Modeling of wave shoaling in a 2D-NWT using a spilling breaker model *

Stéphan Guignard and Stéphan T. Grilli
Department of Ocean Engineering, University of Rhode Island, Narragansett, RI 02882, USA

ABSTRACT

A 2D fully nonlinear NWT modeling wave propagation over
arbitrary bottom topography is extended by the addition
of a spilling breaker model, in which an absorbing surface
pressure is specified over breaking wave crest areas. The
instantaneous power dissipated for each breaking wave by
the absorbing pressure is specified proportional to the dis-
sipation in an inverted hydraulic jump of identical charac-
teristics. These are obtained by applying a wave tracking
algorithm to each calculated free surface. A maximum sur-
face slope breaking criteria is used to identify breaking waves
within the incident wave train. Computations for a periodic
wave shoaling and breaking over a plane slope are compared
to laboratory experiments. The agreement 1s quite good, al-
though more work remains to be done in refining the breaker
model parameter.

Keywords : Nonlinear nearshore wave transformations,
wave shoaling and breaking, numerical wave tank, breaker
model, boundary element method.

INTRODUCTION

Over the past two decades, increasingly accurate models (i.e.,
Numerical Wave Tanks; NWT) have been developed for cal-
culating nearshore wave propagation. Most of these models
were based on inviscid, irrotational (i.e., potential), flow the-
ory, and their predictions were shown to be in good agree-
ment with well-controlled laboratory experiments, for wave
shoaling over mild slopes, up to the initial stages of crest
overturning (e.g., Grilli et al., 1994, 1997). Three main ap-
proaches were followed in these models : (i) the direct so-
lution of Fully Nonlinear Potential Flow (FNPF) equations,
typically, in an Eulerian-Lagrangian formulation, either in
a periodic or a conformally mapped space (e.g., Longuett-
Higgins and Cokelet, 1976; Vinje and Brevig, 1981, Dold
and Peregrine, 1986), or in the physical space (e.g., Grilli
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et al., 1989); (ii) the derivation and solution of approximate
depth-integrated long wave equations, based on FNPF the-
ory, such as Boussinesq equations with improved dispersion
and nonlinear characteristics (e.g., Wei et al., 1995); and (iii)
the direct solution of Euler/Navier-Stokes equations, using
a domain discretization method, such as Volume of Fluids
(VOF; Lin and Liu, 1998; Guignard et al., 2001) or Marker
and Cell (MAC; Raad, 1995), with and without turbulence
models.

Approach (i) does not make any approximation of FNPF
equations (other than a discretization) and can model the
overturning of one wave, up to impact of the breaker jet on
the free surface (e.g., Grilli and Subramanya, 1996; Grilli
et al., 1997). Tt is however quite computationally expen-
sive (as compared to approach (ii)), and does not naturally
include energy dissipation terms (representing bottom fric-
tion or wave breaking effects). Approach (ii) only approx-
imately solves FNPF equations, and depth integration pre-
cludes modeling steep bottom obstacles. But it is less com-
putationally demanding and can accommodate energy dissi-
pation terms globally representing wave breaking (Karambas
and Koutitas, 1992; Schaffer et al., 1993; Nadaoka and Ono,
1999; Skotner and Apelt, 1999ab; Veeramony and Svend-
sen, 1999, 2000; Kennedy et al., 2000). Approach (iii) is
very computationally expensive and suffers from significant
numerical diffusion, which both prevent accurately model-
ing wave shoaling over long propagation distances. However,
when coupled with accurate free surface tracking algorithms,
it can provide details of the flow together with the complex
shape of post-breaking waves (e.g., Guignard et al., 2001).
Note the recent, more efficient, coupling of approaches (i)
and (iii) proposed by Guignard et al. (1999).

In many coastal engineering problems, it is necessary
to compute nonlinear characteristics of waves shoaling over
mildly sloping bottom, up to the breaking point. While, in
such cases; 1t is important to account for the energy dissi-
pation (and thus the reduction in wave reflection) resulting
from wave breaking in the surf zone, a global approach can
be used 1n which the details of the flow within breaking waves



are not sought nor modeled. Models related to approach (iii)
above could provide such details, but both the computational
cost would be too high and the shoaling part of wave propa-
gation would be less accurately computed, due to numerical
diffusion, than when using a NWT based on FNPF theory
(e.g., Guignard et al., 1999, 2001). To apply FNPF-NWTs
to such problems, many researchers implemented so-called
“absorbing beaches” at the far end of their NWTs, in which,
usually, a surface pressure distribution working against inci-
dent waves is specified. This both prevents wave overturning
from occurring and absorbs incident wave energy (see reviews
and results in, e.g., Clément, 1996, and Grilli and Horrillo,
1997a). Absorbing beaches work well for periodic or nearly
periodic waves, propagating over constant depth or mildly
sloping bottom. For irregular incident waves, wave groups,
and/or irregular bathymetry (such as barred-beaches), it is
desirable to also have a simple and efficient means of pre-
venting wave overturning (which may occur anywhere and
typically terminates FNPF computations), while absorbing
the energy of individual breaking waves, in relation with the
physical rate of energy dissipation occurring in actual waves.
Wang et al. (1995), for instance, suppressed breaking in
their so-called “longtank” computations, by peeling water
away from wave crests reaching a limiting height. This ad-
hoc numerical method, however, violates continuity equation
and has no physical justification.

For spilling breakers over mild slopes, breaking is usu-
ally limited to overturning in the high crest area and leads
to the formation of a “roller”, while the bulk of the wave
flow keeps potential-like features (e.g., Cointe and Tulin,
1994). When the roller forms, the wave front face steep-
ens and then reaches a rather constant slope during break-
ing, while wave height continuously decreases due to energy
dissipation. These properties of spilling breakers are the ba-
sis for the “maximum front slope” breaking criteria used by
Schaffer et al. (1993), and many others, in long wave mod-
els, in combination with empirical eddy viscosity terms in
the momentum equation, calibrated based on laboratory ex-
periments. In the present work, we use the two-dimensional
(2D) FNPF-NWT initially developed by Grilli et al. (1989)
(GSS), with its later improvements described in the next sec-
tion, to study nearshore wave propagation (Fig. 1). Long
wave models cannot predict breaking and thus need addi-
tional empirical information. By contrast, FNPF-NW'Ts can
model overturning waves and thus accurately predict break-
ing locations and types : spilling, plunging, or surging (Grilli
et al., 1997). Computations, however, are terminated when
overturning of one wave occurs. Hence, for spilling break-
ers, when details of the small size roller are not needed, as
done in long wave models, one can globally represent the
energy dissipation due to breaking, while not resolving the
details of the crest in the model and still assuming poten-
tial flow within the waves. Since wave overturning must be
prevented, a maximum/minimum front slope empirical cri-
terion, similar to Schaffer et al.’s, can be used to determine
whether a wave starts or stops breaking and when and where
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Fig. 1:
shoaling and breaking computations. Note, AB: absorbing

Sketch of numerical wave tank for periodic wave

beach for x > z,; piston wavemaker at # = =z, ; breaking

point at & = @p.

the dissipation should be applied. As in absorbing beaches,
a pressure distributed over the crest of breaking waves can
be used to specify the energy dissipation. Based on results
obtained in the surf zone hydrodynamics research commu-
nity, the instantaneous rate of energy dissipation for each
spilling breaker can be assumed to be that of an inverted
hydraulic jump (Svendsen et al., 1978; Svendsen and Mad-
sen, 1984; Svendsen et al., 2001). In our model, the pressure
distribution 1s specified from the point where normal veloc-
ity changes sign behind the crest to the similar point on the
front face of each breaking wave. The work produced by this
pressure against the wave is calibrated in real time to be pro-
portional to the energy dissipation in an hydraulic jump of
identical characteristics. This requires knowing values of in-
stantaneous wave height H | celerity ¢, and depth below crest
he = h+ H, and trough, h; (Fig. 2). Hence, a wave tracking
algorithm is developed, in which individual waves are identi-
fied and followed throughout their shoaling and breaking in
the NWT, while the breaking criteria is being checked. The
spilling breaker model parameters are calibrated by compar-
ing results to laboratory experiments for mean wave height
H and mean-water-level (MWL) variations, during shoaling
of periodic waves generated by a piston wavemaker (Hansen
and Svendsen, 1979).

Note that, in recent years, other breaking criteria have
been proposed to detect breaking in NWTs. Thus, Subra-
mani et al. (1998) developed a maximum surface curvature
criteria to identify deep water breaking waves (k H < 0.7,
with & the crest curvature), and Nadaoka and Ono (1999)
and Gentaz and Alessandrini (2000) used a criteria based
on a threshold vertical pressure gradient at the free surface
(g’z’ > pg). Such criteria were also tested in the present work,
but results presented here are limited to the front slope cri-
teria.

THE NUMERICAL WAVE TANK

Svendsen (1990) (GS) and Grilli and Subramanya (1994) fur-
ther improved GSS’s NWT by addressing important prob-
lems, such as surface piercing wavemakers, corner double-
node continuity and compatibility conditions, and quasi-
singular integrations. Grilli and Subramanya (1996) imple-
mented more accurate discretization methods and a node
regridding technique in the NWT, and were able to accu-



rately model breaking solitary waves over mild and steep
slopes, up to touch-down of the breaker jet on the free sur-
face. Grilli and Horrillo (1997a) (GH) implemented exact pe-
riodic wave generation (streamfunction wave solution), and
numerical absorption in the NW'T, the latter being achieved
through a combination of a surface pressure, working against
waves, and open active absorbing boundaries, within an ab-
sorbing beach (see also Clément, 1996). They were able
to calculate numerically-exact fully nonlinear properties of
periodic waves shoaling over mild monotonous slopes,; such
as wave height and celerity variations (Grilli and Horrillo,
1997b), and wave transformations over barred-beaches (Grilli
and Horrillo, 1999). Comparisons of results obtained in this
NWT with laboratory experiments indicate that FNPF the-
ory is accurate for modeling solitary wave runup on steep
slopes (Svendsen and Grilli, 1990) and shoaling over mild
slopes, up to and slightly beyond wave overturning (Grilli
et al., 1994, 1997, 1998). Grilli and Horrillo’s work also in-
dicates that periodic wave shoaling over barred-beaches is
also modeled in the NWT, as compared to laboratory exper-
iments.

Governing equations and boundary conditions
Equations for GSS/GS/GH’s two-dimensional FNPF numer-
ical wave tank (NWT) are briefly presented in the following.
The velocity potential ¢(x,t) is used to describe inviscid ir-
rotational flows in the vertical plane (z,z) and the velocity
is defined by, u = V¢ = (u,w). Continuity equation in the
fluid domain Q(t) with boundary T'(¢) is a Laplace’s equation
for the potential (Fig. 1),

Vi =0 in Q) (1)
On the free surface T'¢(t), ¢ satisfies the kinematic and dy-
namic boundary conditions,

DR 0

Dt:(at+u~V)R:u:V¢ onT¢(t) (2)
D 1

D‘f =gz +,Vé Vo ppf onT;(t) (3)

respectively, with R, the position vector on the free surface,
g the gravitational acceleration, z the vertical coordinate,
ps the pressure on the free surface, and p the fluid density.
Along the stationary parts of the boundary such as bottom
I'y and I';5, a no-flow condition is prescribed as,

¢
on

where the overline denotes specified values.

Various methods have been used for wave generation in
this NWT. Here, periodic waves are generated on bound-
ary T'y1(t), either using a solid piston wavemaker moving
according to a first-order cnoidal wave solution (GS), or
by prescribing numerically exact higher-order streamfunc-
tion waves, corrected to specify a zero average mass-flux over
one wave period (GH). The first method produces incident

=0 on Iy, Tra  (4)

intermediate depth waves, similar to those generated in lab-
oratory wave tanks (e.g., Hansen and Svendsen, 1979) and
thus can be used for comparing numerical results with exper-
iments. The second method produces more accurate finite
amplitude waves, which keep permanent form over constant
depth, whereas first-order cnoidal waves may be subject to
amplitude modulations, due to higher-harmonic generation
(e.g., GH). Thus, for a specified wavemaker or wave motion
Xy (t) on Tp1(t) (Fig. 1), we have,

oo _dxy
gy = G B n

4t on Tpy(t)  (5)

X =Xy ;

where overlines denote specified values, and the time deriva-
tive follows the wavemaker or the wave motion. See refer-
ences for details.

For well-posed problems, we have, I' = I'; UT', Ul UT 5.
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Fig. 2 : Definition of geometric parameters for the breaker
model. Note, H 1s defined as the height between a crest and

the previous trough, as in Hansen and Svendsen (1979).

Wave energy absorption

Following Clément (1996) and others, GH implemented an
absorbing beach (AB) in the NWT in which an external ab-
sorbing pressure p; = p, is specified in the dynamic free sur-
face condition (3) (with z = ), to create a negative work,
and thus absorb wave energy over a given section of the free
surface (for ¢ > #,). To create additional wave reduction
through de-shoaling, the bottom geometry within the AB is
specified somewhat similar to a natural bar, with a depth
increasing to h = hy (Fig. 1).



The AB absorbing pressure is specified proportional to
the normal particle velocity on the free surface,

pale 1) = valz) o (12 1) )

in which v4, the beach absorption function, is smoothly var-
ied along the AB as, e.g.,

r— T4

Va(x) = Vgo P\/ghl ( ! )2 (7)

where vy, 1s a non-dimensional beach absorption coefficient,

and [ is the AB length.
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Fig. 3 : Breaker model absorbing pressure shape function.

The same method is now used to selectively absorb en-
ergy from breaking waves, for # < z, (Fig. 1), while the
AB 1s still used to absorb residual wave energy exiting at
the top of the slope, for x > z,. A wave tracking algo-
rithm (detailed below) first identifies breaking waves, within
the incident wave train, based on a breaking criterion. The
breaker model is assumed to extend from the crest of each
breaking wave to two points on each side of the crest where
|gg/(gg)min,max| > ¢ (m <z < #), where £ is a small
threshold value (Fig. 2). [|(g:)min,max| are defined as the
maximum absolute normal velocity for each side of the wave.]
Over each breaker, the absorbing pressure is defined as,
Py = Pom, Wltha

0
pbm(x, nat) = me(x) ai

(n(z 1) (8)
in which v = v, S(x), with S(z) a breaker shape func-
tion providing a smooth transition from areas without the
absorbing pressure, to the breaker regions over each break-
ing wave (Fig. 3). [This function is simply assumed to vary
sinusoidally between 0 and 1 over a fraction « of the total
breaker length (z, — #;); thus, n = #; + a(x, — #;) and
2y = & — a(x, — ;) in Fig. 3.

The instantaneous power dissipated by each breaking
wave 18 given by,

Ty a Ty 6 2
Py = /x Db aidf = Upo /x S(x) (ai) dr (9)

1 1

and 1s assumed to be proportional to the power dissipated
in a turbulent hydraulic jump (e.g., Lamb, 1932, p 280). We
find after some transformations,

h H3

1
4 he hy (10)

Prn=pgc

where H denotes the wave height, h; the water depth be-
low trough, h. = h: + H the water depth below crest (Fig.
2), and (here) ¢ is the absolute wave crest phase speed. We
define, Py = pPp, with p ~ 1.5 (e.g., Svendsen et al.,
1978) a coefficient to be calibrated based on laboratory ex-
periments. All calculations done, the instantaneous value of
each breaker absorption coefficient v, is found as a function
of both wave and breaker parameters (I, ¢, hy, h, pt, €, ), and
the wave shape in between z; and », (Figs. 2 and 3).

Wave tracking algorithm and breaking criteria
A free surface tracking algorithm is applied for each time ¢ to
determine characteristics of both non-breaking and breaking
waves. First, (#, z) locations of local maxima and minima in
surface elevation n(z,t) are identified (using the high-order
geometric representation of the free surface modeled in the
BEM). The crest of each wave is calculated as the highest
elevation in between two successive minima in surface ele-
vation (i.e., wave troughs). A wave is identified only if its
height H is greater than a specified fraction of the incident
wave height H, (typically one-tenth). This avoids including
secondary wave crests created during shoaling by nonlinear
effects.

Now, for each wave identified this way at time ¢, the
algorithm finds which wave ¢ = 1,... it corresponded to at
the previous iteration, at time t — At. The search for the
right wave is accelerated by extrapolating the crest position
of each earlier wave 7, to time ¢, as,

FL(t) ~ 2l (t — At) + " At (11)

c

where, ¢ ~ %‘f(xlc) gi(xlc) is the i’s wave crest celerity at
time ¢ — At (assuming a permanent form for the wave over
time At), and comparing it to the crest position z.(t) found
for the current wave under consideration. Wave heights
H'(z,t) is saved for each wave after final identification has
been made, as well as other geometric parameters needed
to calculate the hydraulic jump power dissipation using Eq.
(10). Crest trajectories x’(t) are calculated for each incident
wave, and celerities ¢! (z, t) are calculated as the time deriva-
tives of these. Wavelengths are readily found as L' = ¢ T,
assuming a constant wave period.

A breaking criteria is checked for each wave ¢ identified
at time ¢. Here, a simple wave front slope criteria (Schaffer et
al., 1993) is checked, such as # > fBuyax, to decide whether a
wave breaks or not. For those waves j that break, the proce-
dure described in the previous section is applied to calculate
the interval o] < o < zJ, in between which the absorbing
pressure p‘gm is applied (Fig. 2), according to Eq. (8).

Note that, due to the cold start of computations in the
NWT, a larger wave is usually created at the front of the
initial wave train. To properly dissipate the energy of this
wave before it reaches the top of the slope, the absorbing
pressure 1is applied on it from the toe of the slope onward.

Numerical model
In the NWT, Eq. (1) is transformed into a Boundary Integral
Equation (BIE), using Green’s 2nd identity, and solved by a



Boundary Element Method (BEM). The BIE is expressed for
N discretization nodes on the boundary, and M higher-order
elements are defined to interpolate in between discretization
nodes. In the present applications, quadratic isoparametric
elements are used on lateral and bottom boundaries, and cu-
bic elements ensuring continuity of the boundary slope are
used on the free surface. In these elements, referred to as
Middle Tnterval Interpolation (MII) elements, both geome-
try and field variables are interpolated between each pair
of nodes, using the middle-section of a four-node “sliding”
isoparametric element. Expressions of BEM integrals (regu-
lar, singular, quasi-singular) are given in GSS, GS, and Grilli
and Subramanya (1994,1996), for both isoparametric and
MII elements.

Free surface boundary conditions (2) and (3) are time in-
tegrated based on two second-order Taylor series expansions
expressed in terms of a time step At and of the Lagrangian
time derivative, D/Dt, for ¢ and R. First-order coefficients
in the series correspond to free surface conditions (2) and
(3), in which ¢ and 0¢/dn are obtained from the BEM so-
lution of the BIE for (¢, d¢/0n) at time ¢t. Second-order
coefficients are expressed as D/Dt of Egs. (2) and (3), and
are calculated using the solution of a second BIE for (d¢/0t,
9?¢/0tdn), for which boundary conditions are obtained from
the solution of the first BIE and the time derivative of Egs.
(3) to (5). Detailed expressions for the Taylor series are given
in GSS.

At each time step, global accuracy of computations is
verified by computing errors in total volume and energy for
the generated wave train. GS showed that these errors are
function of both the size (i.e., distance between nodes) and
the degree (i.e., quadratic, cubic,...) of boundary elements
used in the spatial discretization, and of the size of the se-
lected time step. They proposed a method for adaptively
selecting the optimal time step, based on a mesh Courant
number C,(t). For the MII elements, Grilli and Subramanya
(1996) showed that the optimum value of C, is around 0.45.
This value i1s used in the present applications.

In computations involving finite amplitude waves, mean
drift currents occur (“Stokes drift”) which continuously
move discretization nodes/Lagrangian markers forward in
the NWT. Grilli and Subramanya (1996) developed regrid-
ding methods in which nodes can be redistributed at constant
arclength intervals over specified regions of the free surface.
This method was used to both refine the discretization within
the jets of breaking solitary waves and rediscretize areas close
to wavemakers, which otherwise would gradually loose their
resolution due to forward node motion (GH). Stokes drift and
the need for regridding are also experienced in the present
computations. However, to limit the number of nodes on the
free surface and the computational cost, the initial horizon-
tal node spacing Az, on the free surface i1s gradually reduced
over the slope, to match the reduction in wavelength due to
shoaling and maintain a node density of at least 15 nodes
per waves (from an initial 20 nodes per wavelength over the
constant depth part of the NWT). Hence, Grilli and Subra-

manya’s method of constant arclength regridding can not be
applied. Instead, a new regridding method was developed in
which the initial ratio of each BEM element length to the to-
tal length of the free surface 1s maintained for all times. This
method is applied every ten time steps in the present com-
putations. It was verified that regridding only very slightly
increased numerical errors on mass conservations at a given
time step. However, without regridding, computations would
rapidly fail as discretization nodes would keep accumulating
downstream in the NWT.

APPLICATIONS

The breaker model is validated by comparing numerical re-
sults to laboratory experiments by Hansen and Svendsen
(1979), for periodic waves with : H, = 0.095 m (at the
toe of the slope), T = 1 s, and h, = 0.36 m, shoaling
over a s = 1/34.26 plane slope for z > 14.78 m (Fig. 1).
[Note, this is also one of the cases used by Skotner and Apelt
(1999ab).] In the experiments, waves were generated by a
piston wavemaker at # = 0, using a second-order wave gen-
eration method. Variations of wave-averaged, wave height
H, mean-water-level (MWL) 5, and celerity ¢, were mea-
sured as a function of . The same tank geometry and wave
characteristics are used in the NWT. Due to the lack of de-
tails provided on the second-order wave generation method,
wave generation was achieved in the NW'T using a piston
wavemaker (as in the experiments), moved according to a
first-order cnoidal wave solution, with wave height 0.095 m.
It was observed that generated waves slightly adjusted their
shape and height as they propagated over constant depth
down the NWT, likely due to nonlinear effects (as discussed
by Svendsen and Grilli (1990) and GH). The incident wave
finally reached a stabilized height H, = 0.083 m at the toe of
the slope in the NWT | i.e.; a smaller value than in the corre-
sponding experiments (which used a wave height 0.1 m at the
wavemaker). Rather than repeating these quite demanding
computations with a larger incident wave, the comparison of
numerical results with experiments is carried out using these
slightly smaller generated waves. It is planned to repeat
these computations at a later time, using a streamfunction
wave generation, for which no change in wave height should
occur over constant depth (GH).

An absorbing beach, with water depth deepening to hy =
0.3 m, is specified at the top of the slope (Fig. 1). The AB
1s located for x > x, = 25.96 m and » < 30, with v, = 0.01.
The minimum depth on the slope at z = =4 1s A, = 0.0343 m.
In the breaker model, breaking is assumed to occur when the
maximum wave front slope reaches fnax = 37, with o = 0.1,
and ¢ = 107°. Finally, as recommended by Svendsen et al.
(1978), we select p = 1.5.

BEM discretization parameters are N; = 315 nodes on
the free surface, with 314 MII sliding cubic elements of initial
length Az, varying from 0.1 m at the wavemaker down to
0.025 m at « = 30. Quadratic 3-node isoparametric elements
are used on the other parts of the boundary. There is a
total of N = 672 nodes on the boundary and M = 491
elements. The initial time step 18 At, = 0.01 s, which is
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Fig. 4 : Stack diagram of computed surface elevations as a
function of time (rightward axis) for a cnoidal wave with :
H,=0.083m,T=1s,and h, = 0.36 m, over a s = 1:34.26

slope.
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Fig. 5 : Same case as Fig. 4. Calculated mean wave height
(——). (o) are experimental data from Hansen and Svendsen

(1979), for H, = 0.095 m.

consistent with a Courant number equal to 0.45 for =z < 26
m (Grilli and Subramanya, 1996). A total of 5000 time steps
were run in these computations. The relative error on the
NWT initial volume (V, = 8.322m3/m) was only 0.011%
after 3500 iterations, at time ¢ = 21 s. At this stage, the
NWT reached an almost steady state in which larger waves
kept entering the AB from the top of the slope. This led to
somewhat larger numerical errors. After 5000 iterations, at
time ¢ = 30.04 s the volume error increased to 0.087%, which
is still quite small (Fig. 8).

Figs. 4-7 show results of computations. Fig. 4 shows
stacked free surface elevations calculated as a function of
time, for ¢ > 24.5 s, i.e., after computations in the NWT
have reached an almost steady state. Breaking occurs in
average for zp ~ 21.5 m. We clearly see the shoaling region
for x < xp, where wavelength decreases and wave height
H(x) eventually increases, and the surf-zone region beyond
breaking, where H decreases. Crest trajectories w.(t) are
visible as darker curves in the figure. The slope of these
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Fig. 6 : Calculated MWL (——), for same case as in Fig.

4-5.
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Fig. 7 : Calculated mean wave celerity (———), compared
to NSW (— - —) and LWT (- - - - - ) celerities, for same case
as in Fig. 4-6.

curves provides the wave phase speed as, ¢ = dz./dt.

Fig. 5 shows the calculated average wave height (ensem-
ble average of computations for 6 successive waves), as com-
pared to laboratory experiments. The agreement is quite
good, although breaking occurs slightly too early (i.e. for
too small an #) in the NWT. Fig. 6 shows the computed
average MWL, as compared to experiments. The agree-
ment is also good for x < 24 m. Finally, Fig. 7 shows
the calculated average celerity, as compared to the celerity
predicted by linear wave theory cowr = ¢, tanh kh (with
¢o = gT/27 = 1.56 m/s, wavenumber k = 27/L, and wave-
length L = ¢T), and that of the Nonlinear Shallow Water
equations, ensw = \/g(H + h) (using the FNPF results for
H). The agreement of ¢ and erwr with experiments dur-
ing the shoaling part (z < 21.5 m) is good, considering the
difficulties reported by Hansen and Svendsen in accurately
measuring celerities, and differences in H, value. Beyond
breaking, experimental results show a larger variance, due
to difficulties in identifying foamy crests in the experiments,
and the agreement with computations is less good, although
still reasonable. NSW equations seem to consistently over-
predict wave celerity.
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Fig. 8 : Relative error on volume conservation as a function
of time in the computations, for same case as in Fig. 4-7.

CONCLUSIONS

Preliminary numerical results reported in this paper indicate
that the spilling breaker model implemented in the fully non-
linear NWT correctly accounts for the overall behavior of
periodic waves shoaling and breaking over a sloping bottom,
i.e., the approximate location and height of breaking, and
the rate of energy dissipation in the breakers, leading to a
reduction in wave height and to an increase in MWL in the
surf-zone. The general agreement of numerical and experi-
mental results confirms the relevance of the hydraulic jump
analogy, using g = 1.5, to model the instantaneous power
dissipated in spilling breakers, although it is hard to assess
whether this u value is general unless more cases are tested.
In particular, in the one case reported here (Figs. 5-7), an
increased dissipation in post-breaking waves (i.e., a larger
#) would reduce H and increase n,thus providing a better
agreement with experiments.

The fBnax value used in the breaking criteria was larger
than that used in Boussinesq models (e.g., Schiffer et al.,
1993). This is because the fully nonlinear NWT can model
steeper waves than Boussinesq models and thus delay the on-
set of breaking. Nevertheless, for the reported case, breaking
still occurs too soon and it would be of interest to try and
increase fmax further. A limitation however is that, with too
large a Bpax value, it may be hard to quickly enough absorb
wave energy and prevent wave overturning from occurring.
Clearly more work needs to be done on the sensitivity of
results to this important parameter.

Experimental and FNPF results show effects of ampli-
tude dispersion, which leads to a larger celerity, the larger
the wave (Fig. 7). Note that FNPF computations with this
model, for solitary wave overturning on mild slopes, reported
by Wei et al. (1995), predicted celerity variations similar to
experimental results in Fig. 7, i.e., sharply increasing just
after breaking. In those computations, however, the breaker
jet was finely resolved and the rise in (crest) celerity resulted
from the rapid forward motion of the jet (which actually is
prevented from forming in the present case).

Future work will also concentrate on running more of
the 17 different incident waves tested by Hansen and Svend-
sen (1979) in the NWT and further calibrating the breaker
model parameters based on these results. We will also com-

pare velocities predicted under breaking waves to laboratory
measurements (e.g., Veeramony and Svendsen, 2000). Fi-
nally, as mentioned above, it appears that the streamfunc-
tion wave generation may offer a more accurate means of
simulating experimental conditions in the NWT.

In conclusion, the NWT, with the addition of a simple
breaker model, has the potential for realistically simulating
wave shoaling from deep water to shore, up to breaking over
a sloping bottom geometry, with the possibility of studying
effects of bottom obstacles and irregularities. One should,
however, keep in mind the limitations of the method for mod-
eling details of the flow in breaking waves.
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