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Abstract

A numerical wave tank based on fully nonlinear potential flow
theory is used to calculate changes in local properties of periodic
waves shoaling over barred-beaches (wave height, celerity, front-
to-back asymmetry). Results show that strongly nonlinear wave
decomposition phenomena occur in a modulation region beyond
the bars. These are analyzed in detail, and discussed in the paper.

KEYWORDS : Numerical wave tank, shallow water wave transforma-
tions, coastal engineering.

INTRODUCTION

Bars on beaches are important topographic features for manycoastal en-
gineering problems. For sufficiently high incident waves, bars with shal-
low berms and steep side slopes induce large wave modulations, mostly
on their onshore side. As a result, significant variations occur with depth
for parameters such as wave height

�
, celerity� , and front to back asym-

metry � � � � � (Fig. 1). We will show that these modulations result from
strongly nonlinear wave decomposition phenomena occurring when non-
linear waves propagate into the deeper water region beyond the bar.

Such decomposition phenomena have been well observed, oversub-
merged obstacles, shelves, or bars, in the field (e.g., Byrne, 1969; Young,
1989) and in the laboratory (e.g., Beji and Battjes, 1994). They were ana-
lyzed and modeled using weakly nonlinear and weakly dispersive Boussi-
nesq equations (BE) (e.g., Freilich and Guza, 1984; Seabra-Santos et
al., 1987) or low-order Stokes-type expansions (e.g., Massel, 1983; Rey,
1992; Rey et al., 1992). Driscoll et al. (1992) and Ohyama andNadaoka
(1994) used models based on Fully Nonlinear Potential Flow (FNPF) the-
ory to calculate periodic wave propagation over submerged rectangular
obstacles. They showed that, to correctly describe wave decomposition,
a fully nonlinear method must be used, in which no approximations are
made on wave shape and celerity, because of the large wave height to
depth ratios occurring over the obstacles, leading to strong nonlinearities
in the wave field. Similar conclusions were reached by Grilliet al. (1994)

�
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who studied the propagation of large solitary waves (breaking and non-
breaking) over submerged trapezoidal breakwaters, using both a FNPF
model and laboratory experiments. For waves propagating over steep ob-
stacles on a flat bottom, Driscoll et al. (1992) and Ohyama andNadaoka
(1994) showed that higher harmonics are generated as bound waves in the
shallower water region over the obstacle, and then releasedas free waves
beyond the obstacle, where wave nonlinearity is weaker due to the deeper
water depth. The initial harmonic generation depends on thedimensions
of the obstacle (i.e., berm depth and width) and on incident wave period
(i.e., wavelength) and height (i.e., incident steepness).

Grilli and Horrillo (1996,1998) used a FNPFNumerical Wave Tank
(NWT) to calculate nonlinear properties of periodic waves,of height

� �
and period	 in deep water, shoaling over “cylindrical beaches”, i.e.,
beaches withmonotonously decreasing and mildly slopingdepth varia-
tion 
 � � 
 . Their two-dimensional (2D) NWT combined (Grilli et al.,
1989; Grilli and Subramanya, 1996; Grilli and Horrillo, 1997) : (i) a
higher-order Boundary Element (BEM) solution of Fully Nonlinear Po-
tential Flow (FNPF) equations; (ii) an exact generation of finite ampli-
tude periodic waves (Streamfunction Waves) at the deeperwater extremity
(� � � ); and (iii) anAbsorbing Beach(AB) at the far end of the tank (fea-
turing both free surface absorption on� � and lateral active absorption on
� � � ; Fig. 1). A feedback procedure was developed to adaptively cali-
brate the beach absorption coefficient so as to absorb the period-averaged
energy of waves entering the AB at� � � � . After absorption of initial
transient waves, computations in the NWT reached aquasi-steadystate
for which reflection from the AB was very small. Nonlinear properties of
shoaling waves were then calculated and validation tests were performed
to assess their sensitivity to the AB location and to the resolution of the
spatial discretization. Numerical results were compared to laboratory ex-
periments for periodic waves, shoaling and propagating over a bar (Beji
and Battjes, 1994). All the tests were found satisfactory, which confirmed
the accuracy of the computations in the NWT for such cases.

Using this validated NWT, Grilli and Horrillo (1998) (GH) calcu-
lated the shoaling of waves of various heights and periods over 1:35, 1:50,
and 1:70 slopes, both plane and natural (i.e., with a bathymetry following
Dean’s (1991) equilibrium beach profile), up to very close tothe break-
ing point. Both local (

�
, � , � ,...) and integral properties of shoaling

waves were calculated and, due to the low reflection from the slope and
the AB, found to be very repeatable for successive waves. Forvarious
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Figure 1: Sketch of computational domain and typical free surface
elevation for 2D-FNPF computations of a periodic wave, of height� �

and period� in depth� �
, shoaling over a beach with Dean’s

equilibrium profile (1:50 average slope; with� � � � � � � � � � � 	 
 � )
and a bar. (a) NWT set-up. (b) Blow-up of free surface shape in
undistorted scale (case 1, Table 1). (c) Free surface shape for case
1 (Table 1) at,� 
 � (——) � � � � � � 
 ; (- - - - -) � � � � � � 
 .
mild slopes, nonlinear properties of waves of different height and period
but same deep water steepness� � � �

were found to be almost identical
when compared for the same relative depth� 
 (with � � � � � � ). In the
shallower water region, linear, weakly nonlinear, and higher-order steady
wave (Sobey and Bando, 1991) theories did not, in general, accurately
predict shoaling wave properties, especially for

� � 
 � � � � � . Linear
wave theory (LWT; e.g., Dean and Dalrymple, 1984), in particular, was
in error by up to 85% for the wave height and celerity at the breaking
point. The weak nonlinearity and/or the lack of wave skewness in these
theories were identified as the main sources of errors.

In this paper, the same methodology as in GH’s study is applied to
periodic waves shoaling over a barred-beach (Fig. 1). Physical features
of periodic wave propagation over a bar are first discussed ingeneral, and
then analyzed in detail. Dashes indicate nondimensionalvariables (length
scale :
 �

; time scale :� 
 � � � , with � , the gravitational acceleration).

GENERAL FEATURES OF WAVE PROPAGATION OVER
BARRED-BEACHES

Fig. 1a shows a sketch of the NWT used in the present study. Thebase-
profile for the beach has the shape of Dean’s (1991) equilibrium beach
profile, with a 1:50 average slope. A bar, with a 1:20 seaward and a
1:10 shoreward slope, and a crest with nondimensional depth0.2, is lo-
cated toward the top of the slope. [The geometry of this bar issimi-

lar to that of Beji and Battjes’ (1994) experiments which GH used to
validate their shoaling computations.] As in GH, since waves of mod-
erate incident steepness initially behave as predicted by LWT, compu-
tations are initiated in intermediate water, in the so-called de-shoaling
zone (where wave height initially decreases during shoaling), at a depth

 �� � � � � 
 �

. Corresponding wave characteristics in deep water (depth

 �

) are back-calculated using LWT. Three incident waves of height� � �� � � �� � 
 � � � � � � and periods	 � � 	 � � � 
 � � 5.5, 6.5, and
7.5 are successively generated at boundary� � � of the NWT, as exact fi-
nite amplitude zero-mass-flux streamfunction waves (Grilli and Horrillo,
1997). Initial characteristics for these three waves are summarized in Ta-
ble 1. An AB is specified in the NWT for� �  � �� � ! � , with a tapered
bottom variation aimed at improving energy absorption (Grilli and Hor-
rillo, 1997); the depth at the AB’s entrance is
 �� � � � � , and
 �� � � � � at
its extremity. Numerical data in the NWT (i.e., spatial and temporal dis-
cretizations) are selected for each case in order to ensure high accuracy
of the computations.

A typical result for the calculated free surface shape is shown in
Fig. 1, for case 1 (Table 1) at" � � # � � � $ � � � � % � 	 �

from the (cold)
start of the computations. At this stage, the initial transient wave front
has been absorbed in the AB and computations have reached a quasi-
steady state. This can be seen in Fig. 1c which shows two free surface
profiles obtained at a one-period time interval : the two profiles are nearly
identical, except for small high frequency oscillations close to the AB
entrance (� � � � # ). On the figure, seaward of the bar (� � & � � ), wave
shoaling appears qualitatively similar to that obtained for monotonous
mild slopes (GH) : as waves propagate up the beach, their length reduces,
their height increases, and their profile becomes increasingly front/back
asymmetric (i.e., skewed), with higher and narrower crests, and longer
and shallower troughs. Shoreward of the bar (� �  � � ), however, the free
surface profile appears very different from typical shoaling profiles, and
decomposes into higher-frequency oscillations. Just before entering the
AB, close to the breaking point (� �  � # ), waves somewhat recover the
sawtooth/soliton-like shape typical of pre-breaking shoaling waves.

In the present study which, unlike in Driscoll et al.’s (1992) and
Ohyama and Nadaoka’s (1994) studies, features a varying beach topogra-
phy, when waves reach the bar, due to the initial shoaling over the mildly
sloping base-profile of the beach, they are already significantly nonlin-
ear, with a height about 45% of the local depth, and significant energy
transferred to bound second and higher-order harmonics (this will be de-
tailed in the following Section). Upon reaching the deeper water region
behind the bar, wave nonlinearity drops and, as over a flat bottom, the
higher harmonics are released as free waves. These free waves induce
significant spatial modulations of the wave profile, quite apparent in Fig.
1, over some distance but, further onshore, as waves again propagate up
the base-profile of the beach and depth decreases,shoaling re-occurs and,
for sufficiently shallow depth, the free higher harmonics, again, become
bound to the main wave and the wave profile more or less re-assumes a
typical shoaling shape. Therefore, unlike with underwaterobstacles over
constant depth (as, e.g., in Driscoll et al., 1992) the modulation region
shoreward of the bar is limited in extension by the reducing depth, clearly,
as a function of incident wavelength, bar berm geometry, andbeach slope.
In the case of Fig. 1, the modulation region covers a horizontal distance
of about 5-� 
 �

.

DETAILED FEATURES OF PERIODIC WAVE PROPAGA-
TION OVER BARRED-BEACHES

Results for the three wave propagation experiments in the NWT will now
be detailed. The variations of local wave parameters studied by GH over
mild slopes (i.e., normalized height

� � � �
and celerity� � � �

, asymme-



No.
� �� 	 � � � �� � �� � � 
 �� � � � �

1 0.0635 5.5 0.06 1.305 0.79 0.0852
2 0.0626 6.5 0.06 0.934 0.56 0.0594
3 0.0614 7.5 0.06 0.702 0.42 0.0361

Table 1: Input characteristics of incident streamfunctionwaves in
the NWT :

� 
� deep water wave height;� 
 wave period;
� 
 �� ini-

tial wave height in depth� 
 �� � � � � ; � 
� � � � � � � 
 � 	 (linear) deep
water wave number;� � � �

initial wave steepness;� 
� � � 
 � � � � �
and� 
� � � 
� � , the linear deep water wave celerity and wave-
length, respectively.

Figure 2: Computed surface elevations for case 1 (Table 1) at� 
 � (a) � � � � 	 � � � � � � � 
 ; (b) � 
 � � � � � � � � � � 
 ; and (c)

 � � � � � � � � � � � 
 . [Numbers on the figures identify specific waves
at different times.] (d) First three normalized wave harmonic am-
plitudes� 
 .

try � � � � � ) will be analyzed over the barred-beach of Fig. 1 and, more
specifically, in the modulation region beyond the bar where wave behav-
ior becomes very irregular.

Surface elevations and wave harmonics

Figures 2, 3, and 4, parts a to c, show surface elevations calculated for
cases 1 to 3 in Table 1, respectively, at three separate timestaken over a
one-period interval after computations in the NWT have reached a quasi-
steady state (this can easily be confirmed by comparing partsa and c of
each figure). The plotted curves have been limited to the region directly
above and beyond the bar, where the bar effect is most significant (� $ &
� � & ! � ). In each case, successive individual waves have been numbered
in such a way that they can easily be followed as a function of time.
Part d of the figures gives, for each case, the spatial variations of the first
three normalized harmonic amplitudes (� � � � � � � � � � � � � ! ). These were
obtained from the Fourier transforms of time series of surface elevations
taken at several “numerical gages” in the NWT.

The general picture presented in the previous Section is confirmed
with, in each case, standard wave shoaling occurring prior to reaching
the bar and wave decomposition beyond the bar. As in GH, before the
bar (� � & � � ), wave energy is continuously transferred from the funda-
mental to bound higher-order harmonics (the initial slightincrease in� �
is due to reflection by the slope). As a result, wave shape becomes in-
creasingly skewed and sawtooth-like. Upon passing over thebar berm
(� � � � � ), waves reach the deeper water region beyond the bar and har-
monics are released as free waves. This results in marked oscillations in
harmonic amplitudes and in strong spatial modulations of the wave pro-
file. The modulation length for� � is approximately 4.8, 5.6, and 6.8
 �

,
for each case, respectively, i.e., about twice the wavelength in the middle
part of the modulation region. For cases 1 and 2, waves re-assume their
sawtooth-like shoaling shape before entering the AB (� �  ! � ), and the
harmonic amplitudes seem to come back to a prolongation of what they
were before reaching the bar. For case 3, the modulation region extends
up to the AB.

Wave height

Fig. 5, parts a to c, shows normalized wave height variationscalculated
for cases 1,2 and 3 in Table 1, as� � � � � � �

. [As in GH, envelopes
of minimum � � � � and maximum� � � � , surface elevations are first cal-
culated in the NWT, for successive incident waves, and the wave height
is defined as

� � � 
 � � � � � � � 
 � � � � � � � 
 . Results in Fig. 5 represent
the average of at least 6 successive waves in the NWT, after computations
have reached a quasi-steady state.] In each case, in addition to these re-
sults, both the FNPF wave height variation calculated for a 1:50 natural
slope (i.e., the base-profile of the beach without the bar, asin GH) and the
wave height variation predicted by LWT for the barred-beach, have been
plotted for comparison. For each case, the FNPF wave height variation
for the barred-beach departs from that corresponding to thebase-profile,
upon reaching the bar berm. Toward the end of the modulation region
beyond the bar, however, the barred-beach results seem to agree better
with the latter. As expected from earlier studies, LWT significantly un-
derpredicts wave height.

In Fig. 5d, due to wave modulations, the FNPF height variations
for the barred-beach are multiple-valued functions of relative depth� � 

(whereas LWT gives superimposed single-valued results; this would also
be the case for results of the base-profile). The patterns of wave height
variations beyond the bar in the three cases show clear similarities.



Figure 3: Computed surface elevations for case 2 (Table 1) at� 
 �
(a) � � � � � � � � � 
 ; (b) � � � � � � � � � � � 
 ; and (c)� 	 � � � � � � 
 . (d)
First three normalized wave harmonic amplitudes� 
 .

Figure 4: Computed surface elevations for case 3 (Table 1) at� 
 �
(a) � 	 � � � � � � � � � � 
 ; (b) � � � � � � � � � � � � 
 ; and (c) 
 � � � � �� � � � � � 
 . (d) First three normalized wave harmonic amplitudes
� 
 .



Figure 5: Computed wave height for cases (Table 1) : (a) 1; (b)
2; and (c) 3. (——) NWT computations for the barred-beach of
Fig. 1; (– – –) LWT results for the same case; (– - –) NWT com-
putations for the natural 1:50 base-profile (without the bar). Fig.
(d) shows the NWT barred-beach results as a function of� � � for
cases : (——) 1; (– - –) 2; and (- - - -) 3; and (– – –) indicates
LWT results.

Wave asymmetry

Fig. 6, parts a to c, shows normalized wave slopes calculatedfor cases
1 to 3 in Table 1, as� � � �

�
, with �

� � � � � � �
. For the back and front

slopes of the wave, we have� � � � � � � and � � � � � � � , respectively,
where � � � � � � 
 denote distances between a wave crest and the previ-
ous and next troughs, respectively (a trough is defined as thepoint of
minimum surface elevation in between two successive crestsin the wave
train). Part d of Fig. 6 gives the ratio of front to back wave slopes,
� � � � � � � � � � � , i.e., a measure of wave front/back asymmetry similar
to skewness (see also GH).

In each case, prior to reaching the bar, both front and back slopes
continuously increase due to shoaling, with a larger relative increase for
the front slope than for the back slope, because of increasing wave skew-
ness. As a result, the front/back asymmetry also continuously increases
before the bar, from a value of 1 in deep water (correspondingto sym-
metric waves). For the beach base-profile, GH showed that this pattern
is maintained up to reaching the AB. On the barred-beach, however, the
modulations in wave shape beyond the bar induce significant changes in
wave slopes. In each case, the wave front slope first reaches amaximum
at around� � � � � , then drops over the bar berm and stabilizes beyond
the bar, to finally increase again. The back slope keeps increasing over
and beyond the berm and reaches a maximum at about 2.8, 4.3, and 4.7

 �

after the front slope reaches its maximum, in each case respectively;
the back slope then drops until� � � � � (where water depth is about equal
to the bar berm depth) and then stabilizes.

In Fig. 6d, except for a backward shift in space of� � � 
 �
or so (equal

to the berm width), wave front/back asymmetry seems to correlate well
with the variations of

� � � �
in Fig. 5, in the spatial region over and

beyond the bar.

Wave celerity

Fig. 7, parts a to c, shows normalized wave celerity variations � � � �
cal-

culated for cases 1 to 3 in Table 1. [These are phase celerities calculated
for the wave crests’ displacements.] In each figure, in addition to these
results, both the FNPF wave celerity variation calculated for a 1:50 nat-
ural slope (i.e., the base-profile without the bar, as in GH) and the wave
celerity variation predicted by LWT for the barred-beach, have been plot-
ted for comparison. The FNPF wave celerity variation calculated for the
1:50 natural slope, and scaled for the depth variation of thebarred-beach,
has also been plotted.

For each case, the FNPF wave celerity variation for the barred-beach
departs from that corresponding to the base-profile upon reaching the bar
seaward slope. When scaled for depth, however, the latter results stay
accurate until reaching the bar berm at� � � � � . This is because the
1:20 seaward slope is mild enough for the FNPF results, calculated for
the same depth on the 1:50 natural slope, to apply in the present case. As
expected from GH’s study, in each case, LWT significantly underpredicts
celerity before reaching the bar berm, and increasingly so,the longer the
wave. This underprediction is due to amplitude dispersion effects in the
nonlinear shoaling waves (GH).

In each case, celerity increases over and beyond the bar, as are-
sult of the increasing depth, and then strongly oscillates in the modula-
tion region, due to changes in wave height inducing varying amplitude
dispersion effects for the celerity. Finally, just before reaching the AB,
wave celerity seems to stabilize and agree better with the FNPF results
calculated for the base-profile without the bar. As expected, FNPF re-
sults calculated for the base-profile and corrected for depth do not capture



the celerity oscillations in the modulation region. They also overpredict
celerity over the bar berm. This is also the case for LWT.

In Fig. 7d, due to wave modulations, the FNPF celerity variations
calculated for the barred-beach are multiple-valued functions of relative
depth� � 
 (whereas LWT gives superimposed single-valued results; this
would also be the case for results of the base-profile corrected for depth).
Similarly to wave height, the patterns of wave celerity variations beyond
the bar show clear similarities in the three cases.

Wave nonlinearity parameters

The results for wave shape and celerity variations over and beyond the bar
show that highly nonlinear phenomena of wave decomposition, harmonic
generation, and nonlinear exchanges of energy between harmonics occur
which strongly affect the variation of local wave parameters, as compared
to the case without a bar. A further illustration of the strong wave non-
linearity is given in Fig. 8, parts a and b, where the typical nonlinearity
parameters,� � � � 
 and � � � � � � , have been calculated for each
case, as a function of� . Due to shoaling, the wave height to depth ratio�
already reaches a large 45 to 50% value over the bar, then drops beyond
the bar, due to the increasing depth. For� � � � � , as shoaling re-occurs,
� starts increasing again, to eventually reach� � � 
 values or more, be-
fore waves enter the AB. Similarly, wave steepness,� , keeps increasing
due to shoaling up to reaching a large 0.10 to 0.12 value at thebar; it
then oscillates beyond the bar to finally increase again up to0.12 to 0.17
(for comparison, the deep water steepness of the limiting Stokes wave is
� � � � � � $ $ ).

In Fig. 8c, the shallowness parameter� � � 
 has been plotted for
each case as a function of� . One can see that the large values of� and
� calculated over the bar occur for intermediate water (� & � & � � � � )
and, hence,� � cannot be considered to be very small either. In fact,
waves only enter shallow water for� � � � # or so.

CONCLUSIONS

Shoaling of three periodic waves with incident steepness,� � � � � � � � ! � -
0.085, was calculated over a barred-beach, in a 2D-FNPF-NWT. Re-
sults show that : (i) prior to reaching the bar berm,wave shoalingoc-
curs as was observed over mild slopes by Grilli and Horrillo (1998);
(ii) for waves with large nonlinearity over the bar (such as here with� � 
 � � � $ � � � � � � ), the increasing depth beyond the bar induces highly-
nonlinearwave decompositionphenomena, in which energy transfers oc-
cur between harmonics and bound higher-harmonics are released into free
waves; (iii) amodulation regionappears beyond the bar, with a spatial
extension function of the incident wave period/length, in which wave pa-
rameters such as celerity� , height

�
, and asymmetry� � � � � , become

strongly oscillatory; in this region,� and
�

aremultiple-valued functions
of depth� � 
 ; (iv) repetitive patterns of variations of wavefront and back
slopeoccur in the modulation region; (v) asshoaling re-occursbeyond
the modulation region, waves eventually re-assume a shape and behavior
similar to that observed over mildly sloping beaches; and (vi) the high
value of wavenonlinearity parameters, � and� , over and beyond the bar
requires using a fully nonlinear theory such as FNPF in the NWT, for an
accurate computation of wave transformations.

Acknowledgements

This research work was sponsored by the US Naval Research Labora-
tory, Stennis Space Center, grants N-00014-95-1-G607 and N-00014-96-
C012, from the Remote Sensing Division (code 7240).

Figure 6: (a)-(c) : computed front (——) (� 	 ) and back (- - - -)
(� � ) normalized wave slopes, for the barred-beach of Fig. 1 and
cases (Table 1;�

� � � � � � �
) : (a) 1; (b) 2; and (c) 3. Fig. (d)

shows the front/back asymmetry computed for cases : (——) 1;
(– - –) 2; and (- - - -) 3.



Figure 7: Computed wave celerity for cases (Table 1) : (a) 1;
(b) 2; and (c) 3. (——) NWT computations for the barred-beach
of Fig. 1; (– – –) LWT results for the same case; (– - –) NWT
computations for the natural 1:50 base-profile (without a bar); (- -
- -) application of the latter to the barred-beach. Fig. (d) shows the
NWT barred-beach results as a function of� � � for cases : (——)
1; (– - –) 2; and (- - - -) 3; (– – –) indicates LWT results.

Figure 8: Wave nonlinearity parameters computed for the barred-
beach of Fig. 1 and cases (Table 1) : (——) 1; (– - –) 2; and (- - -
- -) 3.
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