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ABSTRACT

In this work, we report on the development and initial validation of a
new hybrid numerical model for strongly nonlinear free surface flows,
including wave breaking and wave-structure interactions. Specifically,
a two-dimensional numerical wave tank (NWT) based on Fully Non-
linear Potential Flow (FNPF) theory, and a higher-order Boundary Ele-
ment Method (BEM), is used to simulate fully nonlinear wave generation
and far-field propagation over a possibly complex, but generally slop-
ing, bottom bathymetry. A particle-based Lattice Boltzmann (LB) model
is coupled with (or nested within) the FNPF-NWT, in the region where
breaking would normally occur (e.g., upper part of a slope) and interrupt
FNPF simulations. The coupled model is able to capture breaking and
post-breaking (or wave-interaction) phenomena that involve more com-
plex physics than represented by FNPF theory. Turbulence, in particu-
lar, is represented in the LB model by a Large Eddy Simulation (LES)
scheme, based on a Smagorinsky model. In applications, we first val-
idate the model for a one-way weakly coupled scheme, in which the
LB model is initialized in the near-field, and then possibly driven on
its boundary, by the wave-induced far-field velocity and pressure and
their derivatives, computed within the NWT. In the paper, we formulate
a fully (or strongly) coupled approach, in which the flow is first decom-
posed into irrotational and viscous perturbation parts. The latter lead to
new terms that, by analogy with Navier-Stokes (NS) equations, are ex-
pressed as volume forces, that drive LB simulations of the perturbation
fields. Applications of this strong coupling approach will be presented at
the conference.

KEY WORDS: Fully nonlinear potential flows, Boundary Element
Method, Numerical Wave Tank, Lattice-Boltzmann model, LES turbu-
lence model, VOF algorithm, coastal wave breaking

INTRODUCTION

In past work, Grilli et al. performed numerical simulations in
two- (2D; (Grilli and Subramanya, 1996)) and three-dimensional (3D;

(Grilli et al., 2001) ) models based on Fully Nonlinear Potential Flow
(FNPF) theory. These models were used to simulate strongly nonlinear
wave generation, propagation and shoaling, up to wave overturning, as
well as wave structure interactions (i.e., induced motion and forces), and
dissipation through breaking or absorption in a numerical beach. These
processes take place in the field as well as in laboratory tanks, which
has led such models to be referred to as Numerical Wave Tanks (NWTs).
The main limitation of FNPF models is that waves cannot be calculated
beyond overturning and impact of a breaker jet on the free surface. To do
so, models with more complete physics are required. In past work, Grilli
et al. coupled their FNPF-NWTs to Navier-Stokes (NS) models (with
Volume of Fluid (VOF) interface representation) solving fully turbu-
lent flows (e.g., (Guignard et al., 1999); (Biausser et al., 2004)), thanks
to various turbulence models (e.g., LES; (Harris and Grilli, 2010)). In a
first type of approach, separate inviscid and viscous domains were used
and coupling was achieved through boundary conditions. In a second
type of approach, a perturbation method, separating flows into inviscid
plus viscous perturbation parts, was used and the solution was carried out
in overlapping FNPF and NS domains. In the latter, only the perturba-
tion flows were solved for, which led to very natural homogeneous far-
field radiation conditions for these. Here, using the particle-based Lattice
Boltzman (LB) method to solve for viscous-turbulent flows, we study
both coupling approaches mentioned above (i.e., separate or overlapping
domains), between a 2D-FNPF-NWT and a 3D-LB model (LBM), es-
sentially solving similar physics as NS-VOF models, but with specific
solver advantages concerning data locality and parallel computing. How-
ever, coupling between a continuum mechanics-based model such as the
FNPF-NWT and the kinetic LBM is less straightforward than the earlier
FNPF-NS coupling. In particular, this requires developing new volumet-
ric forcing terms for the LBM, representing wave-induced momentum
input. After a brief presentation of the two underlying numerical meth-
ods (FNPF, LBM) we develop equations for achieving the NWT-LBM
coupling. Finally, to validate our initial implementation, we present an
application to the classical solitary wave shoaling and a breaking over a
plane slope.
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NUMERICAL WAVE TANK

The 2D-FNPF-NWT used in this work is based on
(Grilli and Subramanya, 1996) and (Grilli and Horrillo, 1997)’s im-
plementation. Laplace’s equation is solved using a Boundary Element
Method (BEM), and 2nd-order Taylor series expansions are used, in an
Eulerian-Lagrangian formulation, for the time updating of both the free
surface potential and all moving boundary geometries (i.e., free surface,
absorbing wavemaker). This requires solving two elliptic problems at
each time step, one for the potential and one for its time derivative.
Higher-order elements and very accurate numerical integration methods
are used in the BEM, which make it possible to achieve extremely high
accuracy of the solution and thus to perform long term simulations in
the NWT without the need for smoothing or filtering of the solution. In
case of long term simulations (e.g., for periodic or irregular waves), an
absorbing beach, combining an “absorbing pressure” on the free surface
and a lateral absorbing piston wavemaker yields negligible reflection
in NWT experiments. Various ways of generating waves are available
in the NWT, including flap and piston wavemakers, exact nonlinear
waves (both periodic and solitary), and internal sources. Wavemakers
can also be used to generate nonlinear random waves based on standard
energy spectra. A feedback control loop allows to iteratively modify the
wavemaker stroke spectrum to better approach the targeted spectrum.

NWT basics
In accordance with FNPF theory, we introduce a velocity potential
Φ(x,y,z, t), which represents inviscid and irrotiational flows in such a
way that the velocity is defined as the gradient of the potential uIi = ∇iΦ.
Hence, continuity equation becomes Laplace’s equation for the potential

∇ j
(

uIi
)

= ∇ j (∇iΦ) = ∇2Φ = 0. (1)

Using Greens 2nd identity, Eq. (1) is transformed into a boundary inte-
gral equation (BIE)

α(xxxl)Φ(xxxl) =
∮

Γ

(

G(xxx,xxxl)
∂Φ(xxx)

∂n −Φ(xxx)
∂G(xxx,xxxl)

∂n

)

dΓ. (2)

with the Green’s function

G(xxx,xxxl) =
−1
2π lnr and

∂G(xxx,xxxl)
∂n =−

1
2π

rrr ·nnn
r2

(3)

with rrr = xxx− xxxl and r = |rrr| the distance from point xxx= (x,y,z) to a point
of reference xxxl = (xl ,yl ,zl), both on the boundary, the outward normal
vector nnn, and a geometrical parameter α(xxxl) = θl/(2π), function of the
outer angle θl of the boundary at position xl .
Boundary conditions At the stationary parts of the boundary, a no-flow
condition is prescribed by specifying zero velocity in the normal direc-
tion to the boundary,
∂Φ
∂n = 0. (4)

For wave generation using a wavemaker, the time-dependent position xxxw
and velocity uuuw of the wavemaker are prescribed via
∂Φ
∂n = uuuw ·nnn and xxx= xxxw (5)

At the free surface boundary, the non-linear kinematic and dynamic
boundary conditions are in Eulerian-Lagrangian form specified as
DRRR
Dt

= uuu= ∇Φ and
DΦ
Dt

=−gz+
1
2

∇Φ ·∇Φ−
pa
ρ (6)

with free surface position RRR, gravitational acceleration g, atmospheric
pressure pa, fluid density ρ and material derivative D/Dt.

Inner velocities The solution for the velocity potential and its derivatives
along the boundary is obtained in the BEM. The values for velocities at
any arbitrary point inside the domain uIi can be explictly obtained, in a
postprocessing step, as a function of the boundary solution for Φ as

uIi (xxx) =
∮

Γ

(

∇G(xxx,xxxl)
∂Φ(xxx)

∂n −Φ(xxx)∇ ∂G(xxx,xxxl)
∂n

)

dΓ. (7)

For the calculation of the velocity gradient ∇iuIi (xxx), the ∇ operator is
applied once more to Eq. (7).

THE LATTICE BOLTZMANN METHOD

The LB method has become an increasingly efficient approach for solv-
ing a variety of difficult fluid dynamics problems, also in the field of mul-
tiphysics. By contrast with classical CFD solvers, which are dealing with
the macroscopic Navier-Stokes equations on a continuum basis, the LBM
tackles CFD problems on a mesoscopic scale and represents the fluid as
a field of particle distribution functions f (t,xxx,ξξξ ). Macroscopic hydro-
dynamic quantities can be obtained from low order moments of these
distribution functions. The efficiency and accuracy of the LBM method
has been demonstrated in many publications. (Geller et al., 2006) for
instance present a study of transient laminar flows. In addition, the
method can be efficiently parallelized to benefit from massively paral-
lel hardware (Freudiger et al., 2008). Recently, GPU implementations of
a LB method have achieved remarkable performance on graphics pro-
cessing units (GPUs; see (Tölke, 2008; Tölke and Krafczyk, 2008b) and
(Janssen and Krafczyk, 2010)).

LBM basics
The primary variable of microscopic approaches is the particle distri-
bution function f (t,xxx,ξξξ ), which specifies the normalized probability to
encounter a particle at position xxx at time t with velocity ξξξ . The evolution
of these distribution functions f is described by the Boltzmann equation
(Ludwig Boltzmann, 1872):

Df
Dt

=
∂ f (t,xxx,ξξξ )

∂ t +ξξξ ·
∂ f (t,xxx,ξξξ )

∂xxx = Ω (8)

The left-hand side of this equation is an advection-type expression, while
the collision operator Ω describes the interactions of particles on the mi-
croscopic scale. In order to obtain a model with reduced computational
costs, the Boltzmann equation is discretized in the velocity space ξ . In
this work, the D3Q19 model (Quian et al., 1992) is used, which intro-
duces the following 19 discretized microscopic particle velocities eeei =
{0,0,0} ,{±c,0,0} ,{0,±c,0} ,{0,0,±c} ,{±c,±c,0} ,{±c,0,±c} ,
{0,±c,±c} , i = 0, . . . ,18 where a constant velocity c determines the
speed of sound cs = c/

√
3. The resulting set of discrete Boltzmann equa-

tions

Dfi
Dt

=
∂ fi(t,xxx)

∂ t +ξξξ i ·
∂ fi(t,xxx)

∂xxx = Ωi (9)

has to be discretized in space and time. This is done using a standard fi-
nite difference discretization, in space and time, on a grid with c= ∆x/∆t
(grid spacing ∆x, time step ∆t), which leads to the lattice Boltzmann
equation,

fi(t+∆t,xxx+ eeei∆t)− fi(t,xxx) = Ωi (10)
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Finally, Eq. (10) may be split up into a non-linear collision step, which
drives the particle distribution functions to equilibrium locally, and a non-
local linear propagation step, where the post-collision particle distribu-
tion functions are advected to the neighbor nodes as

f̄i(t,xxx) = fi(t,xxx)+Ωi and fi(t+∆t,xxx+ eeei∆t) = f̄i(t,xxx) (11)

It has been well-established that solutions of the lattice Boltzmann equa-

Fig. 1: Collision and propagation

tion (Eq. (10)) satisfy the incompressible Navier-Stokes equations up
to errors of O(∆x2) and O(Ma2) (Frisch et al., 1987; Junk et al., 2005).
The well-known macroscopic values for the hydrodynamic pressure p
and macroscopic fluid velocity uuu are related to the first two hydrody-
namic moments of the particle distribution functions as

p(xxx, t) = c2sρ (xxx, t) = c2s
18
∑
i=0

fi (xxx, t) and uuu(xxx, t) =
1
ρ

18
∑
i=0

eeei fi (xxx, t)

(12)

Collision operators
For modelling the interactions between particles, different collision op-
erators Ωi may be used. In the single relaxation time (SRT) model
(Bhatnagar et al., 1954), the particle distribution functions are driven to
an equilibrium state with a single relaxation rate. In the more advanced
MRT model (d’Humieres et al., 2002), the particle distribution functions
are transformed into moment space, where they are relaxed with sev-
eral different relaxation rates. This increases the stability and at the
same time enables the development of more accurate boundary condi-
tions (Ginzburg and D’Humieres, 2003). The moments m=M · f are la-
beled as

m=
(

ρ ,e,ε, jx,qx, jy,qy, jz,qz,3pxx,3πxx, pww,πww, pxy, pyz, pxz,mx,my,mz
)T

,

and denote the following: mass density m0 = ρ; the part of kinetic en-
ergy independent of the density m1 = e; the part of kinetic energy square
independent of the density and kinetic energy m2 = ε; the momentum
m3,5,7 = jx,y,z; m4,6,8 = qx,y,z are related to heat flux; m9,11,13,14,15 are
related to the symmetric traceless viscous stress tensor; m16,17,18 are
third-order moments; and m10,12 are fourth-order moments. The colli-
sion operator for MRT is defined as

ΩΩΩ =M
−1 ·S · (M · f−meq) (13)

M denotes the transformation matrix from distribution functions to mo-
ments (m=M ·f and f=M−1 ·m). Themeqi are the equilibriummoments.
S= si,i is the diagonal collision matrix, which contains the relaxation pa-
rameters. The parameters

s9,9 = s11,11 = s13,13 = s14,14 = s15,15 =−
∆t
τ = sω (14)

are related to the kinematic viscosity ν via the relaxation time τ as fol-
lows

τ = 3
ν
c2

+
1
2

∆t. (15)

The remaining relaxation parameters

s1,1 = sa,s2,2 = sb,s4,4 = s6,6 = s8,8 = sc,
s10,10 = s12,12 = sd and s16,16 = s17,17 = s18,18 = se.

can be tuned to improve stability (Lallemand and Luo, 2000). While
the optimal values for these parameters depend on the specific system
under consideration (geometry, initial and boundary conditions), rea-
sonable values are given in (d’Humieres et al., 2002). Here, we use
sa = sb = sc = sd = se =−1.0.

Smagorinsky LES
In nature, free surface flows usually occur at very high Reynolds num-
bers, well in the turbulent regime. In order to capture such turbulent flow
structures at the sub-grid scale, a Large Eddy Simulation model (LES;
(Krafczyk et al., 2003)) is used in combination with the LBM. A spatial
filter is applied to the velocity field, which should be fine enough that the
larger turbulent structures of the flow do not get filtered out. Hence, only
the effect of the smaller sub-grid eddies on the large-scale flow structures
is modeled with the LES. This is included in the model through an addi-
tional turbulent viscosity νT. In the Smagorinsky model νT depends on
the strain rate tensor, νT = (CS∆x)2‖S‖, with Smagorinsky constant CS
and strain rate tensor Sαβ , which can be computed locally from the LB
moments as

Sαβ =
sxx
2c2sρ

(

c2sρδαβ +ρuiu j−Pαβ
)

=
sxx
2c2sρ

Qαβ (16)

with speed of sound cs, Dirac delta function δ , density ρ , velocity u, and
the second-order moments of the distribution functions P, which can be
locally computed from m9,11,13,14,15. From Eq. (16) and

τtotal =
3
c2

νtotal+
1
2

∆t = 3
c2

(ν0+νT)+
1
2

∆t, (17)

a quadratic equation is obtained, which yields

τt =
1
2

(√

τ20 +18C2S∆x2Q− τ0
)

(18)

and a modified relaxation rate sxx for the second-order moments
m9,11,13,14,15 of sxx = 1

τtotal =
1

τ0+τt .

Boundary conditions and volume forces
In the LBM, by nature, boundary conditions have to be directly speci-
fied for the distribution functions for the boundary nodes, which is quite
different from macroscopic CFD methods.
No-slip boundary and velocity boundary conditions are modeled with

a so-called bounce-back scheme, in which the particle distribution func-
tion “bounces” off the boundary, as shown in Fig.2a. The incoming miss-
ing particle distribution function fI is reconstructed as

f t+1I (xxx) =

{

f t+1IA = (1−2q) f tiF +2q f tiA, 0.0< q< 0.5
f t+1IA = 2q−1

2q f tIA+
1
2q f tiA, 0.5≤ q≤ 1.0, (19)

where i is the inverse direction to I and ūuu denotes the prescribed boundary
velocity (Bouzidi et al., 2001). The weighting factors wi for the D3Q19
model are defined as

w0 =
1
3
, w1..6 =

1
18

and w7..18 =
1
36

(20)

and are given in (He and Luo, 1997).
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(a) No-slip (b) Slip
Fig. 2: Wall boundary conditions

At slip boundaries, the bounce forward scheme (Figure 2b) assures
that no momentum is modified in tangential direction at the wall. The
missing particle distribution function fI is reconstructed as

f t+1I (xxx+ eeeittt) = f ti (xxx) (21)

where i is the mirrored direction to I with eeeittt = eeeIttt and eeeinnn = −eeeInnn for
wall normal vector nnn and tangential vector ttt.
At the free surface boundary, the anti bounce back rule

(Körner et al., 2005) enforces the equality in fluid pressure and surround-
ing pressure pB:

f t+1I =− f ti + f eqI (ρB,uuu(tB,xxxB))+ f eqi (ρB,uuu(tB,xxxB)) (22)

where f eqi,I (ρB,uuu(tB,xxxB)) are Maxwellian equilibrium distribution func-
tions and ρB is related to the surrounding pressure by ρB = pBc−2s .
Gravity and other volume forces FFF are added directly to the distribu-

tion functions fi in every time step:

∆ fi = 3ωiρeeei ·FFF . (23)

For transient volume forces, which occur in the coupling to the NWT,
a special momentum source term has to be used. (Guo et al., 2002)
compare different forcing terms and propose the following formulation,
which is also suitable for space- and time-dependent momentum source
terms

Fi =
(

1−
1
2τ

)

wi
(
eeei− vvv
c2s

+
eeeivvv
c4s

)

·FFF (24)

with weighting factors wi (Eq. (20)) and density ρ .

Free Surface Model
From a numerical point of view, a free surface represents a moving
boundary. Compared to obstacles moving with a predefined veloc-
ity, the motion of this boundary is not prescribed, and instead the sur-
face is allowed to move freely. At the same time, the interface has
to be kept sharp, although large deformations and even topological
changes may occur. In this work, a Volume-Of-Fluid (VOF) approach
(Hirt and Nichols, 1981; Youngs, 1982) is used to track the free surface
postition, and a fluid fraction variable ε is introduced to describe the fill
level of a control volume Vcv, i.e., the volume fraction being filled with
fluid, ε = Vfluid

Vcv . For a unit cell in the LB context (assuming ∆xi = 1.0),
filled with a fluid of density ρ f and mass mf , we can state

ε =
mf /ρ f
Vcv

=
mf

ρ f ∆x1 ∆x2 ∆x3
=
mf
ρ f

(25)

Thus, a fill level of ε = 0.0 indicates a completely empty cell, while a fill
level of ε = 1.0 indicates a completely filled cell.
In standard LB free-surface approaches, the control volumes are di-

rectly assigned to the lattice nodes ((Körner et al., 2005), Figure 3a). In
contrast to these approaches, we use a staggered grid layout, where every
cell (i.e., control volume) is spanned by eight LB nodes. In Figure 3b,
the two-dimensional equivalent is shown. A cell is considered fluid if
and only if all its vertices are fluid nodes, and a cell is considered gas

if and only if all its vertices are gas nodes. All other cells are inter-
face cells. The advantage of this approach is its suitability for a mass-
conserving application on non-uniform, block-structured grids. Similar
advantages can be seen for combined free-surface and FSI simulations
(Janssen and Krafczyk, 2009).

(a) Node-based (b) Cell-based
Fig. 3: Control volumes at a non-uniform block transition

Piecewise linear interface reconstruction In our implementation,
a piecewise-linear reconstruction method (PLIC method) is used
(Youngs, 1982; Gueyffier et al., 1999). The free surface is represented
as a line segment (in 2D) or a plane (in 3D), which can be uniquely de-
scribed by its unit normal vector nnn and the distance α to a well-defined
point of origin: xxx · nnn = α We determine the surface normal vector by a
discrete approximation as the gradient of the fluid fraction variable ε:

nnn=−
∇∇∇ε
‖∇∇∇ε‖ . (26)

This gradient is obtained from the surrounding cell fill levels following
(Parker and Youngs, 1992). It can be shown that this approximation is
between first- and second-order accurate.
Following this, the only remaining unknown value for the linear sur-

face reconstruction is the distance between the surface plane and a coor-
dinate origin. The expression for the cut volume of a plane and a unit cell
with ∆xi = 1.0 is given by

ε(nnn,α) =
1

2n1n2n3

[

α3−
3
∑
j=1

H(α −n j)
(

α −n j
)3

+
3
∑
j=1

H(α −αmax+n j)
(

α −αmax+n j
)3
]

(27)

with Heaviside function H, αmax = ∑3j=1 n j, plane parameter α , cell fill
level ε , and surface normal vector nnn. Solving analytically for α as an
inverse of this expression is not generally possible; therefore, Brent’s
method is used to determine α iteratively (Brent, 1973). The position of
the plane can then be uniquely determined.

Discretization of the advection equation The mass exchange between
neighboring cells is evaluated from macroscopic velocity and density in-
formation on the participating LB nodes. For the weakly compressible
LB approach, the sum of fill levels is not conserved, so that continuity
equation and the principle of conservation of mass must be used to derive
the advection algorithm

Dρ
Dt

=
∂ρ
∂ t +∇∇∇ · (vvvρ) = 0 (28)

We discretize this equation with a classical finite volume method, by in-
tegrating the equation over a control volume and applying the divergence
theorem to obtain a boundary integral for the convective term (so called
Reynolds Transport Theorem)
∫

Ω

∂ρ
∂ t dΩ+

∫

Ω
∇∇∇ · (vvvρ)dΩ =

∂
∂ t

∫

Ω
ρ dΩ+

∫

Γ
(vvvρ) · n̂nndΓ (29)
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Parameter Value
Grid see Table 1
Re 100
Ma 0.017
umax 0.03
BC x periodic
BC y periodic
BC z no-slip

(a) Parameters (b) Geometry
Fig. 4: Poiseuille flow between plates

where n̂nn is the unit outward normal vector on the corresponding face of
the control volume. Discretizing in time with an explicit Euler finite
difference scheme leads to mt+1 = mt −∑iΦi where Φi denotes the flux
through the ith face of the control volume. The new cell fill level of an
interface cell is thus calculated as

εt+1 = mt+1

ρt+1
=
mt −∑iΦi

ρt+1
=

εtρt −∑iΦi
ρt+1

(30)

for an unsplit method where all three spatial directions are treated at once.
The fluxesΦi are determined using the intersection of the fluid domain

and the fraction of the cell volume that is advected, for example,V0,cell =
(v0∆t)∆x1∆x2 in the x0-direction. The cut volume of a plane and an
arbitrary cuboidal control volume with extents ∆xi is given by

V (nnn,α ,∆xi) =
1

2n1n2n3

[

α3−
3
∑
j=1

H(α −∆x jn j)
(

α −∆x jn j
)3

+
3
∑
j=1

H(α − α̃max+∆x jn j)
(

α − α̃max+∆x jn j
)3
]

(31)

with α̃max = ∆xxx · nnn = ∑3j=1∆x jn j . This volume V is evaluated for the
reconstructed linear surface (normal vector nnn, plane parameter α) and
the portion of the cell volume, which is advected to the neighboring cell,
vvvi∆t: Φi =V (nnn,α ,vvvi∆t) for an LB unit cell with ∆xi = 1.

Algorithmic details The fluxes Φi are determined locally for every in-
terface cell, and the mass flux can immediately be balanced. Afterwards,
the new fluid nodes must be initialized because they do not contain any
distribution functions. The macroscopic values of density and velocity
from neighboring old fluid nodes are interpolated:

ρ̄(xxx) = ∑
i
wiρ(xxx+ eeei) and v̄vv(xxx) = ∑

i
wivvv(xxx+ eeei) (32)

Based on this information, the particle distribution functions f are ini-
tialized with Maxwellian equilibrium distribution functions (Eq. (37)):

fi = f eqi (ρ̄, v̄vv) (33)

The non-equilibrium part of the distribution functions is then improved
with a local, LB-specific, Poisson-type iteration (Mei et al., 2006). In
this iteration, a local collision takes place on the new fluid nodes, where
the macroscopic velocity is fixed to the above-determined value v̄vv and the
density is allowed to change:

Ωi =−
∆t
τ
(

fi− f eqi (ρ , v̄vv)
)

and ρ =
18
∑
i=0

fi (34)

Eventually, the density converges to the correct nodal density.
This minimizes pressure waves induced by incorrect density ini-
tialization. Details on the overall algorithm can be found in
(Janssen and Krafczyk, 2009).

Validation
Poiseuille flow The performance and accuracy of the LBM fluid solver
(with deactivated free surface treatment algorithm) is demonstrated for
a Poiseuille flow between plates, using several different grid configura-
tions. In this straightforward problem, the fluid is moving laterally be-
tween two plates with infinite length and width. As the grid is refined,
the viscosity and the body force are adjusted to match the fixed Reynolds
and Mach numbers given in Figure 4a.
The analytical solution for the velocity and pressure profiles is used

to check the numerical accuracy of the solver. The flow is driven by
a pressure gradient and retarded by viscous drag (mostly in boundary
layers) along both plates. Expressing the balance of these forces leads to
the following solution for the flow velocity ux

ux(z) =
z2− (0.5Lz)2

2ν
dp
dx

(35)

The relative error (in absolute value) between the numerial and analyti-
cal solutions for the maximum velocity in the channel is given in Table 1;
second-order convergence can clearly be observed with decreasing grid
size.

nz umax error rel. error (%)
32 0.0363 6.33E-03 21.121
64 0.0311 1.18E-03 3.946
128 0.0304 4.81E-04 1.605
256 0.0299 3.30E-05 0.110

Table 1: Errors of axial velocity umax as a function of LBM grid size for Re =
100.

Dam breaking After performing the above basic convergence tests, the
classic breaking-dam benchmark is used to demonstrate the LB model
capability of simulating real-world fluid problems, such as the classi-
cal dam break, for which experiments in a scale model were performed
(Martin and Moyce, 1952). The main setup is shown in Figure 5. A fluid
column in a channel is constrained by a waxed paper diaphragm. The
diaphragm is held in position by a thin film of beeswax on a metal strip
forming part of the fluid reservoir. An electric current is used to free the
waxed paper, initiating the collapse of the water column. Slip boundary
conditions are used on the front, bottom, and back walls of the numer-
ical domain. Periodic boundary conditions are applied on the left and
right walls. (Martin and Moyce, 1952) determined a maximum dimen-
sionless velocity of U = 1.71, which corresponds to Re ≈ 103,483 and
Fr≈ 2.418.

Param. Value
aexp 2.25 in
Grid I 100×25
Grid II 200×50
Grid III 300×75
Grid IV 400×100
Re 103483
Fr 2.418
Umax 1.71

(a) Parameters














(b) Geometry
Fig. 5: Dam break setup
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Fig. 6: Breaking dam, time series

An incompressible MRT scheme, with LES on a uniform grid was
used in the LBM for these simulations. Viscosity ν and gravity g are
adjusted to match the given dimensionless numbers. Computations are
stopped when the surge front reaches the back wall of the domain (con-
tainer).
Results for four different grid resolutions are compared with the ex-

perimental benchmark data from (Martin and Moyce, 1952) in Figure 7a
and Figure 7b. Very good agreement can be seen in Figure 7a, for the
height of the collapsing water column, even at low resolutions. However,
the numerical surge front (Figure 7b) evolves faster than the experimen-
tal one. This might be due to the fact that the slight delay in triggering
the flow in experiments (using a thin diaphragm that is released by an
electric current) is not modeled in our numerical simulations. This effect
was also observed by e.g. (Salih and Moulic, 2006).
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(a) Position of the water column top
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(b) Position of the surge front
Fig. 7: Breaking dam, comparison of numerical and experimental results

NWT-LB COUPLING

For complex fluid simulations, a hybrid model is desirable, combining
the advantages of both FNPF and LBM frameworks. Indeed, potential

flow theory is no longer applicable near rigid structures, in the surfzone
or around steep bottom obstacles, where strongly nonlinear interactions,
local wave breaking or significant vortex shedding and viscous dissipa-
tion occur. Moreover, the size of the LBM domain is limited, mainly
due to computational expenses, and cannot meaningfully be used for the
whole domain. Hence, a highly resolved and/or turbulent LBM simu-
lation should only be performed in the vicinity of a structure or a wave
breaking region, and not in the peripheral regions of the flow field.

Weak coupling
In a weakly coupled approach the LB domain is initialized with re-
sults of the NWT. Only this initial, unidirectional coupling is speci-
fied. At the fluid boundary (Figure 8), non-transient boundary condi-
tions for the water height h̄= hNWT (t = 0) and a constant inflow velocity
v̄vv= vvvNWT (t = 0) are prescribed.

Fig. 8: Initialization of the entire LBM domain with the inviscid, irrotational
NWT solution uI , pI

In the LBM, based on this information, the particle distribution func-
tions f are initialized with Maxwellian equilibrium distribution functions

fi = f eqi (ρ̄, v̄vv) (36)

The equilibrium distribution functions tuned for incompressible flows are

f eqi = wi
[

ρ +ρ0
(

3
eeei ·uuu
c2

+
9
2
(eeei ·uuu)2

c4
−
3
2
u2

c2

)]

(37)

where ρ0 is the reference density and wi are weighting factors according
to Eq. (20). Alternately, a local Poisson-type iteration might be used to
further improve the non-equilibrium parts of the distribution functions,
((Mei et al., 2006), Eq. (34)).
This weakly coupled approach requires to model the total flow in the

LBM. Moreover, the size of the LB domain must be large enough to
avoid perturbations from the non-transient boundary condition.

Weak coupling with transient boundary conditions In order to reduce
the domain size, transient boundary conditions may be used (Figure 8)
and time-dependent values for velocity and position of the free surface
can be prescribed on the leftward boundary (v̄vv(t) = vvvNWT (t)).

Fig. 9: Transient BC
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Fig. 10: Transient BCs or perturbation approach

Strong coupling
In the strongly coupled approach, the NWT does not only serve to initial-
ize the LB computations, but also drives computations either via transient
boundary conditions, or via volumetric source terms in the momentum
equation. In both cases the domain size can be reduced significantly
(Figure 10).
For wave-induced flows, the viscous perturbation caused by a struc-

ture, bottom geometry, or a beach onto the otherwise nearly inviscid,
irrotational flow is expressed explicitly in the model. As indicated be-
fore, pressure and velocity field are split up into the irrotational, inviscid
part pI ,uI and the rotational, viscous perturbation pP,uP

ui = uIi +uPi and p= pI + pP. (38)

with uIi obtained from the NWT, while the LBM solves for up. The invis-
cid far-field wave flow is specified into the LBM via volumetric terms,
which can be expressed, by analogy, by inserting Eq. (38) into the NS
equations

∂ui
∂ t +u j

∂ui
∂x j

=−
1
ρ

∂ p
∂xi

+(ν +νT )
∂ 2ui
∂x2j

+
∂νT
∂x j

(
∂ui
∂x j

+
∂u j
∂xi

)

(39)

with velocity ui, pressure p, viscosity ν and turbulent viscosity νT . After
transformation, we have,

∂uPi
∂ t +uPj

∂uPi
∂x j

=−
1
ρ

∂ pP
∂xi

+(ν +νT )
∂ 2uPi
∂x2j

+
∂νT
∂x j

(

∂uPi
∂x j

+
∂uPj
∂xi

)

−uIi
∂uPi
∂x j

−uPj
∂uIi
∂x j

+
∂νT
∂x j

(

∂uIi
∂x j

+
∂uIj
∂xi

)

︸ ︷︷ ︸

Additional terms
(40)

where uIi , the irrotational velocity field, satisfies Euler equations. One
can see that, in addition to viscous and turbulent terms on the right hand
side, convection-like interaction terms between uIi und uPi occur. Besides
those additional source terms

Fi =−uIi
∂uPi
∂x j

−uPj
∂uIi
∂x j

+
∂νT
∂x j

(

∂uIi
∂x j

+
∂uIj
∂xi

)

(41)

corresponds to Eq. (39). The velocity uIi and the velocity gradient are
obtained from the NWT’s solution at the current time step, while the per-
turbating part and its gradients are obtained from values of the previous
time step LB solution.

Parametrization
In order to transfer the simulation results from the NWT to the LBmodel,
a parametrization has to be established, to select the LB parameters for
grid spacing ∆x, Mach number Ma, forcing gLB and viscosity ν . This
involves three steps.

First, as the solutions of the LBM satisfies NS equations, up to an order
O(Ma2), it is indispensable to observe and prescribe the maximumMach
number Ma and hence the maximum velocity vmax =Ma · cs =Ma · c√

3
in the LB simulation. Second, free surface flows are qualified by their
Froude number, i.e., a dimensionless number that compares inertia and
gravitational forces, Fr= v(gh)−0.5 using maximum velocity v, gravity g
and water depth h. The Froude numbers of the NWT and the LBM must
be identical, so that based on a given LB discretization we can calcu-
late the LB gravitational term gLB = v2maxFr−2h−1LB . Third, the Reynolds
number of experiments and numerical simulations should be the same.
The NWT is based on inviscid potential flow theory, so that a Reynolds
number cannot be assigned. Nonetheless we can calculate a correspond-
ing Reynolds number via Re= vD

νwater and, consequently, find the resulting
LB viscosity as νLB = vLBhLBRe−1
Finally, we find that NWT results for velocity and pressure should

be transferred to the LB simulations by applying the following scaling
factors

∆v=
vmax,LB
vmax,NWT

and ∆x= hLB
hNWT

(42)

∆t = ∆x
∆v

and ∆p= ρLBgLBhLB
ρNWT gNWT hNWT

(43)

It turns out that the only free parameters in these equations are the
grid resolution (which directly governs ∆x) and the Mach number limit
(Mamax = 0.1 is considered a reasonable maximum value for an incom-
pressible limit).

RESULTS

Breaking wave
The application of the weakly coupled algorithm is illustrated for the
case of a solitary wave that breaks during shoaling. The LB domain
measures 600×1×90 lattice nodes. Maximum Mach number is fixed to
Ma= 0.04, the remaining dimensionless parameters are found as: Re≈
630,000 and Fr ≈ 0.84, resulting in a body force gLB = 1.81E − 5 and
a viscosity νLB = 1.505E − 6. Initial results of the LB simulations for
velocity and pressure fields are shown in Figure 11 for a solitary wave
of height H = 0.5m over a 1:15 slope. In Figure 12, a time series of
the free surface evolution is given for selected time steps. The general
expected flow behaviour is well represented, although the breaker jet is
slightly thicker compared to results of purely potential flow simulations
(e.g., (Grilli et al., 1997)).

(a) Density

(b) Velocity (x1)

(c) Velocity (x3)
Fig. 11: Initialization of the LBM domain with NWT data
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(a) t=0

(b) t=1500

(c) t=3000

(d) t=4000

(e) t=4900

(f) t=5500
Fig. 12: Snapshots of the simulation

CONCLUSIONS

Although the computations shown in the results section are very prelim-
inary and should thus be further examined, we presented a new hybrid
FNPF-LBM approach, which already shows promising results. We be-
lieve that our hybrid method will turn out to be a numerical tool, able
to accurately and efficiently investigate wave breaking phenomena and
wave structure interactions. However, the full advantage of the method
will only reveal itself when applications of the strong coupling approach
are presented, which is work in progress.
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U. (2005). Lattice boltzmann model for free surface flow for modeling foam-
ing. Journal of Statistical Physics, 121(1-2):179–196(18).

[Krafczyk et al., 2003] Krafczyk, M., Tölke, J., and Luo, L.-S. (2003). Large-
eddy simulations with a multiple-relaxation-time LBE model. Int. J. Mod.
Phys. B, 17:33–39.

[Lallemand and Luo, 2000] Lallemand, P. and Luo, L.-S. (2000). Theory of the
lattice boltzmann method: Dispersion, dissipation, isotropy, galilean invari-
ance, and stability. Physical Review, E 61:6546–6562.

[Martin and Moyce, 1952] Martin, J. and Moyce, W. (1952). An experimental
study of the collapse of liquid columns on a rigid horizontal plane. Technical
report.

[Mei et al., 2006] Mei, R., Luo, L.-S., Lallemand, P., and d’Humieres, D. (2006).
Consistent initial conditions for lattice boltzmann simulations. Computers &
Fluids, 35(8-9):855 – 862.

[Parker and Youngs, 1992] Parker, B. and Youngs, D. (1992). Two and three di-
mensional eulerian simulation of fluid flow with material interfaces. Technical
report, UK Atomic Weapons Establishment.

[Quian et al., 1992] Quian, Y. H., d’Humieres, D., and Lallemand, P. (1992). Lat-
tice BGK models for Navier Stokes equations. Europhysics Letters, 17:479–
484.

[Salih and Moulic, 2006] Salih, A. and Moulic, S. G. (2006). A level set for-
mulation for the numerical simulation of impact of surge fronts. SADHANA -
Academy Proceedings in Engineering Sciences, 31:697–707.

[Tölke, 2008] Tölke, J.(2008). Implementation of a lattice boltzmann kernel us-
ing the compute unified device architecture developed by nvidia. Computing
and Visualization in Science, 1:29 – 39.

[Tölke and Krafczyk, 2008b] Tölke, J. and Krafczyk, M. (2008b). Teraflop com-
puting on a desktop pc with gpus for 3d cfd. International Jounrla of Compu-
tational Fluid Dynamics, 22:443 – 456.

[Youngs, 1982] Youngs, D. (1982). Time-dependent multimaterial flow with
large fluid distortion. In Morton, K. and Baines, M., editors, Numerical Meth-
ods for Fluid Dynamics, pages 273–285. Academic Press.

693


