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a b s t r a c t

We derive fully nonlinear, weakly dispersive model equations for propagation of surface gravity waves in
a shallow, homogeneous ocean of variable depth on the surface of a rotating sphere. A numerical model is
developed for the weakly nonlinear version of the model based on a combined finite-volume and finite-
difference method with a fourth-order MUSCL-TVD scheme in space and a third-order SSP Runge–Kutta
scheme in time. In the context of tsunami generation and propagation over trans-oceanic distances, a
scaling analysis reveals that the importance of frequency dispersion increases with a decrease of the
source width, while the effect of the Coriolis force increases with an increase of the source width. A sen-
sitivity analysis to dispersive and Coriolis effects is carried out using the numerical model in a series of
numerical experiments in an idealized ocean using Gaussian and di-polar sources with different source
sizes. A simulation of the Tohoku 2011 tsunami is used to illustrate the effects of dispersive and Coriolis
effects at large distances from the source region.

! 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional models used for simulating global-scale tsunamis
are traditionally based on the shallow water equations, which ne-
glect frequency dispersion effects on wave propagation. Recent
studies, however, reveal that these standard models may not be
satisfactory for simulating tsunamis caused by smaller scale or
more concentrated non-seismic sources, such as submarine mass
failures (SMF) (e.g., Løvholt et al., 2008; Tappin et al., 2008). More-
over, even for very long waves such as found in co-seismic tsuna-
mis, frequency dispersion effects may become significant in the
long distance propagation of tsunami fronts. This was evidenced
by Kulikov’s (2005) wavelet frequency analysis of satellite altime-
try data recorded in deep water in the Bay of Bengal during the
2004 Indian Ocean tsunami. Based on these, Kulikov concluded
that a dispersive long wave model should be used for this event.
In their dispersive numerical simulation of this event, Horillo
et al. (2006) concluded that the development in time of the wave
front is strongly connected to dispersion effects. Further support-
ing this conclusion, Glimsdal et al. (2006) and Grue et al. (2008)
showed, in their dispersive simulations of this event, that an undu-
lar bore could evolve in shallow water, in accordance with other
tsunami observations (Shuto, 1985). Finally, using the dispersive
Boussinesq model FUNWAVE (Chen et al., 2000; Kennedy et al.,

2000) to simulate the same event, Grilli et al. (2007) and Ioualalen
et al. (2007) quantified dispersive effects by performing simula-
tions with and without dispersive terms (thus solving nonlinear
shallow water equations (NSWE) in the latter case). Differences
of up to 20% in surface elevations between Boussinesq and NSWE
simulations were found in deeper water.

Regarding effects of sphericity and earth rotation on tsunami
propagation, even for the large 2004 event, numerical results
showed that a Cartesian implementation of the models (neglecting
Coriolis effects) is adequate for regional scale tsunami simulations,
provided distances are corrected to account for earth’s sphericity
(e.g., Grilli et al., 2007; Ioualalen et al., 2007); this is particularly
so when the main direction of propagation closely follows a great
circle. For global tsunami propagation, however, sphericity and
Coriolis effects might play a larger role in simulating tsunami wave
arrival at far distant sites. While standard NSWE tsunami simula-
tion models have typically included such effects (e.g., Shuto
et al., 1990), dispersive Boussinesq models such as FUNWAVE,
which were initially developed for modeling ocean wave transfor-
mations from intermediate water depths to the coast, have usually
been implemented in Cartesian coordinates without Coriolis
effects included. Løvholt et al. (2008) recently developed a Bous-
sinesq model in spherical coordinates, including Coriolis effects.
Their simulations quantified the effects of earth’s rotation and
the importance of Coriolis forces on far-field propagation across
the Atlantic Ocean of a potential tsunami originated in La Palma
(Canary Islands).
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Based on recent work summarized above, it appears that the
Boussinesq approximation may be a more accurate tool for per-
forming tsunami simulations relative to more conventional models
based on the shallow water theory, since frequency dispersion ef-
fects are manifested in almost all cases, either at large distances in
larger scale, co-seismic events, or at much shorter distances in
smaller scale SMF events. However, the computational demands
of such simulations has been a concern. As pointed out by Yoon
(2002), Boussinesq models require vast computer resources due
to the implicit nature of the solution technique used to deal with
dispersion terms. Some simulations may involve a wide range of
scales of interest, from propagation out of the generation region,
through propagation at ocean basin scale, to runup and inundation
at affected shorelines (Grilli et al., 2007). Improvement in model
efficiency can be achieved by using nested grids (e.g., Ioualalen
et al., 2007; Yamazaki et al., 2011; Son et al., 2011), unstructured
or curvilinear grids (Shi et al., 2001) and parallelization of the com-
putational algorithms (Sitanggang and Lynett, 2005; Pophet et al.,
2011; Shi et al., 2012a).

In this study, we rigorously derive and validate equations for a
dispersive Boussinesq model on the surface of a rotating sphere,
including Coriolis effects. The numerical scheme for the weakly
nonlinear case is developed following the recent work of Shi
et al. (2012a), who applied a TVD Riemann solver to Boussinesq
model equations of Chen (2006), extended to incorporate a moving
reference level as in Kennedy et al. (2001). The model is imple-
mented using a domain decomposition technique and uses MPI
for communication in distributed memory systems. The relative
importance of frequency dispersion and Coriolis effects in tsunami
propagation is evaluated both theoretically and based on numeri-
cal simulations of an idealized case. The basic capability of the
model for computing basin-scale tsunami propagation is then
demonstrated using the 2011 Tohoku event; more detail of this
particular case may be found in Grilli et al. (2012a), where an ear-
lier version of the present model based on depth-averaged veloci-
ties is used.

2. Model equations in spherical polar coordinates

We consider the motion of a fluid column with variable still
water depth h0ð/; hÞ on the surface of a sphere of radius r00 to the
still water level, where coordinates ðr0; h;/Þ denote radial distance
from the sphere center, latitude, and longitude, with the local ver-
tical coordinate defined as z0 ¼ r0 $ r00 (Fig. 1). In this coordinate
system, the dimensional Euler equations describing the flow of
an incompressible, inviscid fluid are given by (Pedlosky, 1979,
Section 6.2),

w0z0 þ
2w0

r0
þ

1
r0 cos h

ðv 0 cos hÞh þ
1

r0 cos h
u0/ ¼ 0 ð1Þ

du0

dt0
þ u0

r0
ðw0 $ v 0 tan hÞ þ 2X0ðw0 cos h$ v 0 sin hÞ ¼ $ 1

qr0 cos h
p0/ ð2Þ

dv 0

dt0
þ 1

r0
ðv 0w0 þ ðu0Þ2 tan hÞ þ 2X0 sin hu0 ¼ $ 1

qr0
p0h ð3Þ

dw0

dt0
$ ðu

0Þ2 þ ðv 0Þ2

r0
$ 2X0 cos hu0 ¼ $ 1

q p0z0 $ g ð4Þ

where X0 is the sphere’s angular velocity around the absolute verti-
cal axis, u0 and v 0 are positive velocity components in the horizontal
Easterly (/) and Northerly (h) directions respectively, and w0 de-
notes the local vertical velocity. In the selected coordinate system,
the total time derivative operator is defined as,

dðÞ
dt0
¼ ðÞt0 þ

u0

r0 cos h
ðÞ/ þ

v 0
r0
ðÞh þw0ðÞz0 ð5Þ

Boundary conditions consist of a dynamic condition specifying
pressure ps on the free surface,

p0sð/; h; t
0Þ ¼ 0; z0 ¼ g0 ð6Þ

together with a kinematic constraints on the velocity field at the
surface and bottom boundary. The kinematic surface boundary con-
dition (KSBC) is given by

Dg0

Dt0
¼ w0; z0 ¼ g0 ð7Þ

and the (kinematic) bottom boundary condition (BBC) is given by

Dð$h0Þ
Dt0

¼ w0; z0 ¼ $h0 ð8Þ

where

DðÞ
Dt0
¼ ðÞt0 þ

u0

r0 cos h
ðÞ/ þ

v 0
r0
ðÞh ð9Þ

Note that (8) allows for an imposed motion of the ocean bottom to
be specified.

In Boussinesq or shallow water theory, it is typical to replace
the local continuity equation (1) with a depth-integrated conserva-
tion equation for horizontal volume fluxes. Integrating (1) over
depth and employing the kinematic boundary conditions (7) and
(8) yields

ðr0Þ2jg0g0t0 þ ðr0Þ
2j$h0h

0
t0 þ

1
cos h

@

@/

Z g0

$h0
u0r0dz0

( )

þ 1
cos h

@

@h
cos h

Z g0

$h0
v 0r0dz0

( )
¼ 0 ð10Þ

This equation will be simplified below based on scaling arguments.

2.1. Scaling

Based on the standard procedure for shallow water scaling, we
introduce the length scales h00, a00 and k0, denoting a characteristic
water depth, wave amplitude (or amplitude of bottom displace-
ment), and horizontal length; with the latter remaining to be

Fig. 1. Coordinate system for model development corresponding to Eqs. (1)–(4).
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examined. Combining these scales with each other and with r00
yields a family of dimensionless parameters: ! ¼ h00=r00 denoting
the relative depth or thickness of the ocean layer; l ¼ h00=k

0, the
usual parameter characterizing frequency dispersion in Boussinesq
theory; and d ¼ a00=h00, the shallow water nonlinearity parameter.
The parameter ! takes on values of Oð10$3Þ at maximum, and will
thus always be taken to indicate vanishingly small effects when it
occurs in isolation.

Based on this family of parameters, we scale z-direction quanti-
ties by as,

ðh; zÞ ¼ ðh
0
; z0Þ

h00
; g ¼ g0

a00
ð11Þ

We take u00 ¼ dc00 ¼ d
ffiffiffiffiffiffiffiffi
gh00

q
to denote a scale for horizontal veloci-

ties, and let w00 denote a scale for vertical velocities, so that,

ðu;vÞ ¼ ðu
0;v 0Þ
u00

; w ¼
w0

w00
ð12Þ

Pressure is scaled by the weight of the static reference water
column

p ¼ p0

qgh00
ð13Þ

We introduce a rescaling of the dimensionless latitude and longi-
tude according to

ð/&; h&Þ ¼ r00
k0
ð/; hÞ ¼ l

!
ð/; hÞ ð14Þ

This gives horizontal coordinates which change by Oð1Þ amounts
over distances of Oðk0Þ. Retaining terms to Oð!Þ, the nondimensional
form of the continuity equation (1) is then given by

w00
u00

" #
½wz þ 2!w( þ lð1$ !zÞ

cos h
½u/& þ ðv cos hÞh& ( ¼ Oð!2Þ ð15Þ

indicating that w00=u00 ¼ OðlÞ, as is usual in a Boussinesq or shallow
water model framework. Turning to the depth-integrated mass con-
servation equation (10), we introduce the total depth,

H ¼ hþ dg ð16Þ

and obtain

1
d

Ht þ
1

cos h
½ðHuÞ/& þ ðHv cos hÞh& ( ¼ Oð!Þ ð17Þ

where

ðu;vÞ ¼ 1
H

Z dg

$h
ðu; vÞdz ð18Þ

are depth-averaged horizontal velocities, and where time t0 is scaled
according to

t ¼ x0t0 ¼

ffiffiffiffiffiffiffiffi
gh00

q

k0
t0 ð19Þ

In keeping with the notion that waves which are short relative to
the basin scale (k0=r00 or !=l) 1) may have frequencies which are
high relative to the earth’s rotation rate (x0=X0 * 1), we introduce
the scaling

X ¼ l
!

X0

x0 ¼ Oð1Þ ð20Þ

(Comparing to other treatments of this problem, we note that this
choice leads to a nondimensional Coriolis term with an explicit scal-
ing that changes its size in the Boussinesq regime in comparison to
the shallow water regime, in contrast to the model equations in
Løvholt et al. (2008) or Zhou et al. (2011), for example, where the

relative size of local acceleration and Coriolis terms in different
scaling limits is not apparent). Turning to the Easterly ð/Þ momen-
tum equation (2), we obtain

ut $
!
l

" #
f v þ d

u
cos h

u/& þ vuh& þwuz $
!
luv tan h

$ %

þ d$1

cos h
p/&

¼ Oð!Þ ð21Þ

where the dimensionless Coriolis parameter is defined as
f ¼ 2X sin h. Similarly, the Northerly ðhÞ momentum equation (3)
becomes,

v t þ
!
l

" #
fuþ d

u
cos h

v/& þ vvh& þwvz þ
!
lu2 tan h

$ %

þ d$1ph& ¼ Oð!Þ ð22Þ

The dimensionless vertical momentum equation is finally given by

dl2 wt þ d
u

cos h
w/& þ vwh& þwwz

& 'h i
þ ðpz þ 1Þ ¼ Oð!Þ ð23Þ

In the following, we consider two relations between ! and l:
(1) the regime l ¼ Oð!Þ, which recovers the shallow water
equations; and (2) the regime l ¼ Oð!1=3Þ, which yields the
Boussinesq approximation. As a further note on the apparent
scaling of the Coriolis parameter, f, consider the usual definition

of the dimensional Rossby deformation radius R0 ¼
ffiffiffiffiffiffiffiffi
gh00

q
=f 0 ¼

ffiffiffiffiffiffiffiffi
gh00

q
=ð2X0 sin hÞ. In the present scaling, we obtain f ¼ r00=R0 or

!
l

" #
f ¼ k0

R0
ð24Þ

which shows that the shallow water regime and Boussinesq regime
can be thought of as covering waves which are Oð1Þ in length or
much shorter than the Rossby deformation radius, respectively,
the Coriolis effects being weaker in the latter case.

2.2. Shallow water equations

Most theories of transoceanic tsunami propagation are based
on either the nonlinear shallow water equations (NSWE), or their
linearized form, in recognition of the vanishing effects of disper-
sion ðl! 0Þ for very long waves. In the present discussion, this
limit is obtained when the horizontal length scale of wave
motion approaches the horizontal scale of a global-sized ocean
basin, or k0 ! r00. This implies that the ratio !=l ¼ Oð1Þ, while
terms proportional to l appearing alone are essentially the size
of already neglected terms of Oð!Þ. In this combined limit, the
local vertical momentum equation (23) reduces to a hydrostatic
balance, which may be integrated down from the free surface
to yield

p ¼ dg$ z ð25Þ

This expression is used to evaluate pressure gradient terms in the
horizontal momentum equations, yielding the final set of shallow
water equations

1
d

Ht þ
1

cos h
½ðHuÞ/ þ ðHv cos hÞh( ¼ 0 ð26Þ

ut $ f v þ d
cos h

½uu/ þ cos hvuh $ sin huv ( þ 1
cos h

g/ ¼ 0 ð27Þ

v t þ f uþ d
cos h

½uv/ þ cos hvvh þ sin hu2( þ gh ¼ 0 ð28Þ

where, in this limit, the scaled latitude and longitude revert to the
original values. Eq. (26) retains the possibility of describing wave
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generation through a bottom motion ht , which appears at Oð1=dÞ
since h0 is scaled by h00 rather than wave amplitude. This is impor-
tant for modeling time dependent tsunami sources, such as occur
for large co-seismic events (e.g., Indian Ocean in 2004 or Tohoku
in 2011) or for landslide tsunamis.

2.3. The Boussinesq approximation

We now wish to retain dispersive effects to leading order in
the description of wave motion. Further, in order to provide a uni-
formly valid model which can be used to describe nonlinear wave
evolution in shallow coastal margins as well as mainly linear evo-
lution in the deep ocean basin, we will retain the mechanics of
the fully nonlinear Boussinesq model framework, following the
approach of Chen (2006) and Shi et al. (2012a) but working in
the framework of rotating flow. As in those studies, we use hori-
zontal velocity ua at a reference level za as the dependent variable
as a means of providing more accurate frequency dispersion
effects as well as for connecting the model more directly to
local-scale models in Cartesian coordinates. In developing the
model, we seek to retain terms to Oðl2Þ without any truncation
in orders of d. This is in contrast to the classical Boussinesq
approach, which would take d ¼ Oðl2Þ and truncate terms of
Oðd2; dl2;l4Þ and higher.

In the derivation, we retain the effect of an imposed bottom
motion hð/; h; tÞ. The approximation is accompanied by the
assumption that l ¼ Oð!1=3Þ. For ! ¼ Oð10$3Þ, this implies a dis-
persion term l ¼ Oð10$1Þ, which would be reasonable for the
usual surface wave problems. This choice of scaling then implies
that Oð!=lÞ ¼ Oðl2Þ, indicating that Coriolis terms and undifferen-
tiated advective acceleration terms are the same size as the lead-
ing-order deviation of the pressure term from a hydrostatic
balance.

2.3.1. Pressure and vertical momentum
Pressure in the system being considered will deviate from

hydrostatic by Oðl2Þ amounts. Denoting this non-hydrostatic com-
ponent by ~p, we write

pð/&; h&; z; tÞ ¼ phð/
&; h&; z; tÞ þ dl2~pð/&; h&; z; tÞ

¼ dg$ zþ dl2~p ð29Þ

Introducing (29) in (23) and integrating up to the free surface
(where ~p ¼ 0) gives

~pðzÞ ¼
Z dg

z
wtdzþ d

Z dg

z

u
cos h

w/& þ vwh& þwwz

h i
dzþ Oð!Þ ð30Þ

The weakly nonlinear approximation with d=l2 ¼ Oð1Þwould retain

~pðzÞ ¼
Z 0

z
wtdzþ OðdÞ ð31Þ

2.3.2. The vertical structure of velocities
In order to use (30) to evaluate horizontal pressure gradients,

we need to establish a relation between w and components ðu;vÞ
through the continuity equation (15), which simplifies to

wz þ
l

cos h
½u/& þ ðv cos hÞh& ( ¼ Oð!Þ ð32Þ

Integrating (32) from $h to z and using the bottom boundary con-
dition gives

wðzÞ¼$ 1
cosh

@

@/&

Z z

$h
udz

" #
$ 1

cosh
@

@h&

Z z

$h
v coshdz

" #
$1

d
ht ð33Þ

We now follow Nwogu (1993) and Chen (2006) and express the
horizontal velocities using Taylor series expansions about a refer-
ence depth za. This approach, together with the closure assumption
that horizontal components of vorticity are zero at leading order,
expressed through

uz ¼ l2 w/&

cos h
þ Oðl4; !Þ; vz ¼ l2wh& þ Oðl4; !Þ ð34Þ

leads to the following expressions for the velocity components,

uðzÞ ¼ ua þ
l2

cos h
ðza $ zÞA/& $

1
2
ðz2

a $ z2ÞB/&

( )
þ Oðl4; !Þ ð35Þ

vðzÞ ¼ va þ l2 ðza $ zÞAh& $
1
2
ðz2

a $ z2ÞBh&

( )
þ Oðl4; !Þ ð36Þ

wðzÞ ¼ $A$ Bz ð37Þ

where

A ¼ 1
d

ht þ
1

cos h
fðuahÞ/& þ ðva cos hhÞh&g;

B ¼ 1
cos h

fðuaÞ/& þ ðva cos hÞh&g ð38Þ

The vertical vorticity associated with (35) and (36) is given by

x ¼ x0 þ l2x2ðzÞ þ Oðl4; !Þ ð39Þ

with

x0 ¼
1

cos h
va/& $ uah& ð40Þ

and

x2 ¼
1

cos h
f½Ah&za/& þ Bh&zaza/& ( $ ½A/&zah& þ B/&zazah& (g

$ tan h
cos h

A/& ðza $ zÞ þ B/& ð
z2
a

2
$ z2

2
Þ

( )
dh
dh&

ð41Þ

In contrast to the case in Cartesian coordinates, the Oðl2Þ contribu-
tion to the vorticity here is depth dependent. In the Boussinesq
regime, however, we have dh=dh& ¼ l2 and thus the additional
time-dependent term is of Oðl4Þ overall, moving it outside the
approximate equations developed here. We thus denote
x2ðzÞ ¼ ~x2 þ l2x̂2ðzÞ and neglect x̂2 from further analysis.

2.3.3. Fully nonlinear Boussinesq equations
Fully nonlinear Boussinesq equations are obtained first by

using the expressions (35)–(37) to evaluate the pressure field
(30), giving

~pðzÞ ¼ l2 ½DaA$ dAB(ðz$ dgÞ þ DaB$ dB2
h i z2 $ ðdgÞ2

2

 !( )
ð42Þ

where

DaðÞ ¼ ðÞt þ d
ua

cos h
ðÞ/& þ vaðÞh&

n o
ð43Þ

is a total derivative following the horizontal motion in the local tan-
gent plane. Substitution of Eqs. (35)–(37) into the / momentum
equation (21) gives the approximate horizontal momentum
equation

uat $ l2f va þ
1

cos h
g/& þ d

uaua/&

cos h
þ vauah& $ l2uava tan h

$ %

þ l2½V ð/Þ1 þ V ð/Þ2 þ V ð/Þ3 ðzÞ( ¼ Oðl4; !Þ ð44Þ

where
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V ð/Þ1 ¼
1

cos h
z2
a

2
Bt/& þ zaAt/& $

dg2

2

" #
Bt

$ %

/&
$ ½dgAt(/&

( )
ð45Þ

V ð/Þ2 ¼
d

cos h
z2
a $ ðdgÞ

2

2

 !
uaB/&

cos h
þ vaBh&

$ %(

þðza $ dgÞ uaA/&

cos h
þ vaAh&

$ %
þ 1

2
½Aþ dgB(2

)

/&
ð46Þ

V ð/Þ3 ðzÞ ¼ $dva ~x2 $ dx0 ðza $ zÞAh& þ
z2
a $ z2

2

" #
Bh&

( )
ð47Þ

Similarly, the h momentum equation can be written as

vat þ l2fua þ gh& þ d
uava/&

cos h
þ vavah& þ l2u2

a tan h
$ %

þ l2½V ðhÞ1 þ V ðhÞ2 þ V ðhÞ3 ðzÞ( ¼ Oðl4; !Þ ð48Þ

where

V ðhÞ1 ¼
z2
a

2
Bth& þ zaAth& $

dg2

2

" #
Bt

$ %

h&
$ ½dgAt(h&

( )
ð49Þ

V ðhÞ2 ¼ d
z2
a $ ðdgÞ

2

2

 !
uaB/&

cos h
þ vaBh&

$ %
þ ðza $ dgÞ uaA/&

cos h
þ vaAh&

$ %(

þ1
2

Aþ dgB½ (2
)

h&

ð50Þ

V ðhÞ3 ðzÞ ¼ dua ~x2 þ
dx0

cos h
A/& ðza $ zÞ þ B/&

z2
a $ z2

2

" #( )
ð51Þ

At this level of approximation, all z-dependence is contained in the
dispersive terms V3. In order to obtain a reduced-dimension, Bous-
sinesq type system, we follow Chen (2006) and average (47) and
(51) over depth to obtain the expressions

V ð/Þ3 ¼ $dva ~x2 $ dx0 Ah&
1
2

z2
a $

1
6
ðdgÞ2 $ dghþ h2
h i" #(

þBh& za $
1
2
ðdg$ hÞ

" #)
ð52Þ

and

V ðhÞ3 ¼ dua ~x2 þ
dx0

cos h
B/&

1
2

z2
a $

1
6
½ðdgÞ2 $ dghþ h2(

" #(

þB/& za $
1
2
ðdg$ hÞ

" #)
ð53Þ

To complete the set of Boussinesq equations, the continuity equa-
tion (17) is written by expressing u and v in terms of ua and va,
giving

1
d

Ht þ
1

cos h
Mð/Þ

/& þ ðM
ðhÞ cos hÞh&

n o
¼ Oð!;l4Þ ð54Þ

where the volume flux components in / and h are given by

Mð/Þ ¼H uaþ
l2

cosh
zaþ

1
2
ðh$dgÞ

" #
A/& þ

z2
a

2
$

h2$hdgþðdgÞ2

6

 !
B/&

" #( )

MðhÞ ¼H vaþl2 zaþ
1
2
ðh$dgÞ

" #
Ah& þ

z2
a

2
$h2$hdgþðdgÞ2

6

 !
Bh&

" #( )

ð55Þ

2.3.4. Weakly nonlinear approximation
The standard weakly nonlinear Boussinesq approximation fol-

lows from the assumption that d ¼ Oðl2Þ, leading to the immediate
neglect of all terms of Oðdl2Þ in Eqs. (44), (48) and (54). The result-
ing set of approximate momentum equations are given by

uat $ l2f va þ
1

cos h
g/& þ d

uaua/&

cos h
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The approximate volume fluxes in (56) follow from (55) and are gi-
ven by
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We note that the scaling automatically eliminates the undifferenti-
ated advective acceleration terms in (56) and (58). These terms are
also absent in the weakly nonlinear model of Løvholt et al. (2008)
but are retained in the model of Zhou et al. (2011).

3. Numerical approach

The fully nonlinear system described here provides a compre-
hensive model for studying tsunamis from the earliest stages of
generation to the final stages of shoreline inundation and runup.
As pointed out in Løvholt et al. (2008), there are possible advanta-
ges to the fully nonlinear system particularly in the study of the
development of undular bores over shelf regions, where weakly
nonlinear models are known to over-predict bore undulation
heights (Wei et al., 1995). However, it is our usual practice to sim-
ulate nearshore propagation and inundation using the correspond-
ing model system in Cartesian coordinates, as described in Shi et al.
(2012a) and used recently in Grilli et al. (2012a). For simplicity, we
illustrate the numerical implementation of the weakly nonlinear
system (56)–(60) here and obtain a model which is suitable for
the generation and propagation studies considered in the following
examples.

Recent progress in the development of Boussinesq-type wave
models using a combined finite-volume and finite-difference TVD
schemes has shown robust performance of the shock-capturing
method in simulating breaking waves and coastal inundation
(Tonelli and Petti, 2009; Roeber et al., 2010; Shiach and Mingham,
2009; Erduran et al., 2005, and others). In this study, we applied
the MUSCL-TVD scheme in space and a high-order Runge–Kutta
scheme in time with adaptive time stepping.

3.1. Conservative form of governing equations

The numerical implementation is based on dimensional forms
of the weakly nonlinear governing equations, augmented by terms
representing bottom friction. We also neglect the direct generation
of waves due to bottom motion. The model equations are given by
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cos h
; B ¼
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ð64Þ

and where Cd represents a drag coefficient. The system of Eqs.
(61)–(63) corresponds to the Nwogu-type equations used in
Løvholt et al. (2008). In order to apply the combined finite-volume
and finite-difference schemes, the governing equations (61)–(63)
are re-arranged to a conservative form following Shi et al.
(2012) for the fully non-linear Boussinesq equations in Cartesian
coordinates. We define

n1 ¼ r0 cos h0ð/$ /0Þ
n2 ¼ r0ðh$ h0Þ

(
ð65Þ

where ð/0; h0Þ are the reference longitude and latitude, respectively.
ðn1; n2Þ represent coordinates in the longitude and latitude direc-
tions, respectively. The conservative form of (61)–(63) can be writ-
ten as

@W
@t
þr +HðWÞ ¼ S ð66Þ

where W and HðWÞ are the vector of conserved variables and the
flux vector function, respectively, and are given by
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where Sp is a spherical coordinate correction factor given by

Sp ¼
cos h0

cos h
ð68Þ

P ¼ Hua þ hu1 and Q ¼ Hva þ hv1, in which ðu1; v1Þ are defined by
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The conserved variables U and V in (67) are given by

U ¼ Hðua þ FÞ ð71Þ

V ¼ Hðva þ GÞ ð72Þ

in which
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S in (66) represents a source array given by
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where

w1 ¼ gtðF $ u1Þ þ hðSpuau1n1 þ vau1n2 þ Spu1uan1 þ v1uan2 Þ ð76Þ

w2 ¼ gtðG$ v1Þ þ hðSpuav1n1 þ vav1n2 þ Spu1van1 þ v1van2 Þ ð77Þ

The surface elevation gradient term was split into
1
2 Spgðg2 þ 2ghÞ; 1

2 gðg2 þ 2ghÞ
* +

in (67) and ðSpgghn1 ; gghn2 Þ in (75)
in order to use a well-balanced numerical scheme (Shi et al.,
2012a).

Eq. (66) is solved using the MUSCL-TVD scheme and the HLL
approximate Riemann solver. A MUSCL-TVD scheme up to the
fourth-order in space (Yamamoto and Daiguji, 1993) and a third-
order Strong Stability-Preserving (SSP) Runge–Kutta (Gottlieb
et al., 2001) in time were adopted. Model implementation also in-
cludes wave breaking and wetting–drying schemes for shallow
water, as described in Shi et al. (2012a).

3.2. Parallelization

In parallelizing the computational model, we use the domain
decomposition technique to subdivide the problem into multiple
regions and assign each subdomain to a separate processor core.
Each subdomain region contains an overlapping area of ghost cells
three rows deep, as dictated by the 4th order computational stencil
for the leading order non-dispersive terms. The Message Passing
Interface (MPI) with non-blocking communication is used to ex-
change data in the overlapping region between neighboring pro-
cessors. Velocity components are obtained from Eqs. (46) and
(47) by solving tridiagonal matrices using the parallel pipelining
tridiagonal solver described in Naik et al. (1993).

To investigate the performance of the parallel program, numer-
ical simulations of an idealized ocean case were first tested with
different numbers of processors on the linux cluster mills.hpc.ude-
l.edu using a heterogeneous set of nodes consisting of nodes with
24–2.4 GHz cores and 64 GB of memory or 48–2.4 GHz cores and
128 GB of memory per node. Tests here were conducted using 24
core nodes. The test case uses a numerical grid of dimension
5400, 3600. Fig. 2 shows the model speedup versus number of
processors for tests with 1, 8, 16, 24, 36, 48 and 64 processors.
The effect of inter-node communication is noted as the computa-
tion moves from one to two nodes (above 24 processors) and from
two to three nodes (above 48 processors), but overall performance
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is satisfactory in comparison to an ideal arithmetic speedup based
on performance using a single processor.

4. Tests of dispersion and Coriolis effects

The orders of the frequency dispersions terms and Coriolis
terms in Eqs. (47) and (48) are Oðl2Þ and Oð!=lÞ, respectively.
The relative importance of frequency dispersion and Coriolis force
can be evaluated using l2 and !=l values in some specific cases.
Fig. 3 illustrates variations of l2 and !=l with respect to l or
h0=W , where W represents the characteristic width of the tsunami
source. Typically, for a source width of 100 km (for example, the
2004 Indian Ocean tsunami), l - 0:025 and the Coriolis effect
would be expected to be relatively more important than dispersion
as shown in Fig. 3. This result would apply to all co-seismic sources
with widths in the range 50 6W 6 500 km, for which
0:01 6 l 6 0:1. For narrower sources with widths on the order of
25 km or less, l values lie to the right of the intersection point in

Fig. 3, indicating that dispersive effects are as important as the
Coriolis effect, and get relatively more important as the source
width diminishes. Nevertheless, in the examples considered below,
we find that Coriolis effects are uniformly less important than dis-
persion effects for all the cases considered, even though the scaling
indicates otherwise.

4.1. Idealized tsunami sources and examples

There is a significant lack of benchmark examples that can be
used as test cases for the determination of accuracy of spherical
coordinate ocean wave models. Shi et al. (2012b) have described
the testing of an earlier version of the present code, based on
depth-averaged velocity, against the standard tsunami benchmark
tests provided by Synolakis et al. (2007). Here, we compare model
results to several of the detailed measurements obtained from
DART buoys during the 2011 Tohoku-oki tsunami event. Before
turning to the realistic example, we first illustrate the dependence
of the maximum wave height envelope on the effect of dispersive
and Coriolis effects using idealized sources which may be taken to
be indicative either of localized SMF events or of co-seismic events
with limited lateral extent.

We utilize two idealized sources here: an initial Gaussian
elevation

Fig. 2. Variation in model performance with number of processors for a
5400, 3600 domain. Straight line indicates arithmetic speedup. Actual perfor-
mance shown by circles.

Fig. 3. Relative importance of Coriolis force (!=l) and frequency dispersion (l2)
with varying inverse source width l ¼ h0=W .

(a)

(b)

Fig. 4. Geometries for (a) a dipolar source and (b) a Gaussian source used in model
testing.
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gð/; hÞ ¼ A exp $ r2
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ð78Þ

with center at ð/c; hcÞ, nominal source width W and amplitude A,
and a dipolar initial displacement given by
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W2 ðð/$ /cÞ
2 þ ðh$ hcÞ2Þ

$ %
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where the orientation of the dipole may be changed by altering the
first ð/$ /cÞ factor. The shapes of these initial forms are shown in
Fig. 4. Of these two, the dipolar source is most representative of tsu-
nami-like sources, and could represent either the net upward and
downward displacement of an Okada-like source, or the net effect
of lateral translation or rotation of an SMF event.

We consider an idealized ocean and use a model grid in spher-
ical coordinates with a flat bottom bathymetry over the entire
ocean basin. The computational domain is in the northern hemi-
sphere and covers a region from 10"N to 50"N in the south-north
direction and from 20"W to 20"E in the west-east direction. Water
depth h ¼ 3000 m over the whole domain. The grid resolution is
0:750. As is classically done in tsunami analyses, the bottom defor-
mation is transferred to the spherical Boussinesq model as an

initial free surface condition with no initial fluid velocities, speci-
fied by either (78) or (79).

4.2. Source size and wave dispersion effect

The first set of examples considers the effect of varying source
with on the rate of appearance of dispersive effects, using both of
the source configurations considered above. Results are analyzed
in light of a parameter due to Kajiura (1963), given by

Pa ¼
6h
L

" #1=3 W
h

" #
ð80Þ

where h is ocean depth, W is source width (as an indicator of ba-
sic wavelength), and L denotes travel distance. Kajiura indicates
that dispersive effects should begin to become apparent when
the value of the Pa, which decreases with travel distance, drops
below 4.

Fig. 5 shows a snapshot at time t ¼ 5000 s of the NE quadrant of
wave trains evolving from both sources (78) and (79) with varying
source widths. Panels (a)–(c) correspond to a dipolar source ori-
ented in the E–W direction, while panels (d)–(f) correspond to
Gaussian sources. Panels (a) and (d) correspond to a narrow initial

Fig. 5. (a) Dipolar initial condition (W ¼ 0:25. , Pa ¼ 2:5), (b) dipolar initial condition (W ¼ 0:5. , Pa ¼ 5:0), (c) dipolar initial condition (W ¼ 1:0. , Pa ¼ 10:0), (d) Gaussian
initial condition (W ¼ 0:25. , Pa ¼ 2:5), (e) Gaussian initial condition (W ¼ 0:5. , Pa ¼ 5:0), and (f) Gaussian initial condition (W ¼ 1:0. , Pa ¼ 10:0), T ¼ 5000 s.
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source with W ¼ 0:25., corresponding to an SMF-sized source with
a width of about 25 km, with parameter Pa ¼ 2:5, indicating the
strong evolution of a dispersive wave train at the time of 1.4 h after
event initiation. In contrast the lower panels (c) and (f) represent a
source with initial width W ¼ 1. or about 100 km, consistent with
a larger co-seismic slip event. At this elapsed time of 1.4 h, Pa / 10
and dispersive effects are not apparent, indicating that dispersion
(as manifested by the presence of an oscillatory wave train) is
not likely to occur for the first several hours during the evolution
of a wave train from a classic co-seismic event.

Figs. 6 and 7 show the effect of dispersion on the spatial pattern
of maximum wave height for a strongly dispersive case. Fig. 6(a)
and (b) shows the wave fields at t ¼ 5000 s for dispersive and non-
dispersive calculations, respectively, for the dipolar source with
initial W ¼ 0:25., corresponding to Fig. 5(a). Fig. 6(c) shows the
spatial pattern of the difference in wave height envelope for the
simulations with and without dispersion, and shows that there is
a general tendency towards a decrease in wave height along the
principle propagation direction when dispersion is taken into ac-
count. (This tendency also occurs in the realistic simulations of
the Tohoku-oki event shown below, although the tendency is re-
versed at distances which are relatively shorter (higher Pa) than

the distances considered here, possibly due to complex refrac-
tion/diffraction effects over the variable ocean bathymetry.) Simi-
lar results occur for the Gaussian source as indicated in Fig. 7,
aside from a more uniform distribution of results due to the ini-
tially symmetric source.

Figs. 8 and 9 provide a more detailed picture of the evolution of
the dispersive wave train evolving from the dipolar or Gaussian
sources respectively, with W ¼ 0:25. in either case. In each panel
(a)–(f), a distance D ¼

ffiffiffiffiffiffi
gh

p
t along an E–W transect through the

source center is chosen, and then a time series of the resulting
wave form passing that point is constructed with the time axis
shifted by the amount t, to obtain an arrival time of zero for a non-
dispersive wave in Cartesian coordinates. In each figure, the dis-
tance of the measurement point from the source origin along the
E–W direction varies from 308.6 km (at top) to 1851.8 km (at bot-
tom), corresponding to values of Pa falling from 3.11 to 1.71. In this
case, frequency dispersion is seen to be important at all displayed
distances from the source, and the evolved wave train represents
an extensive packet of waves with a gradually decreasing wave
period as the wave passes a fixed point, indicting the expected
sorting of longer and shorter waves due to phase speed depen-
dence on frequency.

Fig. 6. Dipolar initial condition with E–W orientation and W ¼ 0:25. . (a) With dispersive terms, Pa ¼ 2:5, t ¼ 5000 s; (b) without dispersive terms, Pa ¼ 2:5, t ¼ 5000 s; (c)
difference in wave height envelope, dispersive–nondispersive. Plots are in percent of maximum initial displacement, equal to 1 m.
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4.3. Coriolis effect on an idealized source

The examples presented in the previous section included Corio-
lis effects in the computations. Corresponding runs without Corio-
lis were found to have only minor effects on the outcome, in line
with the case study of the Tohoku-oki event discussed in the fol-
lowing section. In this section, we consider an additional idealized
case of a dipolar source centered at 50"N with a N–S orientation.
This latitude corresponds to Aleutian Island sources, and is chosen
so as to give a source located in a region with elevated rotational
effects. The source considered here has a width W 0 ¼ 4. or about
300 km, which is still considerably smaller than an estimate of
the Rossby radius of deformation of 1800 km for a water depth
of h0 ¼ 4 km and this latitude. Correspondingly, Coriolis effects on
the solution are still weak at this latitude. Fig. 10 illustrates a com-
parison of the maximum wave height envelope after 10 h of simu-
lation for cases with and without Coriolis included, with solid
contours corresponding to the case with Coriolis and dashed con-
tours corresponding to the case without. Contour levels correspond
to percentage of the initial source height. Coriolis is seen to lead to
a somewhat more rapid decay of the wave height with distance
form the source center. The results also indicate that the results
with Coriolis are somewhat asymmetrical in the E–W direction,

with wave heights being larger to the East, or left, of the main
direction of propagation. This is a seemingly paradoxical result,
as we may expect the tendency of Coriolis to deflect motions to
the right in the Northern hemisphere to cause greater wave heights
to the right of the propagation direction, as illustrated in the next
section for the Tohoku-oki event. In order to examine this further,
we consider an idealized case of diplolar sources with N–S and E–
W orientation with Coriolis either included or neglected. The
source geometry and latitude are unchanged. Fig. 11(a) and (b) dis-
play results with and without Coriolis force included for the same
case as in Fig. 10. Fig. 11(c) shows the difference between run with
Coriois (a) and the run without Coriolis (b). The most obvious effect
noted here is that Coriolis tends to trap a portion of the initial wave
close to its original position, leading to a persistent dipolar feature
near the source center at (50"N, 0"E). The pattern also indicates
that the evolving wave form with Coriolis is somewhat lower in
amplitude to the right of the Southerly propagation direction, in
agreement with Fig. 10. The waveform with Coriolis also has a low-
er amplitude at the leading edge of the spreading wave, indicating
that Coriolis is reducing wave propagation speed to a small extent.
The dipolar source with E–W orientation (Fig. 11(d)–(f)) also shows
a reduction in wave speed induced by Coriolis and a tendency to
trap a portion of the initial wave form near the source location.

Fig. 7. Gaussian initial condition with W ¼ 0:25. . (a) With dispersive terms, Pa ¼ 2:5, t ¼ 5000 s; (b) without dispersive terms, Pa ¼ 2:5, t ¼ 5000 s; (c) difference in wave
height envelope, dispersive–nondispersive. Plots are in percent of maximum initial displacement, equal to 1 m.
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At the propagation distances shown here, there is no clear ten-
dency for the evolving waves to be deflected to the right or left
of the principle propagation direction. See the following section
for indications of this sort of behavior for much larger propagation
distances in a realistic event.

Overall, the effect of Coriolis terms on evolving tsunami wave
fronts appears to be of minimal importance, as noted in a number
of earlier investigations (Kowalik et al., 2005; Løvholt et al., 2008).

4.4. The 2011 Tohoku-oki tsunami

The ability of the new spherical Boussinesq model to simulate
basin-scale tsunami events is demonstrated in this section by
applying the model to the recent March 11th, 2011 M9 Tohoku-
oki earthquake. During this event, an extremely devastating tsu-
nami was generated in the near-field while a significant tsunami
was observed at many far-field locations. Grilli et al. (2012a) pro-
vide a detailed account of the event, the earthquake source, the
near- and far-field tsunami observations, and tsunami generation
and propagation modeling using both the Cartesian version (Shi
et al., 2012a) and an earlier spherical version of FUNWAVE-TVD
based on depth-averaged velocity. Here, we present results of sim-

ulations with the weakly-nonlinear spherical Boussinesq model
described above. We specifically analyze effects of dispersion and
Coriolis terms in the model equations on simulated maximum tsu-
nami elevation in the Pacific Ocean. Comparisons are made based
on measured and modeled time series at the location of four DART
buoys, one near Japan (21418), one off Oregon (46404), one near
Hawaii (51407), and one near Panama (32411) as shown in
Fig. 14, and on a comparison of synoptic maps of maximum wave
height envelopes for the entire Pacific basin.

As in Grilli et al. (2012a), the computational domain covers a
region of the Pacific Ocean from 60"S to 60"N in the south-north
direction, and from 132"E to 68"W in the west-east direction
(Fig. 12). In the present simulations, the grid resolution is im-
proved to 20 compared to the 40 resolution used in Grilli et al.
(2012a). Bathymetry is specified in the model based on the ETO-
PO1 10 data base. In these simulations, we use the tsunami source
of Grilli et al. (2012a), which is based on the 3D FEM model of
Masterlark (2003). This source, denoted UA, was derived from a
combination of seismic and GPS inversion to specify the earth-
quake-induced bottom uplift or subsidence as a function of time.
The model simulations here do not make use of any hydrody-
namic data in the determination of the source configuration.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 8. Evolution of dispersive (solid line) and nondispersive (dashed line) wave trains for a dipolar source with initial width W ¼ 0:25. . Left and right panels show westward
and eastward propagating waves, respectively. Measurement locations are at D ¼

ffiffiffiffiffiffi
gh

p
t with h ¼ 3000 m and t, D = (a) 1800 s and 308.6 km; (b) 3600 s and 617.3 km; (c)

5400 s and 925.8 km; (d) 7200 s and 1234.5 km; (e) 9000 s and 1543.1 km; and (f) 10,800 s and 1851.8 km.
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The non-hydrostatic model NHWAVE (Ma et al., 2012) is used to
simulate the first 5 min of tsunami generation, as in Grilli et al.
(2012a), using a smaller and finer local 1 km resolution Cartesian
grid (see red rectangle in Fig. 12), based on the UA source.

NHWAVE results for surface elevation and depth-averaged hori-
zontal velocity at t ¼ 5 min are then interpolated over the spher-
ical Boussinesq model grid, in which computations are then
initiated as a hot start. For a more detailed description of model

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9. Gaussian source, parameters as in Fig. 8.

Fig. 10. (a) Comparison maximum recorded surface elevation (relative to initial source amplitude) with Coriolis (solid lines) and without Coriolis (dashed lines) after 10 h of
simulated time. Dipolar source with width W 0 ¼ 4:0.) oriented in North–South direction.
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Fig. 11. Surface elevation comparison at T ¼ 7200 s for dipolar sources with initial width W ¼ 4. and (a) North–South orientation with Coriolis, (b) North–South orientation
without Coriolis, (c) (a,b), (d) East–West orientation with Coriolis, (e) East–West orientation without Coriolis, and (f) (d,e).

Fig. 12. Computational domain for far-field simulations with FUNWAVE-TVD, with the marked location of all DART buoys in the region (labeled red dots used in
comparisons). The smaller red box marks the location of NHWAVE’s regional computational domain (Grilli et al., 2012a,b). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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setup, as well as a more comprehensive comparison of observa-
tions and model results based on the depth-averaged velocity for-
mulation, see Grilli et al. (2012a).

Fig. 13 shows a comparison of DART buoy measurements and
full model predictions (retaining dispersion and Coriolis) at the
four selected locations. Timing of arrival of the main tsunami peak

at the nearest buoy 21418 is accurate, and the wave form is repro-
duced accurately aside from a trailing high frequency wave train
that follows the main peak in the observations. (Grilli et al.
(2012b) have recently speculated that the primary source of this
early manifesting, shorter period (3–4 min) wave train is an SMF
source located to the north of the main coseismic slip.) Using an

Fig. 13. Comparison between measured surface elevation at DART buoys (black) and model simulations using full model including dispersion and Coriolis effects. Simulations
are based on the seismic/GPS UA source described in Grilli et al. (2012a). Buoy numbers and lead in model arrival time are (a) 21418, 0 min; (b) 51407, + 5 min; (c) 46404, +
6 min, and (d) 32411, +10 min. Model results are offset by the indicated shift to facilitate wave form comparisons.

Fig. 14. Model predicted surface elevations at DART buoys: (a) 21418, (b) 51407, 46404, and (d) 32411. Full model (blue line), no dispersion (red line), no Coriolis (blue
dashed line), and no dispersion/Coriolis (green dashed line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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estimated source width W 0 ¼ 100 km and an average depth of
h0 ¼ 4 km, an estimated travel distance of 1300 km at buoy
21418 gives a value Pa ¼ 6:6, indicating that dispersive effects
should not be apparent for waves generated by the main co-seis-
mic source. At more distant buoys, the model results lead the mea-
surements in arrival timing, with a progressive increase in lead
time with distance from the initial event source. Approximate lead
times are 300 s at 51407, 360 s at 46404, and 600 s at 32411. This
timing discrepancy could be due to a number of factors, including
deviations from sphericity, errors in bathymetry, errors in leading
order model dispersion, and truncation errors associated with dis-
cretization. We have not done simulations at a higher resolution of
1 min in order to test convergence, but note that results at 2 min
resolution are significantly improved over results at 4 min resolu-
tion, where timing discrepancies are larger (Grilli et al., 2012a).

Fig. 13(b)–(d) display model results with the leading shift in time
removed in order to facilitate comparisons of the modeled wave
forms. The results at the three distant buoys indicate that the mod-
el accurately predicts the evolution of the leading features of the
tsunami wave train, with good reproduction of the sequence, per-
iod and amplitudes of arriving wave crests.

The effects of Coriolis force and frequency dispersion are illus-
trated by comparing numerical results obtained with and without
each term in the model equations in Fig. 14. Fig. 14(a) shows that
the effect of frequency dispersion on the wave train is significant
already at buoy 21418, where a forward steepening of the nondis-
persive wave form is apparent in comparison to the wave form
with dispersion retained, although no oscillatory dispersive tail
has appeared yet. The differences between dispersive and nondis-
persive calculations increase with distance from the source, and, by
the farthest buoy 32411, dispersion has created a wave train with
significant following crests that are largely absent in the nondis-
persive case, as would be expected. The parameter Pa takes on
approximate values of 3.9, 3.7 and 3.0 at buoys 51407, 46404
and 32411, respectively, indicating that dispersive effects should
only be mildly apparent at the two intermediate buoys, and rela-
tively more apparent at the most distant buoy, as is seen in the
model results. In contrast, the figure shows that the effect of Cori-
olis terms on the calculation is indistinguishable, at least at the
particular buoy locations considered.

Fig. 15 summarizes the synoptic results. The center panel dis-
plays the envelope of maximum water surface elevation for the
complete model. The upper panel displayed the difference of the
model results with dispersion and the model results without dis-
persion. The presence of dispersion in the calculation leads to local
changes in maximum wave height envelope of up to 20 cm even in

Fig. 15. Envelope of maximum computed wave elevation with FUNWAVE-TVD in
spherical (20) Pacific grid: difference between maximum wave height envelope with
and without dispersion (upper panel); result with dispersion and Coriolis terms
(center panel); and difference between maximum wave height envelope with and
without Coriolis terms (lower panel).

Fig. 16. Percent change in maximum wave height envelope for the Tohoku-oki
tsunami for (top) simulations with and without dispersion and (bottom) simula-
tions with and without Coriolis.
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the deep ocean, which represents a significant deviation in model
predictions with and without dispersion incorporated. In contrast,
the lower panel in Fig. 15 indicates that the effect of Coriolis on the
calculation is relatively minor, with deviations in wave amplitude
on the order of a centimeter over the entire ocean basin. The pres-
ence or absence of Coriolis effects in the calculations does not lead
to a practical difference in the form or amplitude of modeled waves
for the Tohoku-oki simulation. Coriolis force causes waves to the
right of the main direction of travel to be generally higher than
they would be without it, indicating a subtle shift of the initial pro-
gressive wave pattern to the right of the rotation-free direction of
propagation in the generation region, consistent with results for E–
W oriented dipolar sources in the Northern hemisphere in the pre-
vious section.

Fig. 16 provides an additional view of the synoptic results, with
the absolute wave height difference plots of Fig. 15 being replaced
by plots of percent change resulting from taking the ratio of the
difference plots to the full model simulation. The top panel indi-
cates that dispersion has a pronounced effect on wave height dis-
tribution in the far field. There is an overall tendency for the
dispersive simulation to lead to a reduction of wave height in the
relative near field down wave of the source. However, this effect
is partially reversed in the far field, where waves are often signifi-
cantly larger in the dispersive case than the nondispersive case.
This effect is partially due to a simple spatial shifting of concen-
trated wave energy in lateral directions, as evidenced by a pattern
of positive and negative deviations along transects perpendicular
to the main propagation direction. However, there is a net overall
tendency towards increased wave height in the far field, indicating
a systematic change in wave form due to dispersive effects.

In contrast, percent changes due to Coriolis effects are on the or-
der of a few percent at most, and are likely to be insignificant rel-
ative to uncertainties in source configuration and other factors in a
realistic simulation. Changes along the main propagation direction
are on the order of ±3% in the far field. These values are consistent
with previous results for simulations of the Cumbre Vieja volcano
event described by Løvholt et al. (2008). The maximum effect of
Coriolis is noticed along boundaries to the north and east (or to
the left of the main propagation direction) where Coriolis effects
reduce wave heights by up to 5%, and to the south and west (or
to the right of the main propagation direction), where results are
relatively increased, particularly in regions that are strongly shad-
owed by island chains.

5. Conclusions

We have derived fully nonlinear Boussinesq equations for
weakly dispersive wave propagation on the surface of a rotating
sphere, including Coriolis effects. The model equations incorporate
improved dispersion following Nwogu (1993) and Løvholt et al.
(2008). The weakly nonlinear version of the model is implemented
using a Godunov-type method with a fourth-order MUSCL-TVD
scheme in time and a third-order SSP Runge–Kutta scheme. The
model is implemented using a domain decomposition technique
and optimized for parallel computer clusters using MPI. Model
speedup tests with multiple processors show a nearly linear speed-
up, suggesting that such a Boussinesq model can be efficiently used
for modeling global wave propagation.

A scaling analysis indicates that the importance of frequency
dispersion should increase with a decrease in tsunami source
width, and that effects of Coriolis force should increase with an in-
crease of the source width. The importance of dispersive effects
both in the far field of large sources as well as in the near field of
compact, SMF-like sources is established using idealized examples.
In contrast, it is seen that tsunami wave trains corresponding to
typical wavelengths for co-seismic events are relatively unaffected

by rotational effects, and it is unclear that their retention in the
model is a necessary part of obtaining realistic simulations. These
results are in line with recent suggestions of Kowalik et al. (2005)
and Løvholt et al. (2008, 2012). As the Coriolis terms do not repre-
sent a difficulty in developing the numerical scheme itself, though,
there is little reason to argue that they should not be retained for
completeness.

A simulation of the Tohoku-oki event and comparison to far-
field DART buoy observations provides a strong test of the accuracy
of the seismic/GPS source developed by Grilli et al. (2012a), which
appears to be the most accurate available co-seismic source among
those which are developed without input from hydrodynamic data.
(For contrast, see the recent work of Løvholt et al. (2012), where
the inclusion of hydrodynamic measurements is probably the
strongest factor guiding the choice of source configuration.) Grilli
et al. (2012b) have recently hypothesized that an additional SMF
component of the event is crucial to an overall understanding of
the observed tsunami properties, both in terms of modeling coastal
inundation and in reproducing short period oscillations observed
in GPS and closer DART buoy records. The far field DART buoy re-
cords examined here do not provide a clear picture of these addi-
tional short wave effects, as they have either dispersed at these
distances or are buried within additional under-resolved scattering
effects from nearby shelf and coastal boundaries.
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