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ABSTRACT

A numerical wave tank based on the coupling of a Boundary Ele-
ment model, solving fully nonlinear potential flow equations, and
a Volume Of Fluid model solving Navier-Stokes equations is devel-
oped and used to calculate transformation of shoaling and break-
ing waves in nearshore areas.

INTRODUCTION

The Boundary Element Method (BEM) has proved very efficient
for calculating the propagation and shoaling of ocean waves over
arbitrary bottom topography, up to overturning of a wave (e.g.,
Grilli et al., 1994, 1997, 1998; Grilli and Horrillo, 1997, 1998). In
such computations, fully nonlinear potential flow theory is typ-
ically solved in a Boundary Integral formulation based on free
space Green’s function, coupled to a higher-order time updat-
ing of both the boundary geometry and potential. Such numer-
ical models are often referred to in the literature as numerical
wave tanks (NWT) because they simulate the functionality of
laboratory tanks, i.e., wave generation, propagation and radia-
tion/absorption (see below). Many laboratory experiments have
shown that computations in NWTs based on potential flow equa-
tions are very accurate in predicting both the shape and kine-
matics of surface waves shoaling over a sloping bottom, up to the
breaking point (for which waves have a vertical tangent on the
front face), and slightly beyond, up to the instant of impact of
a breaker jet on the free surface (e.g., Grilli et al., 1994, 1997).
Further than this, however, the method breaks down due to the
violation of governing equations.

This limitation of BEM-NWTs to non-breaking waves has
led to the development of various artificial methods for prevent-
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ing breaking in computations. These methods are usually referred
to as absorbing beaches (AB) (e.g., Cointe, 1990; Clément, 1996;
Grilli and Horrillo, 1997, 1998; see Fig. 1). Their principle is to
absorb energy from incident waves, at the extremity of the NWT,
before they start overturning, through a combination of surface
pressure and lateral active absorption (“absorbing pistons”, AP).
Without an AB, periodic waves shoaling up a slope would nor-
mally lead to a succession of breakers at the top of the slope, of
which only the first one would be calculated in the NWT. With
an AB, however, successive waves can be let to shoal up to very
close to the breaking point, before they enter the AB and dissipate
their energy (Grilli and Horrillo, 1997, 1998).
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Figure 1 : Sketch of periodic wave shoaling computations over a
plane slope s in Grilli and Horrillo’s (997) 2D-BEM-NWT, with
an absorbing beach (AB) and an absorbing piston (AP) at the
extremity.

Note that such ABs are essentially non-physical in the sense
that, while globally absorbing wave energy, they do not dissipate
energy the way it occurs in nature, i.e., through the combined ac-
tion of vorticity, turbulence, and viscosity within the fluid volume.
Hence, results for wave shape and kinematics are useless within
the AB, which can only be regarded as a “black box” performing
an energy absorption function in a numerical model.

Constant improvements in computer power have recently led



These methods directly solve the complete Navier-Stokes equa-
tions on a grid covering the whole domain, and are able to accu-
rately follow the motion of free surfaces and interfaces between
fluids, by using distributed Lagrangian surface markers. VOF
methods allow for pockets of air to be trapped within the fluid
domain and for pieces of water to detach from the main com-
putational domain. Hence, these methods are ideally suited for
modeling breaking waves over a sloping bottom [e.g., Guignard et
al., 1998, 1999; Fig. 2; note, however, in this model, the air-phase
is assumed to be incompressible, even for pockets of air trapped
in the water : this may be an approximation for violent impulsive
problems.]. VOF methods, however, are computationally expen-
sive and suffer from numerical diffusion, leading to artificial loss
of wave energy over long distances of propagation.
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Figure 2 : Breaking of a solitary wave over a 1:15 slope in a two-
phase VOF model [Guignard et al., 1998]. Light grey represents
the air region and dark grey the water region. Arrows indicate
flow velocities.

In the present study, the key features and advantages of both
BEM and VOF methods are exploited, by coupling these meth-
ods to carry out wave shoaling computations further than the
impact of a breaker jet on the free surface. The BEM method,
implemented into a NWT with an AB, accurately and efficiently
models wave shoaling over a sloping bottom, before breaking oc-
curs. The VOF method can calculate breaking and post-breaking
waves at the top of the sloping bottom, on a refined local grid,
with fluid flow parameters being both initialized and updated at
the open ocean boundary, using the BEM-NWT. The coupled
model allows for efficient and accurate computations of nearshore
wave propagation and transformation.
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Figure 3 : Shoaling and overturning of a solitary wave of height

[as in Grilli et al., 1997]

In the present paper, BEM/VOF model coupling is only real-
ized for solitary waves shoaling and breaking over mild slopes, for
which little reflection occurs (e.g., Fig. 3). This is the simplest
case in which no feed back occurs from the VOF model into the
BEM model. More complex cases with periodic waves and feed
back are in progress and will be presented at the conference.

NUMERICAL MODELS
BEM MODEL

Grilli et al. (1989), and Grilli and Subramanya (1996) imple-
mented an efficient and accurate two-dimensional (2D) BEM
model solving fully nonlinear potential flow equations (FNPF;
Fig. 1), continuity equation,

V=0 in Q(t) (1)
the fully nonlinear kinematic and dynamic free surface boundary
conditions,

D
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respectively, with r, the position vector on the free surface, g
the gravitational acceleration, z the vertical coordinate, p, the
pressure at the free surface, and p the fluid density; and a no-flow
condition on the bottom,
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on nhb (4)
where the overline denotes specified values. Boundary conditions
on lateral boundaries I[',1 and I',.» are discussed next.

Grilli and Horrillo (1997) implemented accurate generation
and absorption of periodic waves in this BEM model and de-
veloped it into a 2D-NWT applicable to shoaling waves. More
specifically their NWT combined : (i) a higher-order BEM solu-
tion of Fully Nonlinear Potential Flow (FNPF) equations; (ii) an
exact generation of finite amplitude periodic waves (Streamfunc-
tion Waves) at the deeper water extremity (I'y1); and (iii) an Ab-
sorbing Beach (AB) at the far end of the tank (featuring both free
surface absorption on I'y and lateral active absorption on I';.2; Fig.
1). Applications showed that, after absorption of initial transient
waves, computations in this NWT reached a quasi-steady state
for which reflection from the AB was very small. Details can be
found in the above-referenced papers.

VOF MODEL

Guignard et al. (1998,1999) developed a numerical model for
simulating multi-interface two-phases (air/water) viscous incom-



Stokes equations in both fluids, with respect to their real density
(pseudo-compressibility method; e.g., Viviand, 1995; Laget 1998).
A curvilinear grid with variable mesh, covering both fluids, is de-
fined along the x and z directions. Interfaces and their motion
are time-updated using a new Lagrangian method referred to as
SL-VOF method (Guignard et al., 1998). In this method, inter-
faces are modeled two ways : (i) a color function is defined within
each cell of the VOF grid, as the fraction (0 to 1) of the cell area
occupied by the denser fluid (classical VOF concept); hence, any
fraction less than one in a cell indicates the presence of an inter-
face in this cell; (ii) a segmental representation of the interface is
defined based on the values of the color function, according to a
Peacewise Linear Interface Calculation concept (e.g., Li 1995).

Interface segments are advected as a function of time, follow-
ing the velocity field obtained from the VOF solution of Navier-
Stokes equations. After this advection, new values of the color
function are computed, taking into account the new position of
the segments. Details can be found in the above-referenced pa-
pers.
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Figure 4 : Principle of BEM/VOF model coupling. (a) Shoaling
and absorption in the BEM-NWT with an AB (and an AP) start-
ing at x;, of a solitary wave with incident height H,/ho, over a
mild plane slope. Fluid velocities and pressures are calculated at
a vertical gage at z4. (b) Same computations in the VOF model,
initialized with wave a, and using lateral boundary conditions at
x4 from part (a).

PRINCIPLE OF COUPLED MODEL

Grilli et al.’s 2D-NWT described above models the propagation
of arbitrary fully nonlinear waves over complex bottom topogra-
phies. Boundary values of wave flow parameters (velocity, ac-
celeration, pressure,...) are readily available in the results; if
needed, values of the same fields can also be computed at spec-
ified interior points. Guignard et al. (1998) used this NWT to
generate initial data in their VOF model, for the propagation
of large solitary waves in constant depth and over a slope. In

sults, particularly over long distances of propagation, are affected
by numerical diffusion which leads to an artificial decrease in en-
ergy and wave elevation as the wave propagates. Also, because
of the large fluid domain, such VOF computations are extremely
demanding in terms of computer resources. In fact, these com-
putations could only be performed in a reasonable CPU time by
using several sub-domains, with large overlapping parts, and in-
dependently calculating the propagation of solitary waves in these
sub-domains, from one sub-domain to the next one.

In the present paper, in what is referred to as weak coupling,
the BEM-NWT is used, as in Grilli et al. (1997), to calculate the
propagation of a solitary wave over a mild slope, up to close to the
breaking point (BP, Figs. 3 and 4a). Here, however, to prevent
wave overturning, an AB is specified at the upper part of the
slope. BEM results, calculated along a vertical line as a function
of time, are then used as open ocean boundary conditions in the
VOF model (Fig. 4b).

More specifically, a first computation is run in the NWT with-
out the AB (e.g., Fig. 5a), up to a crest location close to the BP
(curve a), and field values are calculated at internal points cor-
responding to the VOF model grid mesh centers. These values
are used as initial fields in VOF computations (e.g., Fig. 4b). A
second computation is then run in the NWT, for the same wave,
using the AB to absorb incident wave energy (e.g., Fig. 4a, 5b).
In this case, a numerical wave gage is specified close to the en-
trance of the beach, at which both boundary and internal field
values are calculated, at the vertical locations of VOF grid cen-
ters, and saved as a function of time. These time series of velocity,
pressure, and wave elevation are finally used in the VOF model
as lateral boundary conditions (e.g., Fig. 6).

By proceeding this way, the capabilities of both BEM and
VOF methods are combined at best. Initial wave fields and up-
stream lateral boundary values calculated in the NWT and spec-
ified in the VOF model are not affected by numerical diffusion.
The VOF model, in turn, only operates over short propagation
distances and hence, provides both accurate and efficient results
for post-breaking waves, which are beyond the reach of the BEM-
NWT. More details, values of model parameters, and results, are
given in the next section.
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Figure 5 : Shoaling and breaking of a solitary wave with H,/h, =



measured from the point the incident wave crest is at ' = z/ho =
25.67, i.e., t' =a: 0, b: 1.81, c: 3.44, d: 4.78, e: 5.72, f: 6.51, g:
7.22, h: 7.89.

Let us finally point out that the term weak coupling refers to
the fact that, in the present case, both models are independently
run. Hence, although BEM-NWT results are fed into the VOF
model, there is no feed back from this model to the BEM-NWT.
We will see that, for solitary waves, this in fact does not affect
results at all. For periodic waves, however, which will be used in
a second stage, feed back will be necessary and will require the
implementation of a strong coupling algorithm.

MODEL VERIFICATION AND RESULTS

SHOALING OF SOLITARY WAVES IN BEM AND
VOF MODELS

As mentioned before, only results for solitary waves shoaling
and breaking over a mild slope are presented in this paper.
The set-up for the corresponding BEM-NWT computations
is given in Fig 3. A fully nonlinear solitary wave is used as
incident wave (i.e., a solution of FNPF equations), with an
initial height H, = 0.45h, in depth h, = 1; a mild 1/15
slope is specified in the NWT. This is the same case as used
in Guignard et al. (1998). This solitary wave is first speci-
fied in the NWT without an AB, at =’ = x/h, = 12 (dashes
indicate dimensionless variables), using its shape and kine-
matics calculated with Tanaka’s (1986) method—as imple-
mented and used by Grilli et al. (1994,1997) to study solitary
wave propagation over slopes—. The boundary of the NWT
is discretized using 452 nodes, 300 of which are located on
the free surface of length 34.4h,. The initial horizontal spac-
ing between free surface nodes is, Az! = Az,/h, = 0.115,
and the initial dimensionless time step in the BEM model
is At! = At\/g/h, = 0.045; this corresponds to a mesh
Courant number of At) /Az! = 0.4.

All the computations in this work were performed on
a DEC Alpha 500 workstation. With the above data the
BEM model requires 3.4s CPU time per time step. Fig.
5a shows results of these computations at 6 successive times,
with corresponding free surface shapes denoted by curves a to
f. As the wave shoals up, due to convergence of BEM nodes
towards the wave crest, the time step adaptively decreases
in the model, in order to maintain a constant mesh Courant
number (see Grilli and Subramanya, 1996). It takes 260
time steps for the wave to reach the location of curve a in
the NWT from its initial location, and another 600 steps to
reach the location of curve f. Hence, the total CPU time is
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Figure 6 : Same case as in Fig. 5. Dimensionless particle veloci-
ties calculated in the BEM-NWT with the AB (Fig. 5b), over a
vertical gage at x;, = 25.67, from bottom to surface (Fig. 4) : (a)
horizontal velocities; (b) vertical velocities.

The same computation is repeated in the NWT with
an AB starting at z; = 28.4 (with an AP at the rightward
extremity). The bottom geometry is modified for z' > z}, as
shown in Fig. 4a, in order to help the AB absorb wave energy
by creating some de-shoaling in the wave. In this second
computation, the NWT is initialized at the time of curve a in
Fig. 5a, using results obtained in the NWT without the AB.
The boundary of the NWT is discretized using 500 nodes,
344 of which are located on the free surface of length 39.2h,.
The initial horizontal spacing between free surface nodes is
Az! = 0.114 and the initial time step in the BEM model
is At! = 0.045; this again corresponds to a mesh Courant
number of 0.4. With these data the BEM model requires
4.2s CPU time per time step. Fig. 5b shows results of these
computations at 8 successive times, with corresponding free
surface shapes denoted as curves a to h. At each time step,
velocities, pressure and surface elevation are calculated at
(80) equally spaced locations, from bottom to surface, along
a numerical gage located at j, = 25.67 (Fig. 4a). These will
be used as lateral upstream boundary conditions in the VOF
model.

Comparing results in Fig. 5b with those in Fig. 5a, one
can see that the AB does not affect wave propagation for =’ <
x;. Wave height, however, gradually decreases within the AB
as energy absorption occurs. This makes it possible to keep
computing solitary wave propagation for a longer time then
without the AB, much beyond the stage of curve e in Fig. 5a,
for which NWT computations without an AB break down.
Hence, flow parameters at ' = x are available for a longer
time, allowing the VOF computations to be pursued into the
post-breaking regime (see next Section). Fig. 6, for instance,
shows dimensionless horizontal and vertical velocities u' =



h (Fig. 5).

BREAKING SOLITARY WAVES IN COUPLED
MODEL

As shown in Fig. 4b, the VOF model is run over a smaller
computational domain than the BEM-NWT, extending from
z' = z;, to the upper part of the slope in the horizontal
direction at ' = 35.6, and from the slope solid boundary
to z' = 0.6, in the vertical direction. Computations are
initialized using BEM-NWT results corresponding to curve

a in Fig. 5a

In the VOF computations, 825 equally spaced grid points
are used in the horizontal direction, with mesh size Az’ =
0.012, and 80 grid points are used in the vertical direction,
with mesh size gradually decreasing towards the top of the
slope, from Az’ = 0.0153 at ' = zj,. The time step in the
VOF computations is adaptively selected to maintain the
mesh Courant number to a value smaller than 0.9 (Guignard
et al., 1998). The BEM-NWT is used to calculate initial
internal values of velocity and pressure at the 825x80 grid
points of the VOF model. With these data, the initial time
step is selected to At, = 0.020 and the CPU time required
to compute a time step is 232s, i.e., about 68 times as much
as computations in the BEM-NWT without an AB for the
same case. For later times, the time step gradually decreases
to reach 0.005 at the end of the VOF computations. About
750 time steps are thus required to propagate the wave from
curve a to h in the coupled VOF model. Hence, the total
computation time is about 48h on the DEC Alpha 500.

After initialization of the VOF model as explained above,
computations are carried out using velocities (Fig. 6) and
pressure calculated at the lateral upstream boundary, in the
BEM-NWT with the AB. Results are given in Fig. 7b, as
compared to results obtained in the BEM-NWT over the
same area, shown in Fig. 7a as a reference. Note that these
BEM results have been compared to high resolution labo-
ratory experiments by Grilli et al. (1994,1997), who found
that maximum differences were only 1-2%, up to the break-
ing point. More recently, details of the jet calculated in the
BEM-NWT for a stage close to curve e were experimentally
validated by Li and Raichlen (1998) (see also Grilli et al.,
1998). Hence, results from the BEM-NWT can be consid-
ered as very accurate in this case and any major discrepancy
of VOF results up to, say, the stage of curve d should mostly
be due to computational errors.

In fact, comparing curves b and c¢ in Figs. 7a and b, we
see that both results are quite similar with, however, a small
reduction in wave height for curve ¢ in VOF computations
as compared to BEM results. In light of the above discus-
sion, this reduction in height should mainly be the result of
numerical diffusion in the VOF algorithm and not (yet) of
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Figure 7 : Same case as in Fig. 5, calculated in : (a) the BEM-
NWT (same as Fig. 5a); and (b) the weakly coupled VOF model.
Computations are initialized in the VOF model at the time of
curve a and boundary conditions are specified at z/h, = 25.67,
using the BEM-NWT.

Due to this reduction in height, for later times (curves
d-e), the wave propagates slightly slower in the VOF model
and the breaker jet also develops slower, and thus occurs
slightly later, than in BEM computations.

Beyond the stage of curve e, the breaker jet impacts the
free surface and the slope. Hence, BEM computations with-
out an AB break down and results for these times are only
available in the VOF model. Due to the impact of the jet
on the slope, in the latter model, the jet quite realistically
rebounds forward while a pocket of air is enclosed within the
breaking wave.

As mentioned above, Guignard et al. (1998) carried out
computations for the same wave propagating in a larger VOF
domain divided into several overlapping parts. The last such
part extended from z' = 10 to 35.6 (Fig. 3) and used 1800
and 80 grid points in the horizontal and vertical directions,
respectively, with Az’ = 0.014, and Az’ reducing from 0.02
in constant depth h, = 1. The CPU time required to com-
pute a time step in this grid was 506s. Despite a slightly
smaller resolution and a significantly larger computational
time, Guignard et al. were able to calculate wave breaking
up to the stage of curve h in Fig. 7b (e.g., Fig. 2). The loss
in wave height, however, was larger than in present computa-
tions, due to numerical diffusion effects occurring over longer
distances of propagation. A comparison with laboratory ex-
periments confirmed that the VOF model underestimated
wave heights.

In view of the above results, we see that the weakly cou-
pled VOF model is both more accurate and efficient than
the VOF model used alone over a larger grid. Due to the re-



even more accurate.

CONCLUSIONS

A coupled BEM/VOF model was developed which combines
at best the features and advantages of Boundary Element
and Volume Of Fluid methods. At this stage, only solitary
waves shoaling and breaking over plane slopes were used, and
a weak coupling algorithm, i.e., without any feed-back from
the VOF to the BEM model, was specified.

Due to its better numerical accuracy and efficiency for
non-breaking waves, the BEM model is used to carry out
most of the wave propagation from open waters to the upper
slope, up to close to the breaking point. VOF computations
of similar resolution are at least 50 times slower, and can be
affected by numerical diffusion. Model coupling then occurs
at two levels : (i) the VOF model is initialized over a smaller
area than that covered by the BEM model, using BEM re-
sults calculated over the VOF grid; (ii) for later times, the
lateral upstream boundary condition in the VOF model is
provided by BEM results calculated over a vertical gage. To
be able to pursue computations for a sufficiently long time
in the BEM model, an absorbing beach is used at the top of
the slope to prevent wave overturning and breaking.

In this approach, the BEM and VOF models are thus
essentially run in sequence. Both, initial values, and a data
base of lateral boundary conditions as a function of time, are
calculated and saved in the BEM model. The VOF model
is then run. This is why this situation is referred to as weak
coupling.

By contrast, in recent developments, a strong coupling
algorithm is being developed in which both BEM and VOF
models will be simultaneously run, one model providing open
boundary conditions for the other one, and vice-versa, over
a vertical matching boundary defined at a similar location as
x = x4 in the present case. In this strong coupling algorithm,
more complex cases with, e.g., periodic waves or wave groups
will be within reach of VOF computations, which will make
it possible to gain new physical insight into the breaking and
post-breaking of these more complex wave trains.
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