed by a standard Gauss
quadrature rule. A kernel transformation is applied to weakly singular integrals which are
then integrated by a numerical quadrature which is exact for the logarithmic singularity
(Grilli et al.36). Adaptive integration methods based on subdividing the integrals are used to
improve the accuracy of regular integrations near corners and in other areas of the domain
where elements on different parts of the boundary may get close to each other and create
almost singular situations (Grilli and Subramanya37).

Corners are represented by double nodes and compatibility relationships are specified
for boundary velocity components on each side of corners, to ensure both uniqueness
and regularity of the solution (Grilli and Subramanya39; Grilli and Svendsen46). Double
nodes represent two nodes of identical coordinates with different nodal values of the field
variables. Hence, two algebraic BIE’s are obtained for each double node, which, however,
are not independent. Continuity conditions express uniqueness of � or ��

�t
for both nodes

of a double node and compatibility conditions express uniqueness of the velocity or the
acceleration vectors, based on values of (��

�s
, ��

�n
) or ( �2�

�t�s
, �2�

�t�n
), respectively, on both

intersecting boundaries at the corner.
Discretization and numerical integrations transform the BIE’s into a system of N linear

algebraic equations in which boundary conditions are directly specified. The system is then
solved for the unknowns at collocations nodes using a direct elimination method. After
solution, Eq. (38) can be expressed for known boundary values to explicitly calculate
the solution (and its gradient : the velocity and acceleration) for any location inside the
domain, without further numerical approximation. This, in fact, represents one of the major
advantages of a BEM approach versus domain discretization type methods (e.g., finite
differences or finite elements) : the representation of the solution over the computational
domain is exact. The only approximation in the method resides in the discretization of
the boundary and the numerical evaluation of integrals in the BIE’s. Other more obvious
advantages result from the limitation of the discretization to boundaries which makes the
generation of discretization data and analysis of results much easier than when using domain
discretization methods, and usually allows for a higher-order representation of the boundary
solution and thus of the internal solution.

In an Eulerian-Lagrangian modeling approach, free surface discretization nodes rep-
resent fluid particles which, for nonlinear wave flows, slowly drift away in the direction
of the mean mass transport. With time, particularly for periodic wave problems, such a
node drift leads either to a concentration of nodes in flow convergence regions of the free
surface (like wave crests and breakers) which creates quasi-singular situations due to node
proximity, or to a poor resolution of the discretization in regions of flow divergence, like
close to a wavemaker o, which may induce instability of computations. To either add and

oNote that, in applications with a SFW generation, the vertical wavemaker boundary �r1 is horizontally



redistribute nodes in regions of poor resolution of the free surface or to remove and redis-
tribute nodes in regions of flow convergence, a node regridding technique was introduced
by Grilli and Subramanya39 (see also Subramanya and Grilli86) and implemented in the
model in combination with the MCI interpolation method.

4.4. Global accuracy of the solution

In the applications, accuracy of computations is checked for each time step by computing
errors in total volumem and energy e of the generated wave train. As a general rule, results
are deemed inaccurate and computations are stopped when—usually due to impending
breaking—these errors become larger than 0.05% or so.

Based on results of computations made in various spatio-temporal discretizations, for
a large solitary wave propagating over constant depth ho, Grilli and Svendsen 46 showed
that numerical errors in the model are function of both the size (i.e., the initial distance
between nodes �xo) and the degree (i.e., quadratic, cubic,...) of boundary elements used
in the spatial discretization, and of the size of the selected time step �to. Based on these
computations, they developed a criterion for selecting the optimum time step in the model.
Using QS elements on the free surface and quadratic isoparametric elements elsewhere,
they showed that, for a constant time step, errors in m and e are minimum when the mesh
Courant number is approximately 0.5 or,

Co �
q
gho

�to
�xo

� 0�5 (39)

Based on these results, they developed an adaptive time step procedure, applicable to
highly transient waves like breakers, in which the time step is calculated as a function of
time based on the optimum mesh Courant number Co and on the minimum distance between
nodes on the free surface, � j r�t� jmin, for the given time t as,

�t � Co� j r�t� jmin

p
gho

(40)

Similar calculations were carried out by Grilli and Subramanya 39 using the more
accurate MCI elements for the interpolation on the free surface. These showed that the
optimum value of Co is around 0.35-0.40 for the MCI elements.

5. Applications

Many applications of the FNPF model described in Sections 2-4 were performed over
the past few years for various types of wave propagation, shoaling and runup, and for wave
interaction with emerged and submerged coastal structures or obstacles in the bottom. A
brief review of these applications is given in Section 5.1, along with references to selected
publications with more details on both computational and physical aspects of the problems.

moved in time with the Lagrangian motion of the first free surface node/particle, which eliminates resolution
problems mentioned above, close to the wavemaker boundary.
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In Sections 5.2 to 5.5, details of data and results are given for specific applications of
the model to problems of long wave shoaling, runup, and/or breaking over plane slopes.
Although the model can address more general problems, new applications presented here
have been limited to academic cases both for sake of simplicity and because of the focus of
the present work on long wave runup. In this line, Section 5.5 reports on the Benchmark
Problem #3 for solitary wave runup on a vertical wall that was proposed as part of the
“International Workshop on Long-wave Runup Models (San Juan Island, WA, USA, 09/95).

5.1. Review of past applications of the model to long wave propagation, runup, and
interaction with coastal structures

5.1.1. Wave generation by a moving vertical boundary

Grilli and Svendsen 46 studied the generation of breaking waves by horizontally moving
vertical boundaries. They analyzed the accuracy of computed results as a function of both
discretization and time step and evaluated the performance of corner compatibility rela-
tionships in the very demanding case where both lateral and free surface boundaries take
large displacements. Similar computations were performed by Grilli and Subramanya39,
using improved free surface discretization methods (MCI elements), extended corner com-
patibility conditions, and node regridding methods. Fig. 4 gives an example of such
computations.

Grilli 29 extended the model to the calculation of breaking bow waves and wave resis-
tance coefficients for forward moving slender ships. This application is implemented in the
present model but has not been described in this chapter.



5.1.2. Wave runup over and reflection from steep slopes

Grilli and Svendsen 42�44�45�47 and Svendsen and Grilli87, through careful numerical
experiments, extensively studied the runup on, and reflection of solitary waves from steep
slopes, and from vertical walls. They compared model results to laboratory experiments
and, in general, found surprisingly good agreement between both of these.

As an illustration of such computations, two applications are presented in Section 5.2
for the runup of a solitary wave of incident height Ho�ho � 0�12 over slopes of angle
� � 20� and 45�, and one application is presented in Section 5.3 for the runup of a cnoidal
wave of incident height Ho�ho � 0�10 over a slope of angle � � 20�.

These applications were selected for sake of comparison with results earlier obtained
by Liu et al.61 with their nonlinear model, and experiments by Hall and Watts49.

5.1.3. Wave shoaling and breaking over a gentle slope

Grilli et al.45, Otta et al.69, and Grilli et al.41 used the model to calculate shoaling of
solitary waves over a gentle slope up to initiation of breaking.

Grilli et al.41 compared their results to classical Green’s and Boussinesq’s shoaling
laws and to careful laboratory experiments. They concluded that none of the theoretical
laws could accurately predict observed shoaling and breaking behaviors but that the present
FNPF model agreed quite well with experiments up to the breaking point.

Otta et al. 69, based on their calculations with the model, developed a criterion for
breaking of solitary waves over slopes and analyzed the kinematics of waves at breaking.
Using improved numerical methods by Grilli and Subramanya39 (particularly node regrid-
ding), Grilli et al.48 performed a more detailed analysis of breaking types and characteristics
of breaking jets for solitary wave shoaling over slopes 1:4 to 1:100. Based on their com-
putations, they proposed an improved breaking criterion for solitary waves on plane slopes
that was shown to agree quite well with experimental results. In particular, no solitary wave
that can propagate stably over constant depth was found to break on a slope steeper than
12�. In Section 5.4, a similar application is presented for the shoaling and breaking of an
incident solitary wave of initial height Ho�ho � 0�20 over a slope s �1:35.

More recently, cases with periodic waves shoaling up to breaking over a slope were
calculated by Subramanya and Grilli85 and Grilli and Horrillo31, using a combination of zero-
mass-flux SFW’s and an absorbing beach, to study the kinematics and integral properties of
waves on beaches (Fig. 2). Such results are of importance to surf-zone dynamics modelers.

5.1.4. Wave interactions with submerged obstacles

Accurate prediction of water wave interaction with submerged obstacles is of prime
importance in coastal engineering. Submerged breakwaters are becoming increasingly used
as both aesthetic and economical means of shoreline protection against extreme storms and
even tsunamis. Natural reefs and sandbars are frequent coastal features that function as
natural submerged breakwaters. In addition, the study of waves close to the shoreline and
in the surf zone requires that the offshore wave climate be accurately “propagated” over
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any existing submerged obstacle, man-made or natural.
Propagation of waves was calculated with the present nonlinear model over three

different types of submerged obstacles of various engineering implications. Cases with both
large incident waves or shallow submerged obstacles led to stronger nonlinear interactions
between incident waves and the obstacles and to various instabilities and breaking of
incident waves on or downstream of the obstacles. It is worth pointing out that most of
these phenomena cannot be accurately modeled by standard wave theories but require fully
(or highly) nonlinear theories to be accurately described,

� Step in the bottom : The simplest possible steep obstacle on the bottom is the
step discontinuity between two constant depth regions (Fig. 5). Numerous studies
of the interaction of a long wave with a step have been carried out using various
wave theories, from linear to mildly nonlinear, and numerical models. The main
motivation for these studies has been to answer the question : How do long waves
behave when they propagate from deep water into shallow water over the continental
shelf ? More specific questions have also been addressed, by assuming that the step
represents a first approximation for a wide crested obstacle in shallow water—like a
bar or a reef—or even a submerged breakwater.
In this line, Grilli et al.32 used the present model to study strong nonlinear interactions—
leading to breaking—of large solitary waves over steps in the bottom. They compared
numerical results to laboratory experiments and found fairly good agreement between
both of these for wave shape and wave envelope. An illustration of such computations
is given in Fig. 5.

� Rectangular bar : After the step in the bottom, the rectangular obstacle has the
simplest possible geometry for representing submerged bars or breakwaters (Fig.
6). One may expect, in fact, that most of the phenomena observed or computed
for rectangular bars also occur, at least qualitatively, for obstacles of more complex
geometry.
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Driscoll et al. 21 studied the propagation of small amplitude cnoidal waves over a
submerged shallow bar with rectangular cross-section. They compared laboratory ex-
periments to first and second-order analytic models and to the present fully nonlinear
BEM model. They found that the BEM model could accurately predict the generation
of higher-order harmonics observed in laboratory in the wave train, downstream of
the obstacle. An illustration of these computations is given in Fig. 6.
A similar, more extensive, numerical study was recently presented by Ohyama and
Nadaoka66.

� Submerged trapezoidal breakwaters : Submerged breakwaters used for shore-
line protection are usually built by dropping rocks from barges at selected offshore
locations and, hence, take an approximate trapezoidal shape (Fig. 7). The pro-
tection offered by submerged breakwaters consists in inducing breaking and partial
reflection-transmission of large incident waves, while small wave propagation and,
in some cases, local navigation can still take place over the structure during normal
conditions.
Cooker et al. 15 used an extension of Dold and Peregrine’s 18 nonlinear model to
calculate solitary wave interactions with a submerged semicircular cylinder of radius
R in water of depth ho. Results showed that a variety of behaviors occur depending
on wave height and cylinder radius. In short, for small cylinders (R�ho � 0�5),
waves essentially transmit and exhibit a tail of oscillations. This is a regime of weak
interactions. For larger cylinders (R�ho � 0�5), interactions are much stronger :
small waves partially transmit and reflect (crest exchange); medium waves undergo
a stronger crest exchange over the cylinder, and the first oscillation in their tail may
break backward onto the cylinder (direction opposite to propagation); and large waves
break forward (plunging), slightly after passing over the cylinder. A limited number
of experiments confirmed these theoretical predictions.
Grilli et al. 34 repeated the above study for submerged breakwaters with a more real-
istic trapezoidal cross-section. Computations using the present model were compared
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to laboratory experiments for a large number of solitary waves of various heights H
and for a breakwater geometry defined by : a height h1 � 0�8ho, a width at the crest
b � h1, and two (seaward and landward) 1:2 slopes. Results qualitatively agreed with
earlier observations by Cooker et al. 15 as far as crest exchange and breaking behav-
iors are concerned. In all cases, a reflected wave formed at the breakwater seaward
face and propagated backward into the tank. An illustration of such computations is
given in Fig. 7.
Despite the renewed interest for underwater breakwaters mentioned above, the gen-
eral conclusion of these studies is that underwater breakwaters only offer limited
protection against long waves, since they only create large reflection (i.e., low energy
transmission) for very low depth of their crest.

5.1.5. Wave impact on coastal structures

Two cases with more realistic coastal structures were studied in earlier applications
with the model that illustrated its ability to predict shoaling of incident waves from deep to
shallow water over a mild slope and interaction with a structure in the shallow water region.

In the latter application, the model was able to predict peak impact pressures from
breaking waves on the vertical wall of mixed breakwater. Such numerical simulations are
helpful for designing coastal structures,

� Mixed berm breakwaters : Most classical breakwaters used for shoreline or harbor
protection are made of a main trapezoidal breakwater, with a small submerged berm
at the toe of the emerged structure. Part of the incident wave energy dissipates by
breaking over the berm which, hence, offers some protection to the main structure.
Such a case was studied by Grilli and Svendsen 45, for which, unlike with traditional
berm breakwaters, a small detached submerged structure was simply located slightly
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in front of the main structure. The combination of the two structures was called a
“mixed berm breakwater”. This configuration, while offering the same degree of
protection as classical berm breakwaters, may be more economical and simpler to
build. It was found, in particular, that the toe structure could substantially reduce
maximum runup of solitary waves on the main steep slope.

� Mixed vertical breakwaters : Mixed vertical breakwaters are composed of a
vertical concrete caisson sitting on a wide berm made of rocks. They function as
vertical walls during high tide and as mound breakwaters during low tide (Fig. 8).
Their upper section is designed to be safe against sliding and overturning induced by
wave impact force. Laboratory and field experiments show that impacts of normally
incident breaking waves are the most severe. In this case, the maximum impact force
on the wall may rise up to 10 times the hydrostatic force based on wave elevation at
the wall.
Cooker 12 and Cooker and Peregrine 14 confirmed these observations by solving
2D fully nonlinear potential flows. Their model, however, although very accurate,
was limited to a simple vertical wall and used a large incident long wave with
characteristics selected to create a large scale breaker in the model.
Grilli et al. 33�35 computed violent impacts of breaking waves on mixed vertical
breakwaters with the present nonlinear model, i.e., using both more realistic incident
waves and a breakwater geometry closely reproducing the experimental set-up. An
example of such computations is given in Fig. 8. Good qualitative agreement was
found between laboratory experiments and computations but the model overpredicted
peak pressures by up to 50%. This is believed to be due in large part to geometric
irregularities in the experimental set-up that limited both the jet formation and the
pressure build up at the wall. In fact, a poor repeatability was found for measured
peak pressures whereas wave shape and kinematics could be reproduced to within a
few percent for 9 repetitions of the same experiment.



5.2. Runup of solitary waves on a steep slope

The computational domain for this problem is similar to the case sketched in Fig. 3,
except that, due to the steep slope used in the present case, there is no need for a shallow
shelf at the rightward extremity of the computational domain (� r2). The domain length
is 30 times the depth. The runup of a solitary wave of incident height Ho�ho � 0�12 is
calculated over two slopes of angle � � 20� and 45�. The incident wave is generated by
simulating a piston wavemaker on the leftward boundary (�r1).

For the first slope, a discretization with 120 two-node QS elements is used on the
free surface. Three-node isoparametric elements are used on the leftward boundary, on the
rightward boundary (i.e., the slope in the present case), and on the bottom. The discretization
thus has 254 nodes and 185 elements with an initial distance between nodes �xo � 0�25
on the free surface, 0.167 on boundary �r1, 0.20 on boundary �r2, and 0.25 on the bottom
�b. The initial time step is �to � 0�09 and the Courant number is thus Co � 0�36 (with
g � ho � 1). The average CPU time per time step is 3.3 s (IBM9000/3) or about 66 min
for the whole run of 1200 time loops. Similar data are generated for the 45 � slope.

Results for the free surface elevation at selected times are presented in Fig. 9 (20�

slope) and Fig. 10 (45� slope). One can see that waves propagate from left to right up
to about t� � 43 (curves a-f) and 41 (curves a-e), respectively. The maximum runup
calculated for both slopes is Ru � 2�351Ho (at t� � 43�07), and Ru � 2�275Ho (at
t� � 41�16), respectively, which agrees quite well with both computations by Liu et al.61

and experiments by Hall and Watts49. After runup, waves rundown, reflect on the slopes, and
propagate backward into the numerical tank (curves f-l and e-l), trailing a (well resolved)
tail of oscillations behind them, slightly more pronounced for the smaller slope. For time
t� � 60, the leading oscillations in the reflected waves re-reflect on the wavemaker.

Fig. 11 gives indicators of global accuracy of computations for each case. These are
the relative errors on total (dimensionless) wave energy �e�e and volume �v�v, in which
e � 0�06762 and v � 0�83227 for the generated solitary wave. Both numerical errors are
small quantities for the initial stages of wave propagation (O�10�7�) and then gradually
increase. Errors temporarily decrease during runup and rundown of the waves on the slopes
and then increase to stabilize at about O�10�3� or smaller p.

5.3. Runup of cnoidal waves on a steep slope

The runup of a cnoidal wave of incident heightHo�ho � 0�10 and period T
q
g�ho � 20

(i.e., � � 0�31416, for which L�ho � 20) is calculated over a slope of angle � � 20�, using
the same discretization and initial data as for the solitary wave in the previous Section. The
wave is generated by a piston wavemaker with motion xp�t� as in Fig. 13a.

Results for the free surface elevation at selected times are presented in Fig. 12. One
can see that waves propagate from left to right and a first crest runs-up the slope at about
t� � 36 (curve d), reflects, and then propagates back into the tank. This crest then interacts
with the second crest to produce a slightly larger runup for the second crest at about t � � 56

pAccuracy of these results can be greatly improved by using MCI elements on the free surface instead of QS
elements. This will be illustrated in the applications in Sections 5.4 and 5.5.
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(curve i), and so forth. The time history of runup on the slope in Fig. 13b confirms that
the second and later runups are reinforced by successive incoming crests. The first crest
runs-up to about twice the incident wave height, and the second and third crests run-up to
about 2.4 times the incident wave height, while keeping the same rundown value. These
results also fairly well agree with results by Liu et al. 61, as far as one can tell from their
figures.

Fig. 13c shows the relative error, �V�V , on total volume of the computational domain
(V � 28�626), as a function of time. One sees that this error stays quite small during all
computations.

5.4. Solitary wave shoaling and breaking over a gentle slope

A case similar to those calculated by Grilli et al.41 and Otta et al. 69 (also analyzed
by Wei et al.93) is presented in the following, for the shoaling and breaking of an incident
solitary wave of initial height H �

o � 0�20 over a 1:35 slope. The computational domain
is as sketched in Fig. 3 with the toe of the slope at x� � 5. The incident solitary wave
is generated on the leftward lateral boundary of the domain using the numerical piston
wavemaker. To improve accuracy of regular integrations in the upper part of the slope
where the domain geometry becomes very narrow, a small shelf is specified to the right of
the domain in depth h1 � 0�1ho (unlike in computations with steeper slopes reported in the
previous Sections) q.

The free surface discretization has 226 two-node MCI elements, with �x�o � 0�20, and
there are 100 quadratic elements on the bottom and lateral boundaries. The total number
of nodes is 429. The distance between nodes on the bottom is 0.5 in the constant depth
region, and reduces to 0.40, 0.25, 0.20, 0.15, and 0.10 on the slope, in order to get increased
resolution where depth decreases. The distance between nodes is 0.15 on the shelf bottom.
Adaptive integration with up to 26 subdivisions (as function of the geometry) is specified
on the free surface and on the bottom, for the elements located between x � � 31 and 40.
The mesh Courant number is Co � 0�40 and, hence, �t�o � 0�08. With these data, the CPU
time is 12.9 sec per time step (IBM9000).

Fig. 14a shows computed stages of wave shoaling and breaking. During propagation,
time step reduces down to�t� � 0�020 at the time of breaking defined by a vertical tangent
occurring on the front face (curve d in Fig. 14a, t � � 44�52, x�b � 36�3). The total number
of time steps up to this stage is 950 and the average time step is 0.047. The wave height at
breaking is Hb � 0�364 and the ratio wave height over depth at breaking is Hb�hb � 1�402.
This is much larger than the usually accepted value for gentle slopes (	 0�80) and agrees
to within 5% with measurements by Grilli et al.41. A detailed comparison of free surface
elevations measured at several locations over the slope (gages) to computed results is given
in Fig. 14c. One can see that the agreement between both of these is very good up to the
last gage which is virtually at the computed breaking point.

qThis is to avoid that elements on different parts of the boundary get too close to each other, leading to a loss of
accuracy of numerical integrations of the Green’s function kernels. This change in geometry—as compared
to a plain slope—does not affect shoaling and breaking of a solitary wave, provided these occur, as observed
in the present case, before reaching the shelf, i.e., for x� � 41.
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To be able to accurately pursue computations beyond the breaking point, the regridding
method by Subramanya and Grilli86 and Grilli and Subramanya39 is used to add 40 nodes
in the crest region, between x� � 33�26 and 37.80, at the time of curve d (Fig. 14).
Computations are restarted and Fig. 14b shows blow-ups of the region over the slope where
breaking occurs. Discretization nodes are marked on the figure and one sees that the breaker
jet is well resolved up to touch down on the free surface. The wave breaks as a large scale
plunging breaker. Details and accuracy for such computations beyond the breaking point
are discussed in Grilli and Subramanya39 and a further analysis of results is done in Grilli
et al.48.

5.5. Solitary wave runup on a vertical wall : Benchmark #3

5.5.1. Wave generation

In Benchmark #3 application, three solitary waves were generated in a laboratory tank
at the U.S. Army Engineering Waterways Experiment Station (Vicksburg) using a piston
wavemaker with motion xp�t� provided to the workshop participants as a set of digital data.

Wavemaker motion Eq. (D.6) was first used to best fit the digitized paddle trajectories
and find corresponding incident waves H �

o � Ho�ho to be used in Eq. (D.7) to calculate
boundary conditions (C.5), for the paddle velocity and acceleration as a function of time on
boundary �r1, needed to generate solitary waves in the model (Fig. 15). We thus obtained
H �

o � (case A) 0.0440; (case B) 0.2602; and (case C) 0.6087. As can be seen, with these
wave heights, only small differences are observed between experimental and calculated
curves.

5.5.2. Wave propagation over constant depth

The wave tank geometry provided to the workshop participants is sketched in Fig. 16
with a region with constant depth, ho � 0�218 m, length 68.991ho, and three successive
slopes 1:53 (length 20.00ho), 1:150 (length 13.44ho), and 1:13 (length 4.13ho). A vertical
wall is located at the tank far end.

In all three cases, due to the large region of constant depth in front of the slopes, to save
computational time, waves were first generated and propagated in a (shorter) computational
domain of constant depth ho and length 69ho. Waves were then introduced in a second
computational domain containing part of the constant depth region and the rightward region
of the tank with varying water depth. Doing so, parts of the oscillatory tails shed behind
the generated waves were cut out of the second computational domain whereas the main
leading waves were kept for further propagation over the slopes.

The same discretization was used in all three cases for the constant depth domain,
with 141 nodes on the free surface and 140 MCI elements (�x�

o � 0�5) and three-nodes
quadratic elements elsewhere, with a node spacing 0.5 on the bottom. Initial time step was
�t�o � 0�15 for a Courant number 0.3. For the propagations over constant depth, relative
errors on wave volume and energy were typically small in all three cases, around 0.001%
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Time histories of surface elevation computed at gages 1-3 are given in Fig. 17 for all

three cases. One can see that, as expected, the larger the wave the larger and the longer
the tail of oscillations it sheds behind its main crest. This is due, as discussed before, to
the piston wavemaker generation of approximate (first-order) solitary waves in the tank.
When shedding tails of oscillations, as pointed at by Grilli and Svendsen47, the main crest
height of waves also gradually decreases over constant depth until the wave shape stabilizes
and the main crest adjusts to the (more peaky) shape of exact solitary waves (those that
Tanaka’s90 method would have generated). Thus at gage 2, for instance, the computed
maximum wave height is, 0.0440, 0.254, and 0.589, for cases A, B, and C, respectively,
i.e., 0.0, 2.4, and 3.2% smaller than the incident wave generated at x� � 0, respectively. It
is seen that these maximum values do not significantly change from gage 2 to 3, indicating
that incident waves have reached their permanent form. Finally, one also sees from the
results that the wave for case A has the theoretical height specified at the wavemaker and
no noticeable oscillatory tail, confirming that such a small wave (with H �

o � 0�2 according
to Goring25) has a shape very close to a first-order solitary wave.

5.5.3. Wave propagation over the sloping bottom and runup on the wall

Computations are pursued in the second computational domain. For case A, the domain
extends from x� � 18�72 onward, with a total of 491 nodes, 150 of which on the free surface
(�x�o � 0�5) and 370 elements. The distance between nodes on the bottom is progressively
reduced from 0.5 to 0.15. For case B, the domain extends from x� � 46�1 onward (the wave
is higher and much narrower and travels faster than in case A), with a total of 471 nodes,
240 of which on the free surface (�x�

o � 0�25) and 378 elements. The distance between
nodes on the bottom is progressively reduced from 0.5 to 0.15. For case C, the domain is
chosen identical to case B.

Fig. 18 gives a summary of results computed for case A. In Fig. 18a, the time history of
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water elevation at gages 4-10 shows wave transformation up to runup and reflection from
the wall and, in Fig. 18b, selected free surface profiles are given for 6 times (curves a-f),
with curve e representing the maximum runup occurring at t � � 131�25 (i.e., t � 19�57
sec) from the start of wave generation in the model. Maximum runup computed on the wall
is R� � 0�1163 � 2�643H �

o. During these computations, relative errors on wave volume
(v � 0�4842) and energy (e � 0�2564) were less than 0.032 and 0.027%, respectively.

Fig. 19 gives a summary of results for case B. In Fig. 19a, the time history of water
elevation at gages 4-10 shows wave transformation up to impending runup on the wall and
in Fig. 19b, selected free surface profiles are given for 6 times (curves a-f) with curve
f, at t� � 105�32, representing the closest time to maximum runup that can be accurately
computed in this discretization. Unlike with case A, the much larger wave generated in case
B significantly feels the bottom and becomes more and more asymmetric as it propagates
towards the wall. This is similar to shoaling computations in Fig. 14. Curves e and f
in Fig. 19b even show the formation of a secondary crest behind the main wave crest
indicating the initiation of reflection from the steep 1:13 slope and from the wall. During
these computations, relative errors on wave volume (v � 1�202) and energy (e � 1�164)
were less than 0.017 and 0.0017%, respectively, up to t� � 95. For later times, these errors
increased up to 0.39% and 0.085%, respectively, at the time of curve f. These increased
errors clearly indicate the need for a finer discretization of the free surface close to the
wall, to be able to compute further in time and resolve the “flip-through” motion of the free
surface which is about to happen in front of the main crest.

This can be achieved through regridding of the free surface to a finer discretization : 30
nodes are added to the free surface at t� � 104�00 (Fig. 20a, curve a), from x� � 103�13
to the wall. The new spacing between nodes in the regridded region is approximately 0.07.
Computations are accurately pursued in the new discretization up to the time a small jet of
water is about to be vertically expelled at the wall (Fig. 20a, curve h, t� � 105�43). At this
stage, numerical errors reach (an acceptable) 0.25% and one can see in Fig. 20a that small
features in free surface shape are quite well resolved. Beyond this time, the few nodes
close to the wall are vertically expelled with very large upward velocity and acceleration
(thousands of g’s) and computations break down. This is consistent with computations
by Cooker and Peregrine14 and Grilli et al.33 and is also supported by experiments in the
latter study. For the last computed profile, the runup at the wall is Ru � 0�435 � 1�67H �

o.
After jet expulsion, however, this value is likely to become much larger. As in the previous
studies, we also see in Fig. 20b that the computed horizontal pressure force on the wall
and moment with respect to the toe of the wall also reach very large (impact) values shortly
after the time of curve h in Fig. 20a (0.0033 time unit later).

Fig. 21 gives a summary of results for case C. In Fig. 21a, selected free surface
profiles are given for 6 times (curves a-f) with curve f, at t � � 74�86 (or t � 11�16 sec
from the start of wave generation), representing the time at which the wave breaks, with
H �

b � 0�7536� h�b � 0�644� x�b � 87�85, and a breaking index Hb�hb � 1�169. Fig. 21b
gives a blow up without scale distorsion of the region of Fig. 21a where breaking occurs and
Fig. 21c gives a blow-up of the breaking crest in curve f, with indication of computational
points. The breaker shape is fairly well resolved. During these computations, relative
errors on wave volume (v � 1�803) and energy (e � 1�663) were less than 0.05% for most



of the propagation but increased to 0.12 and 0.55%, respectively at the time of breaking,
when nodes in the crest move very close to each other (Fig. 21c). To accurately compute
results further than this time would require using regridding techniques similar to those in
Grilli and Subramanya39 illustrated by results in Fig. 14b.

It is of interest to note that, according to the (numerical/experimental)studies of breakers
by Grilli et al.48, the wave in case C has a slope parameter So � 1�521s�

q
H �

o � 0�0246 �
0�025 (with s � 1 : 53) and should thus (barely) break as a spilling breaker. This seems to
be supported by results in Fig. 21c when considering the fairly small size of the breaker
jet. Empirical relationships based on parameter So (best fit through both experimental and
numerical results) would further give, for the breaking characteristics at the time the wave
front face reaches vertical tangent (i.e., slightly before the time of curve f), Hb�hb � 0�985
and h�b � 0�729, H �

b � 0�72. This is also in fairly good agreement with the present results.
In conclusion, for case C, breaking interrupts computations with the model and wave

runup cannot be further calculated.

5.5.4. Comparison of numerical results with experiments

During the workshop, participants were provided with surface elevations measured at
gages 7 and 9 in the experiments carried out in Vicksburg. Since the wave for case C broke
before reaching those gages, a comparison with numerical results has only been made in
Fig. 22 for cases A and B and numerical and experimental results have been synchronized
in time at the location of gage 7.

For case A (Fig. 22a), the incident profiles at gage 7 are in quite good agreement, and
similarly at gage 9. The experimental incident wave just seems a little smaller, which might
be due to frictional effects during propagation in the tank. The reflected wave at gage 9
is also slightly smaller in the experiments and propagates through the gage slightly later
in time than the computed wave, due to its smaller speed. Overall, the agreement is quite
good.

For case B (Fig. 22b), the incident profiles at gage 7 are in quite good agreement, and
similarly in gage 9, except that, in this case, the experimental wave is higher and, in fact,
has more volume than the numerical wave. The reason for this is unknown. Computations
unfortunately had to be interrupted before the reflected wave came back, due to the violent
flip-through motion at the wall discussed before.
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Appendix A Detailed expressions of coefficients in time updating

Detailed expressions of coefficients in Taylor series expansions (14) and (15) are given
in the following.

Appendix A.1. Curvilinear coordinates

Derivations are carried out in a curvilinear coordinate system �s�n� defined along the
boundary as (Fig. 3),

s � �cos � � sin�� � n � �� sin� � cos�� (A.1)

cos � �
�x

�s
� sin � �

�z

�s
(A.2)

where � denotes the angle between the horizontal axis x and the tangential vector s at the
free surface.

Derivatives of vectors (s,n) with respect to their directions are obtained from Eq. (A.1)
as,
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Now, in a family of curves n � cst and of straight lines s � cst along the free surface,
the derivative ��

�n
vanishes in Eq. (A.4).

With definitions in Eqs. (A.1) to (A.4), the curvilinear gradient operator reads,

r � 1
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�

�s
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�n
n (A.5)

where hs is a scale factor associated with curves n � cst, defined along the free surface as,

� 1
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�hs
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1
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�s
with, hs � 1 (A.6)

where R�x� is the radius of curvature of the free surface. Thus, hs is independent of s and
only depends on n.

Appendix A.2. Taylor series coefficients

The kinematic free surface boundary condition Eq. (2) provides the first-order coeffi-
cient in Eq. (14) for the updating of free surface position vector r,

Dr
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�n
n (A.7)

Applying the material derivative Eq. (4) to Eq. (2), we get the general expression for
the second-order coefficient in Eq. (14) as,
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By definition of potential theory, the first term in the right hand side of Eq. (A.8) reads,
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Using the curvilinear system defined above, the second term in the right hand side of
Eq. (A.8) becomes,
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in which ��

�n
� 0 and �hs

�s
� 0 were used.

Using Eqs. (A.1)-(A.6), it can be shown that continuity equation r � u � 0 and
irrotationality conditionr
 u � 0 transform into,
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respectively, along the free surface.
Hence, with Eqs. (A.11) and (A.12), Eq. (A.10) can be expressed as,
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Combining Eqs. (A.8), (A.9), and (A.13), we get the final expression for the second-
order coefficient in Eq. (14) as,
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Similarly, dynamic free surface boundary condition Eq. (3) provides the first-order
coefficient in the Taylor series (15) for the free surface potential updating. Using Eqs.



(A.5) and (A.6) we get,
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The second-order coefficient in Eq. (15) is obtained by material derivation of Eq. (3)
as,
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with, using Eqs. (2), (A.1) and (A.5),
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and, by definition of potential theory,
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Now, using orthogonality of s and n, and Eqs. (2), (A.7), (A.9), and (A.13), we get the
first term in the right hand side of Eq. (A.18) as,

u � �u
�t

�
��

�s

�2�

�t�s
�
��

�n

�2�

�t�n
(A.19)

and the second term as,
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Finally, combining Eqs. (A.16)-(A.20) and Eq. (A.5), we get the final expression for
the second-order coefficient in Eq. (15) as,
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(A.21)

where Dpa
Dt

is the total rate of change of the free surface atmospheric pressure in time.

Appendix B Generation of exact solitary waves by Tanaka’s method

Tanaka’s90 method is based on using Cauchy’s integral theorem for the complex velocity
potential, in a frame of reference moving with the wave celerity c. In this frame, the crest
velocity Vc fully defines the wave field and the dimensionless crest velocity qc � Vc�c is
used as a parameter for the problem. The original method by Tanaka was modified by
Cooker 12 to use wave height H � instead of qc as a parameter.



Main steps in the calculations of exact solitary waves of height H � are as follows
(superscripts denote iteration numbers),

� An approximate initial crest velocity 	qoc is estimated for the specified H � by in-
terpolation in a table of (H �� qc) values predetermined within the interval �H � �
0�833197� qc � 0� for the highest possible wave (like found, e.g., in Tanaka 90) to
�H � � 0� qc � 1� for a flat free surface.

� Velocity on the free surface is calculated for the approximate crest velocity 	qoc , using
the original Tanaka’s method.

� Wave celerity 	co and Froude number r� 	F 2�o are calculated using the free surface
velocities and the corresponding wave amplitude 	H

�o is obtained from Bernoulli
equation as,

	H
�o �

1
2
�1� � 	qc

2�o� � 	F 2�o (B.1)

� A better approximation for the crest velocity 	qc
1 is re-estimated from (H �� 	H

�o) in the
table of values (H �� qc).

� And so on, iteratively, until, �H � �j �H � � 	H
�n��H � j is found sufficiently small s.

� When convergence is reached for both F 2 and H �, the wave shape and potential are
calculated from free surface velocities. Normal velocity ��

�n
�x� to� is also calculated

on the free surface at this stage (to be used as initial data for the first time step of
computations with the BEM model), by noting that for a wave of constant shape,

��

�n
�x� � F sin ��x� (B.2)

� The wave area (or dimensionless mass) m above still water level and kinetic and
potential energies �ek� ep� are calculated using standard integrals (�� � g� � 1),

m � ��
Z
�f
z�dx�

ek �
1
2
��
Z
�f
�
��

�n
d�

ep �
1
2
��g�
Z
�f
z�2dx� (B.3)

� The resulting exact solitary wave is finally truncated left and right to points for which
free surface elevation, �� � �zH

� (with �z � 1, a pre-selected threshold), and wave
elevation, potential, and normal velocity are re-interpolated within a constant step
grid�x�o, with the crest being located at a specified x�o value, to be used as initial data
in the BEM model.

rTanaka’s method involves an iterative solution of Cauchy’s integral theorem using the Froude number as
the convergence parameter. The convergence criterion selected here is 10�10 in relative value of F 2. It was
found that 70 to 75 iterations were necessary to achieve convergence within this accuracy.
sThe convergence criterion selected here is �H� � 10�5. Three to four iterations only are necessary to
achieve convergence within this accuracy.



The overall method is found to be quite computationally efficient. Convergence on
both F 2 and H � is reached and all wave data are calculated within less than 0.6s CPU time
using 80 points on the free surface to describe the wave (for the author’s program on an
IBM3090/300).

Appendix C Boundary conditions for piston and flap wavemakers

Velocity and acceleration for points along a plane wavemaker boundary are derived in
the following for both piston and flap type wavemakers, to be used as boundary conditions
in Eq. (23).

Appendix C.1. Plane paddle wavemaker

If rg denotes the distance between points � � ��� �� and xg � �xg� zg� on the wave-
maker (Fig. C.1), we get,

� � xg � rg cos �

� � zg � rg sin � (C.1)

Since rg is constant with respect to any rigid body motion, we also have,

�
� �

�
xg � rg sin �

�
� �

�
xg � �� � zg�

�
�

�
� �

�
zg � rg cos �

�
� �

�
zg � ��� xg�

�
� (C.2)

and,
��
� �

��
xg � rg cos �

�
�

2

� rg sin �
��
�

��
� �

��
zg � rg sin �

�
�

2

� rg cos �
��
�

or,
��
� �

��
xg � ��� xg�

�
�

2

� �� � zg�
��
�

��
� �

��
zg � �� � zg�

�
�

2

� ��� xg�
��
� (C.3)

Motion and boundary conditions are expressed in the following for two standard types
of plane paddle wavemakers.

Appendix C.2. Piston wavemaker

This corresponds to a flat vertical plate with � � 
�2, horizontally moving in depth ho

(Fig. 3). The specified horizontal piston motion (stroke) is xp�t� and up�xp�t�� t� �
�
xp�t�

is the stroke velocity.



- 1

-0 .5

0

0.5

0 0.5 1 1.5 2

θ

n s

x
g

z / h
o

h
o

r
g

Γb

Ω

Γ
x

b

x
p

f

x / h
o

Fig� C��� Sketch and de
nitions for a �ap wavemaker motion on boundary �r1 of the computational
domain�

Along the wavemaker paddle, by Eqs. (C.1),(C.2),(C.3), we have,

n � ��1� 0�� s � �0� 1��
�
� �

��
� � 0

� � xp � �xp�t�� z��
�
� � up � �up�t�� 0��

��
� �

�
up � �

�
up�t�� 0�

�
� � n � �up� ��

� � n � � �
up�

�
� � s � 0 (C.4)

and from Eqs. (6),(23), and (C.4), boundary conditions on the piston wavemaker boundary
read,

��

�n
� �up�t�

�2�

�t�n
� ��up�t�� up�t�

�2�

�s2
on �r1�t� (C.5)

in which �2�

�s2 � �2�

�z2 and
�
up �

��
xp�t� denotes the specified wavemaker acceleration.

Appendix C.3. Flap wavemaker

This corresponds to a flat plate, hinged at xg � �0��ho� on the bottom and oscillating
with an angle ��t� � �
�2� 0� (defined trigonometrically with respect to the bottom; Fig.
C.1). The specified horizontal piston motion (stroke) is xp�t� at z � 0 and up�xp�t�� t� ��
xp�t� is the stroke velocity.

Along the wavemaker paddle, we have by Eq. (C.1),

n � �� sin ��t�� cos ��t��� s � �cos �� sin ��� � � xg � rgs � ���t�� ��t�� (C.6)

in which rg is given by,

rg�t� � ��t� cos ��t� � ���t� � ho� sin ��t� (C.7)

Now, by Eqs. (C.2) and (C.3), with
�
xg �

��
xg � 0, we have,

�
� � up�t� � ����t�� ho� ��t��

�
�
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2
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Hence, by (C.6),(C.7),(C.8),

�
� � n � ���t� cos ��t� � ���t� � ho� sin ��t��
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� 0 (C.9)

since one can show, by simple geometric considerations, ���� � ho� cos � � � sin �� � 0.
From Eqs. (6),(23), and (C.9), boundary conditions on the flap wavemaker boundary

read,

��

�n
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�2�

�t�n
� rg�t�

��
��t� �

�
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�2�

�s2
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�s
� (C.10)

After some elementary developments, rg and time derivatives of ��t� in Eq. (C.10) can
be expressed as a function of wavemaker stroke xp�t� and its time derivatives as,

�
��t� � �R�t�up�t�
��
��t� � �R�t� � �up�t�� 2u2

p�t�
xp�t�

ho
�

rg�t� � R�t�
q
h2
o � x2

p�t� ���t�
xp�t�

ho
� ��t� � ho� (C.11)

in which ���t�� ��t�� denote coordinates of points along the flap wavemaker and, R�t� �
ho��h2

o � x2
p�t��.

Appendix D Piston wavemaker motion for the generation of first-order solitary and
cnoidal waves

Development of Eq. (26) is done in the following for the generation of first-order
solitary or cnoidal waves by a piston wavemaker.



Appendix D.1. First-order solitary wave

The surface elevation for a first-order solitary wave of heightH � in depth ho is obtained
as a permanent wave solution of Boussinesq equations as (e.g. Dean and Dalrymple 17),

���x�� t�� � H �sech2���x� � c�t��� (D.1)

where � �
p

3H ��2 and the celerity c� �
p

1 �H �.
Substituting Eq. (D.1) into Eq. (26) while specifying x� � x�p�t� throughout the

integration gives the piston stroke required for generating the wave.
Since the wave in Eq. (D.1) extends to infinity in both directions, however, before it is

used in the model, it is necessary to truncate it at some distance from the origin. Goring 25

introduced the significant horizontal extension of the wave 2� � corresponding to a reduction
in wave elevation to �� � �zH

� (with �z � 1). Using this definition and Eq. (D.1), we get,

�zH
� � H �sech2�����

�
�

1
2

z � cosh��� (D.2)

and,

� � arcosh��z
�

1
2 � with �� �

�

�
(D.3)

Now (Abramowitz and Stegun 1),

arcosh��z�
1
2 � � log f�z� 1

2 �1� �1� �z�
1
2 �g (D.4)

Hence, since �z � 1,

� � log
4� �z

2�
1
2
z

(D.5)

In the numerical applications,we usually select �z � 0�002 to which it corresponds � � 3�80.
Wave generation by the piston wavemaker thus starts at t�o � 0 with x� � x�p � ��.

Introducing this initial condition in the theoretical wave profile (D.1) and integrating (26)
we get,

x�p�t
�� �

H �

�
�tanh��t�� � tanh���� with ��t�� � ��c�t� � x�p�t

��� ��� (D.6)

which is solved for x�p for any given time t� using Newton iterations.
Wavemaker velocity, u�p�t

�� is then computed by Eq. (25) for � ��x�p�t
��� t�� and acceler-

ation
�
u
�

p�t
�� is found by time derivation of the velocity,

u�p�t� � H � �1 �H ��
1
2

1
cosh2 ��t�� �H �

�
u
�

p�t� �
p

3H
� 3

2 �1 �H ��
cosh3 ��t�� sinh��t��

�cosh2 ��t�� �H ��3
(D.7)
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These values are introduced in Eq. (C.5) to define boundary conditions for the piston
wavemaker.

Initial wavemaker velocity and acceleration at t�o � 0 can be found as functions of H �

and �z , by introducing Eqs. (D.3) and (D.6) into Eq. (D.7) as,

u�p�t
�

o� � H � �1 �H ��
1
2

�z
1 � �zH �

�
u
�

p�t
�

o� �
p

3 H
� 3

2 �1 �H �� �z
�1� �z�

1
2

�1 � �zH ��3
(D.8)

which both are approximately proportional to �z , for a given H �. Hence, initial wavemaker
acceleration, which should be kept small to avoid initial singularity problems (Section 2.2),
is controlled by selecting a small enough truncation parameter �z . For �z � 0�002 and

H �=0.5, for instance, up�to� � 0�00122
p
gd and

�
up�to� � 0�00184g, which is quite small

compared to gravity.

Appendix D.2. First-order cnoidal wave

First-order cnoidal waves are periodic wave solutions of Boussinesq equations. In water
of constant depth ho, a cnoidal wave elevation of heightH �, period T �, and length L� � c�T �

is given by (e.g., Dean and Dalrymple 17),

���x�� t�� � H �fB � cn2�
2K
L�

�x� � c�t���m�g (D.9)

in which, L� � 4K
q
m��3H ��, the celerity c� �

p
1 �AH �, with A�m� � �2 � m �

3E�K��m, and the dimensionless trough B�m� � �1 � m � E�K��m. Symbol “cn”



denotes the Jacobian elliptic function of parameter m and �K�m�� E�m�� denote complete
elliptic integrals of the 1st and 2nd kind, respectively (Abramowitz and Stegun 1).

Substituting Eq. (D.9) into Eq. (26) while specifying x� � x�p�t� throughout the
integration gives the piston stroke required for generating the wave.

Wave generation starts for x�p � t� � 0 at a given initial phase x� � �� of the wave.
Setting x� � x�p � �� in Eq. (D.9) and integrating (26), we get the following equation for
the stroke x�p�t

��,

x�p���t�� �
L�

2K
H �f E

mK
���t�� �o�� 1

m
�E���t��m�� E��o�m��g

��t� �
2K
L�

�x�p�t� � �� � c�t�� (D.10)

which is solved by Newton iterations for any time t�. In Eq. (D.10), �o � ���2K�L�� and
E���t��m� is the incomplete elliptic integral of the 1st kind.

Finally, u�p�t
�� and

�
u
�

p�t
�� are obtained by derivation of Eq. (D.10) and introduced into

Eq. (C.5) to provide boundary conditions on the wavemaker. For a cnoidal wave of height
H � � 0�2, and period T � � 25, which is close to the upper limit of long wave theory, for
instance, using the above equations we get L� � 25�99, c� � 1�040 and K � 5�035, and
Fig. D.1 shows the free surface elevation and paddle motion, velocity and acceleration
calculated as a function of time for these data.

In the present case, initial acceleration of the wavemaker
�
u
�

p�t
�

o� varies with the selected
initial phase �� and, hence, can be made sufficiently small by adjusting the phase. For
�� � 0, for instance, initial acceleration is zero. For cnoidal waves, however, this also
corresponds to maximum crest elevation and velocity. The origin can be shifted to a point
with zero water elevation and velocity by selecting,

�� �
L�

2K
�2K � cn�1

p�B� � x�p�0� (D.11)

where x�p�0� is obtained from Eq. (D.10) with � � 0. This is the situation plotted in Fig.
D.1. For this case, however, the initial acceleration is no longer zero but, for long waves, it
is still quite small compared to gravity (O�4c�KH ��L��; in Fig. D.1 the initial acceleration
is about 0.03g).

Appendix E Boundary conditions for the generation of a sum of sine waves by a flap
wavemaker

Eqs. (27) and (28) used for generating sine waves with a flap wavemaker are further
detailed in the following.

By analogy with the smooth initial motion obtained in Eq. (D.6) for the generation
of solitary waves by a piston wavemaker, the initial damping function for sine waves is
selected as,

D�t� � 1 � �z
2

�tanh��t� t�z� �
1� �z
1 � �z

� (E.1)



with �, a damping coefficient obtained from the requirement that D�0� � 0 as,

� � � 1
2 t�z

log �z (E.2)

One can easily check that Eqs. (E.1) and (E.2) also satisfyD�2 t�z � � 1� �z , which allows
to select the rate of damping corresponding to given values of t�z and �z . For �z � 0�001,
for instance, we get � � 3�454�t�z .

In the applications, the time 2t�z is selected as an integer multiple Nn of the average
wave period 	T of the wave components to be generated,

t�z �
Nn

	T

2
and 	T �

1
n

nX
i�1

2

�i

(E.3)

By time derivation of Eq. (27), we get the paddle velocity and acceleration at z � 0 as,

up�t� �
�
SD � S �D and

�
up�t� �

��
SD � 2

�
D
�
S � S ��D

�
S�t� �

nX
i�1

1
2
Ai �i sin ��it� �i��

��
S�t� �

nX
i�1

1
2
Ai �

2
i cos ��it� �i�

�
D�t� �

�

2
1 � �z

cosh2 ��t� t�z�
�

��
D�t� � ��2 �1 � �z�

tanh��t� t�z�

cosh2 ��t� t�z�
(E.4)

Hence, boundary conditions (C.10) and (C.11) can be defined on the wavemaker.
The initial wavemaker velocity and acceleration at time to � 0 are obtained from (E.4)

as,

�D�to� � 2��z
1

1 � �z
and

��D�to� � 4�2�z
1� �z

�1 � �z�2

up�to� � S�to�
�
D�to� and

�
up�to� � 2

�
D�to��

�
S�to� � �S�to�� (E.5)

Since for �z � 1, we have
�
D�to� � 2��z and

��
D�to� � 2�

�
D�to�. If we further require that

S�to� � 0 in Eq. (E.5), we get, up�to� � 0 and
�
up�to� � 4��z

�S�to�. For �z � 0�001, for

instance and � � 1 for t�z � 3�454, the initial acceleration is
�
up�to� � 0�004

�
S�to�, which

is thus a rather small fraction of the initial paddle velocity.

Appendix F Generation of second-order solitary and periodic waves using internal
source distributions

Wave velocity distributions uw�xs� z� t� to be used in source distributions Eqs. (31)
and (33) for the generation of waves by internal sources are given in the following for
second-order waves. Note that higher-order solutions (even SFW) can be used and this was
recently done by Ohyama and Nadaoka66 for 5th-order Stokes waves.



Appendix F.1. Second-order solitary waves

For a solitary wave whose first-order profile is given by Eq. (D.1), the horizontal
velocity can be deduced as a function of depth from Boussinesq’s theory (see Mei 63). The
horizontal velocity is constant over depth, to the first order in H �. Identical developments
can be made up to the 2nd-order accuracy and we get,

uw�xs� z� t� �
Hg

c
sech2��t� �1� �

�

ho
�2�z � ho�

2�2 tanh2 ��t� � sinh2 ��t��� (F.1)

in which ��t� is defined as in Eq. (D.6) and the solitary wave has been limited to its
significant part 2� defined as in Eq. (D.3).

In dimensionless form, Eq. (F.1) reads,

u�w�x
�

s� z
�� t�� �

H �

c�2
sech2��t�� �1 � ��2�z� � 1�2�2 tanh2 ��t�� � sinh2 ��t���� (F.2)

In the implementation of this procedure in the model, source strengths defined based on
Eq. (F.1) correspond to Poisson equation’s (10) for �. For ��

�t
, �uw

�t
is used instead of uw.

Appendix F.2. Second-order periodic waves

For a wave of period T and height H , the horizontal velocity calculated from Stokes
theory in water of depth ho, up to second-order in H�L, reads (Dean and Dalrymple 17),

uw�xs� z� t� �
Hg

2c
cosh k�ho � z�

cosh kho
cos �kxs � �t�

� 3H2�k

16
cosh 2k�ho � z�

sinh4 kho
cos 2�kxs � �t� (F.3)

in which, � � 2
�T , is the wave circular frequency, c � ��k, is the wave celerity and the
wavenumber k is given by the linear dispersion relation (28).

To avoid initial singularity during a “cold start”, the velocity (F.2) is multiplied by a
damping function of a form similar to Eq. (E.1).

Again, source strengths defined by (F.3) correspond to the Poisson equation for �. For
��

�t
, �uw

�t
is used instead of uw.
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