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ABSTRACT

An existing three-dimensional (3D) Numerical Wave Tank

(NWT) solving fully nonlinear potential 
ow theory with a

higher-order Boundary Element Method (BEM) is modi�ed

to simulate tsunami generation by underwater landslides.

New features are added to the NWT to model underwater

landslide geometry and motion and specify corresponding

boundary conditions in the BEM model. Also, new snake ab-

sorbing piston boundaries are implemented to remove re
ec-

tion from the onshore and o�shore boundaries of the NWT.

Two cases of tsunami generation are presented and results

of the �rst one are validated using experimental results. Nu-

merical accuracy is examined and found to be excellent in

both cases.

KEYWORDS : tsunamis, landslides, numerical wave tank,

nonlinear wave transformations, boundary element method.

INTRODUCTION

Tsunamis generated by underwater landslides appear to be
one of the major coastal hazards for moderate earthquakes
(e.g., Tappin et al., 1999, 2000). Whereas tsunamis gener-
ated by direct coseismic displacement are usually relatively
small in height (which correlates with moment magnitude),
landslide tsunamis are only limited in height by the land-
slide vertical displacement (Murty, 1979; Watts, 1997, 1998).
Since underwater landslides are usually triggered on the con-
tinental slope, such displacements may reach several thou-
sand meters, and thus produce huge tsunamis which o�er
little time for warning due to their proximity to shore (Grilli
and Watts, 1999; Watts, 2000). There is evidence, for in-
stance, that the large tsunami originating near Unimak Is-
land along the Aleutian Trench in 1946 was caused by a
giant �200 km3 underwater landslide triggered by a magni-
tude Ms =7.1 earthquake (Fryer et al., 2001). The landslide
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Fig. 1 : Example of underwater landslide shape on a planar
slope in the 3D-NWT. For � = 15�, B = 1; 000 m, W =
1; 168 m, T = 103 m, d = 156 m, x` = 1; 592:7 m, " = 0:25
(Eqs. (16)-(21)), ho = 635:8 m, xo = 0, do = 200 m, lo =
2; 300 m, h1 = 73:12 m (Fig. 2).

headscarp was on the shallow continental shelf in 150 m wa-
ter depth, and the landslide mass moved down a 4� mean
slope, to the 4,000 m deep Aleutian Terrace, where parts of
it apparently stopped. Local runup for this tsunami reached
35 m above sea level at Scotch Cap lighthouse.

Predicting landslide tsunamis requires complex numeri-
cal models which must accurately represent both landslide
and bottom geometry, and the nonlinear interactions be-
tween landslide motion and surface wave �eld. Such a model
has been demonstrated by Grilli and Watts (1999), in their
implementation of a two-dimensional (2D) Numerical Wave
Tank (NWT) for underwater landslides. Reviews of the lit-
erature to date regarding tsunamis generated by underwater
landslides and their numerical modeling can be found in the
latter paper and in Watts et al. (2000).

Here, we describe the current implementation and sim-
ulation of tsunami generation by underwater landslides in
the three-dimensional (3D) NWT developed by Grilli et al.
(2000, 2001). Fully nonlinear potential 
ow equations are
solved in this NWT, based on a higher-order Boundary El-
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ement Method and an explicit time stepping scheme. Wave
overturning can be modeled if it occurs in the computations.
Grilli et al. validated their 3D-NWT for solitary wave shoal-
ing and breaking over slopes, by comparing results both to
experiments and to an earlier numerical solution. The agree-
ment was excellent and it was found that almost arbitrary
accuracy could be obtained from precise initial and boundary
conditions, through careful discretization of the simulation
domain.

Various improvements to the NWT were made to ef-
�ciently simulate underwater landslides. Open boundaries
were implemented and validated for solitary wave propaga-
tion over constant depth, which extend to 3D the piston-like
boundary condition used by Cl�ement (1996) and Grilli and
Horrillo (1997). The landslide shape and kinematics were
modeled on a way similar to Grilli and Watts' (1999) 2D
model, by assuming a smooth initial shape for the landslide,
moving over a planar slope (e.g., Fig. 1).

Once the relationship of result accuracy versus spatio-

temporal discretization is assessed, numerical experiments

can be performed in the 3D-NWT for speci�ed initial and

boundary conditions, herein for underwater landslides. This

is an important point : the exact nature of wave genera-

tion is both known and controlled. Di�erent motions of the

same submerged body can produce very di�erent waves, and

such wave di�erences can be directly related to the input pa-

rameters of the motion. This is the basis of the wavemaker

formalism introduced by Watts (1998, 2000). NWTs enable

many experimental outputs to be obtained with minimal er-

ror, and in virtually no setup time. While output choices

include free surface pro�les, numerical wave gages, runup,

etc. . . , as done in earlier 2D studies (Grilli and Watts, 1999),

we usually represent results of the 3D-NWT by a characteris-

tic wave amplitude measured above the initial landslide posi-

tion, at the location of maximumlandslide thickness (de�ned

at horizontal location (x`; 0) in the following; Fig. 2). Our

characteristic wave amplitude is an implicit function of the

underwater landslide shape and motion input parameters.

THE NUMERICAL WAVE TANK

Governing equations and boundary conditions

Equations for fully nonlinear potential 
ows with a free sur-
face are summarized below. The velocity potential is de-
�ned as �(x; t) and describes inviscid irrotational 3D 
ows
in Cartesian coordinates x = (x; y; z), with z the vertical
upward direction (and z = 0 at the undisturbed free surface;
Fig. 2). The velocity is de�ned by, u = r� = (u; v; w).

Continuity in the 
uid domain 
(t), with boundary �(t),
is a Laplace's equation for the potential,

r2� = 0 in 
(t) (1)
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Fig. 2 : Sketch of NWT used for landslide tsunami model-

ing. The landslide is moving in the negative x direction on

bottom boundary �b. Snake absorbing pistons are modeled

on boundaries �r1(t) and �r2(t). The bottom is of constant

depth h = ho in deep water and sloping from x = xo + do,

with slope �, to xo + lo where a shelf of depth h1 of initial

length l1 is located. The landslide is located on the slope

with its axis intersecting it at point xi (see also Fig. 1).

Tangential vectors at point R(t) on the free surface �f (t)

are de�ned as (s;m) and outward normal vector as n.

The 3D free space Green's function for Eq. (1) is de�ned as,

G =
1

4� r
with

@G

@n
= � 1

4�

r �n
r3

; (2)

with r = x � xl and r =j r j, where x and xl = (xl; yl; zl)
are points on boundary �, and n is the outward unit vector
normal to the boundary at point x.

Green's second identity transforms Eq. (1) into the
Boundary Integral Equation (BIE),

�l �l =

Z
�

�
@�

@n
(x)G(x;xl)� �(x)

@G

@n
(x;xl)

�
d� (3)

in which �l = �(xl) = �l=(4�), with �l the exterior solid
angle made by the boundary at point xl (i.e., 2� for a smooth
boundary).

The boundary is divided into various sections, with dif-
ferent boundary conditions (Fig. 2). On the free sur-
face �f (t), � satis�es the nonlinear kinematic and dynamic
boundary conditions,

DR

D t
= u = r� on �f (t) (4)

D�

D t
= �gz + 1

2
r� � r�� pa

�w
on �f (t) (5)

respectively, with R the position vector of a free surface 
uid
particle, g the acceleration due to gravity, pa the atmospheric
pressure, �w the 
uid density, and D=Dt the material deriva-
tive.

Various methods can be used for wave generation in the
NWT. Here, tsunamis are generated on the free surface due



to a speci�ed landslide motion x`(t) on the bottom boundary
�b (Fig. 1). We have,

x = x` ;
@�

@n
= u` � n =

dx`
d t

� n on �b(t) (6)

where overlines denote speci�ed values, and the time deriva-
tive follows the landslide motion. See below for details.

Along stationary parts of the boundary, such as some
lateral parts of �r2, a no-
ow condition is prescribed as,

@�

@n
= 0 on �r2 (7)

Assuming the landslide motion is in the negative x di-
rection, actively absorbing boundary conditions are speci�ed
at both extremities of the NWT, initially at x = xo and
xo+ lo+ l1 (Fig. 2). These are modeled as pressure sensitive
\snake" absorbing piston wavemakers. The piston normal
velocity is speci�ed as,

@�

@n
= uap(�; t) on �r2(t), with, (8)

uap(�; t) =
1

�who
p
gho

Z �ap(�;t)

�ho
pD(�; z; t) dz (9)

calculated at the curvilinear abscissa �, horizontally mea-
sured along the piston, where �ap is the surface elevation

at the piston and pD = ��wf@�@t + 1
2r� � r�g denotes the

dynamic pressure. The integral in Eq. (9) represents the
horizontal hydrodynamic force FD(�; t) acting on the piston
at time t, as a function of �.

For well-posed problems, we have, � � �f[�b[�r1[�r2.

Time integration

Free surface boundary conditions (4) and (5) are integrated
at time t to establish both the new position and the boundary
conditions on the free surface �f (t) at a subsequent time
(t +�t) (with �t a varying time step).

To do so, second-order explicit Taylor series expansions
are used to express both the new position R(t + �t) and
the potential �(R(t + �t)) on the free surface, in a MEL
formulation (see Grilli et al., 2001, for details). First-order
coe�cients in the Taylor series are given by Eqs. (4) and
(5), which require calculating (�, @�

@n
) on the free surface.

This is done by solving Eq. (3) at time t, with boundary
conditions (6) to (9). Second-order coe�cients are obtained
from the material derivative of Eqs. (4) and (5), which re-

quires also calculating (@�
@t
, @2�

@t@n
) at time t. This is done by

solving a BIE similar to Eq. (3) for the @�

@t
�eld. The free

surface boundary condition for this second BIE is obtained
from Bernoulli Eq. (4), after solution of the �rst BIE for �
as,

@�

@t
= �gz � 1

2
r� � r�� pa

�w
on �f (t) (10)

For wave generation by an underwater landslide, Eq. (6)
gives,

@2�

@t@n
=

@(u` � n)
@t

on �b(t) (11)

and for stationary boundaries,

@2�

@t@n
= 0 on �r2 (12)

For the absorbing conditions we have, from Eq. (9),

@2�

@t@n
=

@uap(�; t)

@t
on �r2(t) (13)

The adaptive time step �t in the Taylor series is calcu-
lated at each time from the minimumdistance between nodes
on the free surface and a constant mesh Courant number
Co ' 0:5 (see Grilli et al., 2001, for details).

Discretization
The spatial discretization follows that of Grilli et al.'s (2001)
model. All details can be found in the latter reference.

The BIEs for � and @�
@t

are solved by a Boundary Element
Method (BEM). The boundary is discretized into collocation
nodes and cubic sliding boundary elements, based on poly-
nomial shape functions. These are expressed over 4 by 4
node reference elements, of which only one 4-node quadrilat-
eral is used as the boundary element. Curvilinear changes
of variables are used for expressing boundary integrals over
reference elements and deriving dicretized equations. Dis-
cretized boundary integrals, both regular and singular, are
calculated for each collocation node by numerical integra-
tion. Double and triple nodes and edges are used to specify
BIEs at intersecting parts of the boundary. The algebraic
system is solved in the present applications with a direct
elimination method.

Tangential derivatives, e.g., needed in the Taylor series,
are calculated on the boundary in a local curvilinear coor-
dinate system (s;m;n) de�ned at each boundary node (Fig.
2), with s = xs, m = xm, and n = s �m (subscripts in-
dicate partial derivatives). Derivatives of the geometry and
�eld variables in tangential directions s andm are computed,
by de�ning, around each node, a local 5 node by 5 node, 4th-
order, sliding element (see Grilli et al., 2001, for details).

Because of the di�erence between partial, material, and
time derivatives following a boundary motion, it is necessary
to further develop equations such as (11) and (13). For a
landslide, we �nd, from Eq. (11) with Eq. (6) for �n,

@2�

@t@n
= (

du`
dt

� n) + (u` � dn
dt

) � �n �nn

�(u` � s)�ns � (u` �m)�nm (14)

with,

�nn = ��ss � �mm + �s fxss � s � xsm �mg
+�m fxmm �m � xsm � sg
+�n fxss � n + xmm � ng (15)



where, du`=dt =
�
u` denotes the absolute landslide acceler-

ation, and dn=dt =
�

 j � n denotes rotation with angular

velocity
�

(y; t) around axis y of unit direction j. [Note, up-

per dots indicate time derivatives d/dt following the landslide
motion.]

A similar expression is derived from Eq. (13), for a snake

absorbing piston. See Brandini and Grilli (2001) (in these

Proceedings) for details.

Landslide geometry

Underwater landslides are represented by a fully submerged
smooth sediment mound of density �` sitting over a planar
slope of angle � (Figs. 1 and 2). The landslide has maxi-
mum thickness T (measured perpendicularly to the slope).
The middle of the landslide surface is located in depth d at a
distance x` along the x-axis. Semi-ellipses were used to rep-
resent the geometry of landslide cross-sections in Grilli and
Watts' 2D model, and were moved downslope according to
speci�ed landslide kinematics (see below). A semi-ellipse in-
troduced sharp corners at the intersection between the land-
slide and the planar slope, and it also required regridding
the planar slope nodes both behind and ahead of the land-
slide at each time step. Here, T sech2(k r`) curves, truncated
where they reach an elevation less than " T , are used to rep-
resent the landslide geometry, in polar coordinates (r`; '`)
de�ned within the slope and centered on the landslide axis
at point xi (Fig. 2). This provides for a smoother bottom
geometry and eliminates the need to round corners. Also, no
bottom regridding is performed and the landslide is treated
as a \wave" of bottom elevation moving downslope. The
landslide footprint on the bottom slope is de�ned as an el-
lipse of major axis b (in the x direction) and minor axis w
(in the y direction). These dimensions are functions of spec-
i�ed characteristic dimensions (B;W ) which, with T , de�ne
the landslide volume. We assume, for the sake of simplic-
ity and comparison with other work, the landslide volume is
identical to that of the semi-ellipsoid (B;W; T ),

V` =
1

6
� T B W (16)

In general, the landslide geometry is de�ned by its elevation
perpendicular to the slope, as (Fig. 2),

� =
T

1� "
fsech2(k r`)� "g (17)

where r` =
p
(x� xi)2 + y2, with (Fig. 2),

xi = x` + T sin �

x` = do +
1

tan �

�
ho � d� T

cos �

�
(18)

the landslide axis abscissa on the slope (assuming yi = 0),
and abscissa of minimum depth d, respectively. Landslide
geometry is truncated along a planar ellipse de�ned as,

r`o('`; b; R) =
b

2

�
cos2'` + R2 sin2 '`

�� 1

2

(19)
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Fig. 3 : Nondimensional landslide kinematics modeled as a

function of dimensionless time : S=So (- - - - -);
�
S=ut (| - |

);
��
S=ao. The acceleration ramp-up has a duration to=20. The

sharp deceleration starts at t = 1:15to. [Note, the minimum

acceleration was truncated for �gure scaling purpose.]

with the ratio R = b=w = B=W and,

k("; '`; b; R) =
1

r`o
acosh

1p
"

(20)

Equating the landslide volume to V` in Eq. (16), we eventu-
ally �nd,

b = B
C
p
1� "�

3 [
p
1� "C � ln 1p

"
� "

2
C2]

�1

2

(21)

where C(") = k r`o = acosh(1=
p
"), and w = b=R. In Eq.

(21), the term multiplying B is only a function of ". For
" = 0:25, for instance, we �nd C = 1:317 and b = 1:371B.
The initial landslide geometry x`(0) is de�ned using Eqs.
(17) to (21). An example is given in Fig. 1.

Since the modeled landslide geometry is symmetrical

with respect to the y axis, this fact is used to greatly re-

duce the size of the BEM discretization by only modeling

half of the domain in the y direction and expressing a no-


ow condition along the vertical (x; z) plane.

Landslide motion

We follow the wavemaker formalism proposed by Watts
(1997,1998) and used in Grilli and Watts' (1999) 2D model,
and extend it to 3D. Dimensional analysis shows that, within
a family of similar landslide geometries, landslide motion and
tsunami characteristics are functions of the �ve nondimen-
sional independent variables : 
 = �`=�w, �, d=b, T=b, and
R = w=b. Watts (1998) derived an approximate equation of
motion describing the center of mass displacement of rigid
underwater landslides, S(t), parallel to the planar slope (in
the negative x direction). For rigid landslides starting at rest
at t = 0, we have,

S(t) = So ln

�
cosh

t

to

�
(22)

with,

So =
u2t
ao

; to =
ut
ao

(23)



where ao and ut denote landslide initial acceleration and ter-
minal velocity, respectively, given by,

ao = g

 � 1


 + Cm

sin � (24)

where Cm is an approximate added mass coe�cient, and,

ut =
p
gB

s
�(
 � 1)

2Cd

sin � (25)

where Cd is an approximate drag coe�cient. Watts (1997,
1998, 2000) found added mass and drag coe�cients of O(1)
for 2D and quasi-2D (where W � B) landslides. We have
neglected Coulomb friction in our analysis.

The landslide geometry at time t is found from the initial
geometry as,

x`(t) = x`(0) � S(t) (i cos � + k sin �) (26)

where i and k denote unit vectors in the x and z directions,
respectively. The center of mass velocity and acceleration at
times t > 0 follow from,

�
S(t) = ut tanh

t

to
;

��
S(t) = ao

�
cosh

t

to

��2
(27)

Landslide velocity and acceleration at time t are easily found
from Eq. (26) as,

u` = � �S(t) (i cos � + k sin �)

�
u` = ���S(t) (i cos � + k sin �) (28)

These can be used to de�ne bottom boundary conditions (6)
and (14).

Fig. 3 shows variations of S(t),
�
S(t) and

��
S(t) in nondi-

mensional form, based on the above equations. Because this

landslide displacement leads to an impulsive initial acceler-

ation, a ramp-up of the acceleration from 0 to ao, in the

form of a tanh function, was added to the landslide kinemat-

ics model, over a small time to=20. Also, due to the �nite

length of the plane slope in the NWT, the landslide is sharply

decelerated at some point in order for the landslide extrem-

ity to smoothly reach the slope bottom (at x = xo+do) with

both a zero speed and acceleration. Equations for the veloc-

ity and displacement were modi�ed accordingly (see details

in Watts et al., 2001b). This led to more accurate numeri-

cal results in the NWT and also to a closer approximaiton

of experimental measurements (see next section). Curves in

Fig. 3 re
ect this modi�cation.

APPLICATIONS

Validation of snake AP boundary

The new absorbing piston (AP) boundary is validated by

propagating a fully nonlinear solitary wave over constant
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Fig. 4 : Dimensionless solitary wave elevation �0 = �=ho
as a function of x0 = x=ho computed at dimensionless time

t0 = t
p
g=ho= a: 0; b: 2.9; c: 5.6; d: 8.3; e:11.5; f: 14.9.
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Fig. 5 : Landslide tsunami elevations calculated at numerical

wave gages g0-g3 (||), as compared to laboratory measure-

ments (- - - - - ), for a quasi-2D case with : � = 15�, 
 = 1:81,

Cm = 1:76, Cd = 1:53, B = 1; 000 m, T = 52 m, d = 261 m.

Gages are on the x axis at x = g0 : 3,025.2 m; g1 : 2,725.2

m; g2 : 2,425.2 m; g3 : 2,125.2 m. Experimental results rep-

resent the smoothed average of three replicates of identical

experiments.

depth ho in the 3D-NWT. The initial wave height is 0.3ho
and the wave shape, potential and normal velocity are spec-

i�ed on the free surface based on Tanaka's (1986) method.

The NWT is 15ho long and discretized with 20 elements over

x, 4 over y and 4 over z. One AP boundary is initially located

at the far extremity at x0 = x=ho = 15. Due to the 2D ge-

ometry and boundary conditions, the AP boundary behaves

here as a simple planar piston (within at least 6 signi�cant

�gures). Fig. 4 shows vertical cross-sections at y = 0 in

surface elevation calculated at various times. It is clear that

most of the solitary wave leaves the NWT with only small

surface perturbations left behind, thus demonstrating the ef-

�ciency of the AP boundary in eliminating wave re
ection.

Quasi-2D landslide tsunami simulation

For sake of comparison with earlier 2D results and with re-
cent experimental results (Watts et al., 2001a,b), the �rst
landslide application presented here is a quasi-2D case in
which we assume W � B and, hence, do not specify a lat-
eral (y) variation in landslide geometry. Therefore, we model
the equivalent of a 2D slice along a uniform landslide in the
3D-NWT.

We assume the following landslide characteristics : a
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Fig. 6 : Same case as Fig. 5. Mean elevation � (||) and
mean piston velocity uap (- - - - -) computed at the o�hore
absorbing piston boundary on �r1(t). Note the discontinuity
in surface elevation around t = 90 s corresponding to the
start of the sharp landslide deceleration in Fig. 3.

slope angle � = 15�, a rigid landslide with average density
�` = 1; 860 kg/m3 and thus 
 = 1:806 for �w = 1; 030 kg/m3,
length B = 1; 000 m and maximum thickness T = 52 m with
no lateral variation, and initial submergence d = 261 m.
This case was also modeled in the laboratory experiments of
Watts et al. (2000, 2001b), at a 1:1000 scale. The landslide
model was equipped with an accelerometer, which measured
the model acceleration parallel to planar motion. Integrat-
ing the acceleration twice gave displacement as a function of
time. A curve �t of displacement yielded initial acceleration
ao (following the observed ramp-up) and terminal velocity
ut from Eqs. (22) and (23). The added mass and drag co-
e�cients were found to be Cm = 1:76, Cd = 1:53 from Eqs.
(24) and (25), respectively. With these data, the landslide
kinematics are quite close to those sketched in Fig. 3, with
: So = 3; 673 m, ut = 45:91 m/s, ao = 0:574 m/s2, and
to = 80:00 s (at prototype scale).

The initial domain length in the NWT was selected equal
to one approximate tsunami wavelength, � = lo + l1 '
to
p
g d = 4; 051:0 m (Fig. 2), as estimated by Grilli and

Watts (1999) based on theoretical scaling considerations.
Laboratory experiments were performed on a plane surface
piercing slope, i.e., without the shelf seen in Fig. 2. The shelf
in the NWT was assumed shallow, with h1 = 0:075ho, and to
have an initial length l1 such that the water volume above the
shelf be identical to that of the same triangular section at the
top of the slope in the experiments, i.e., l1 = h1=(2 tan �).
With xo = 0 and do = 400 m, we �nd with this data :
ho = 1; 018:26 m, h1 = 76:37 m, lo = 3; 751:0 m, l1 = 135:9
m, x` = 3; 025:2 m, and xi = 3; 038:7 m. In the experiments,
the landslide geometry had elliptical cross-sections. In the
following results, we used " = 0:5 (and thus b = 1; 299 m),
which produces fairly narrow landslide cross-sections.

We specify 40 BEM elements in the x direction, of ini-
tial length �xo = 101:28 m, 4 elements in the half-width y
direction (the minimum required number in the 3D-NWT),
of length �yo = 100 m, and 6 elements over the depth. To
better simulate experiments for this quasi-2D case, only one
absorbing snake piston boundary is speci�ed in the NWT, at
the o�shore extremity in the x-direction; the onshore verti-
cal boundary is assumed impermeable. [Computations per-

formed with a second absorbing boundary led to introducing
water into the NWT through the onshore boundary, and to a
corresponding increase in water level in the NWT. This may
be more physical for actual landslides but does not simulate
so well laboratory experiments. See Watts et al. (2001b)
for details.] For a Courant number of 0.45, the initial time
step is set to �to = 0:45�xo=

p
g ho = 0:456 s. The total

number of nodes is 1,054 and there are 848 elements. With
these inputs, the CPU time per time step is 3'44" on a Mac
G4-450MHz.

Numerical wave gages were located in the NWT, 300 m
apart along the x axis, at x = 2; 125:2, 2,425.2, 2,725.2, and
3,025.2 m. Water elevations calculated at these gages are
plotted in Fig. 5, as a function of time, and compared to the
scaled-up experimental results. The agreement is quite good,
considering the di�erences in landslide shape and motion,
other e�ects such as sidewall friction and surface tension, and
uncertainty on gage location, that occur in the experiments
but not in the NWT. The characteristic tsunami amplitude
for this case, in the sense of Grilli and Watts (1999), Watts
et al. (2000, 2001a), is the maximum depression at gage g0,
i.e., j �max j= 5:16 m in the NWT and 5.38 m in the scaled
up experiments.

During these computations, the maximumcumulative er-

ror for the domain volume was 0.042%, and the maximum

instantaneous error for the dimensionless continuity equation

was 0.033%. The maximum error on theoretical landslide

volume, due to discretization e�ects and landslide motion,

was 0.40%. It was veri�ed that all of these errors decreased

when the size of the discretized elements also decreased. Re-

sults at BEM nodes with di�erent y locations were found

identical to within at least 6 signi�cant �gures, which is ex-

pected due to the two-dimensionality of the problem. This

is also the case for the motion of the snake absorbing piston

boundary, which behaves as a planar piston here, as dur-

ing validation. Surface elevation and piston velocity for the

AP boundary are given in Fig. 6 over a time representing

1:56to. A wave of elevation 5.31 m tall �rst leaves the NWT

through �r1(t), at t = 68:9 s, and is later followed by a wave

of depresion 15.57 m deep. The piston velocity goes from

negative to positive and then negative again, i.e., piston mo-

tions are directed away from shore in the early part of the

propagation.

Three-dimensional landslide

The second application presented here deals with a landslide
of similar parameters but, this time, there is a lateral y vari-
ation in the landslide geometry. Hence, a full 3D landslide
geometry is modeled using Eqs. (16) through (21), such as
shown in Figs. 1 and 2. The landslide parameters are :
a slope angle � = 15�, a rigid landslide with average den-
sity �` = 1; 900 kg/m3 and thus 
 = 1:845 for �w = 1; 030
kg/m3, a length B = 1; 000 m, width W = 1; 168 m, maxi-
mum thickness T = 103 m, and initial submergence d = 156



m. The initial domain length is lo+l1 = 2; 500 m (Figs. 1,2),
with a shallow shelf of depth h1 = 0:115ho and initial length
l1 = 200 m at the extremity. With xo = 0 and do = 200 m,
we �nd with this data (Fig. 2) : ho = 635:81 m, h1 = 73:12
m, x` = 1; 592:7 m, and xi = 1; 619:38 m. We use " = 0:25
(and thus b = 1; 317 m), which does produce fairly narrow
landslide cross-sections. Two AP boundaries are used at
both extremities of the NWT in the x direction, which this
time behave as snake boundaries due to 3D e�ects. Lateral
boundaries are kept impermeable, but are located su�ciently
far from the landslide, at a distance y = �1; 800 m (i.e., the
NWT width is 3,600 m), to allow for a su�cient time of com-
putation before lateral wave re
ections a�ect results at the
numerical wave gages.
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Fig. 7 : Measured (�) and smoothed (||) acceleration for
a 3D semi-ellipsoidal landslide model, as a function of proto-
type time (Watts et al., 2001b). With : � = 15�, �` = 1; 900
kg/m3, B = 1; 000 m, W = 1; 168 m, T = 103 m, d = 156
m. [Model to prototype length scale is 1:1000 and time scale
is 1:31.62]

We specify 40 BEM elements in the x direction, of ini-
tial length �xo = 62:5 m, 11 elements in the half-width y
direction, of length �yo = 163:64 m, and 6 elements over the
depth. For a Courant number of 0.5, the initial time step is
set to �to = 0:5�xo=

p
g ho = 0:40 s. The total number of

nodes for the half-width domain is 1,726 and there are 1,492
elements. With these inputs, the CPU time per time step is
14'30" on a Mac G4-450MHz. The landslide geometry and
NWT bottom discretization are shown in Fig. 1.
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Fig. 8 : Same case as Fig. 7. Measured (||) and curve
�tted (- - - - -) (with Eq. (22)) motion for 3D semi-ellipsoidal
landslide model, as a function of prototype time.

Watts et al. (2001b) also conducted laboratory experi-

ments, at 1:1000 scale, for a 3D semi-ellipsoidal model of a
rigid underwater landslide sliding down a planar 15� slope.
As in the previous quasi-2D case, the landslide acceleration
measured during the experiments is used to derive the pa-
rameters of the landslide kinematics speci�ed in the NWT.
These experiments had 12 wave gages instead of four, thereby
deferring a comparison between experimental and numeri-
cal results to another paper with more space (Watts et al.,
2001b). Fig. 7 shows the measured landslide acceleration
a(t), and Fig. 8 the landslide motion S(t) obtained by inte-
grating the acceleration twice with respect to time. The best
�t of Eq. (22) to the measured motion (Fig. 8) results in
So = 2; 269 m and to = 86:96 s (at prototype scale). Apply-
ing Eqs. (23) through (25) to these results, we further �nd
ao = 0:3 m/s2, which is consistent with the measurements in
Fig. 7, and ut = 26:09 m/s although this velocity may not
be reached in practice. These parameters are used to spec-
ify the landslide kinematics in the NWT, using Eqs. (22) to
(28).
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Fig. 9 : Same case as Figs. 7-8. Surface elevation (in me-
ters) for a 3D tsunami landslide calculated in the NWT, at
t = 19:1 s. With : 
 = 1:845, ao = 0:3 m/s2, ut = 26:09
m/s, and " = 0:25.

Fig. 9 shows the free surface computed at t = 19:1 s.
We clearly see a wave of elevation followed by a wave of
depression initially propagating o�shore. Three-dimensional
energy spreading is also clearly seen on the �gure. Figs.
10 and 11 show wave elevations computed at a few of the
12 numerical wave gages as a function of time. The three-
dimensionality and spreading of the tsunami is apparent from
the gage records. More details of results and comparisons
with experiments can be found in Watts et al. (2001b).
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Fig. 10 : Same case as Figs. 7-11. Surface elevation for a
3D tsunami landslide calculated in the NWT, at gages lo-
cated at (x; y) = (1592.7,0) (||-); (1592.7,300) (- - - - -);
(1592.7,600).
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Fig. 11 : Same case as Figs. 7-11. Surface elevation for a 3D
tsunami landslide calculated in the NWT, at gages located at
(x; y) = (992.7,0) (||-); (992.7,300) (- - - - -); (992.7,600).

During these computations, the maximumcumulative er-
ror for the domain volume was 0.039%, and the maximum
instantaneous error for the dimensionless continuity equation
was 0.0055%. The maximum error on theoretical landslide
volume, due to discretization e�ects and landslide motion,
was 0.10%. Looking at results for gages farther away from
the landslide and closer to the o�shore AP boundary (Figs.
11), it is clear that little re
ection occurs at the open bound-
ary.

CONCLUSIONS

Landslide tsunami generation mechanisms were explored us-

ing a three-dimensional Numerical Wave Tank (NWT) solv-

ing fully nonlinear potential 
ow theory. New features were

added to the NWT (model of underwater landslide geometry

and motion, snake absorbing piston boundaries) and their

accuracy and e�ciency was tested for certain applications.

Two landslide cases are presented here and results of the �rst

one, a quasi-2D landslide, are validated using experimental

results. The second case deals with a fully 3D landslide and

shows realistic results during tsunami generation. To our

knowledge, results based on fully nonlinear 3D wave com-

putations have never been reported for a landslide tsunami

source. Such a wave �eld can be used as an initial condition

in long wave based tsunami propagation and runup models.
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