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Abstract

A numerical wave tank based on fully nonlinear potential flow
theory is used to calculate changes in local properties 16 gie
waves shoaling over barred-beaches (wave height, celfrot-
to-back asymmetry). Results show that strongly nonlinearew

decomposition phenomena occur in a modulation region likyon

the bars. These are analyzed in detail, and discussed irafies.p

KEYWORDS : Numerical wave tank, shallow water wave transforma-
tions, coastal engineering.

INTRODUCTION

Bars on beaches are important topographic features for cw@astal en-
gineering problems. For sufficiently high incident wavessowvith shal-
low berms and steep side slopes induce large wave modusatioostly
on their onshore side. As a result, significant variatiorcuowith depth
for parameters such as wave heightcelerityc, and front to back asym-
metry s> /s (Fig. 1). We will show that these modulations result from
strongly nonlinear wave decomposition phenomena ocauwimen non-
linear waves propagate into the deeper water region beyenblr.

Such decomposition phenomena have been well observedswyer
merged obstacles, shelves, or bars, in the field (e.g., B§8&9; Young,
1989) and in the laboratory (e.g., Beji and Battjes, 1994pylwere ana-
lyzed and modeled using weakly nonlinear and weakly dispeBoussi-
nesq equations (BE) (e.g., Freilich and Guza, 1984; Segames et
al., 1987) or low-order Stokes-type expansions (e.g., B1ag983; Rey,
1992; Rey et al., 1992). Driscoll et al. (1992) and Ohyamahadiaoka
(1994) used models based on Fully Nonlinear Potential FEMAF) the-
ory to calculate periodic wave propagation over submergethngular
obstacles. They showed that, to correctly describe waverdposition,
a fully nonlinear method must be used, in which no approxionatare
made on wave shape and celerity, because of the large waght @i
depth ratios occurring over the obstacles, leading to gtrmmlinearities
in the wave field. Similar conclusions were reached by Getlial. (1994)
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who studied the propagation of large solitary waves (bregakind non-
breaking) over submerged trapezoidal breakwaters, usitiy & FNPF
model and laboratory experiments. For waves propagatiegsieep ob-
stacles on a flat bottom, Driscoll et al. (1992) and OhyamaNexhoka
(1994) showed that higher harmonics are generated as bacrabin the
shallower water region over the obstacle, and then releaséde waves
beyond the obstacle, where wave nonlinearity is weakeraltretdeeper
water depth. The initial harmonic generation depends oulitnensions
of the obstacle (i.e., berm depth and width) and on incideavenperiod
(i.e., wavelength) and height (i.e., incident steepness).

Grilli and Horrillo (1996,1998) used a FNMfumerical Wave Tank
(NWT) to calculate nonlinear properties of periodic wawafheightH,
and period7" in deep water, shoaling over “cylindrical beaches”, i.e.
beaches withmonotonously decreasing and mildly slopidgpth varia-
tion h(z). Their two-dimensional (2D) NWT combined (Grilli et al.,
1989; Grilli and Subramanya, 1996; Grilli and Horrillo, 199 (i) a
higher-order Boundary Element (BEM) solution of Fully Niolar Po-
tential Flow (FNPF) equations; (ii) an exact generation pitéi ampli-
tude periodic wavesStreamfunction Waviat the deeperwater extremity
(I"71); and (iii) anAbsorbing BeaclfAB) at the far end of the tank (fea-
turing both free surface absorption bp and lateral active absorption on
T';2; Fig. 1). A feedback procedure was developed to adaptivally c
brate the beach absorption coefficient so as to absorb tialpereraged
energy of waves entering the AB at= x;. After absorption of initial
transient waves, computations in the NWT reachegiasi-steadgtate
for which reflection from the AB was very small. Nonlinear pesties of
shoaling waves were then calculated and validation tests performed
to assess their sensitivity to the AB location and to thelgmm of the
spatial discretization. Numerical results were compaoddtioratory ex-
periments for periodic waves, shoaling and propagating a\ear (Beji
and Battjes, 1994). All the tests were found satisfactohjctvconfirmed
the accuracy of the computations in the NWT for such cases.

Using this validated NWT, Grilli and Horrillo (1998) (GH) twau-
lated the shoaling of waves of various heights and periods 35, 1:50,
and 1:70 slopes, both plane and natural (i.e., with a bathyrf@lowing
Dean’s (1991) equilibrium beach profile), up to very clos¢he break-
ing point. Both local ¢, ¢, ,...) and integral properties of shoaling
waves were calculated and, due to the low reflection from lilygesand
the AB, found to be very repeatable for successive waves.v&idous
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Figure 1: Sketch of computational domain and typical freéese
elevation for 2D-FNPF computations of a periodic wave, afht

H, and periodl" in depthh,, shoaling over a beach with Dean’s

equilibrium profile (1:50 average slope; wiliz) o (z —,)%/?)

and a bar. (a) NWT set-up. (b) Blow-up of free surface shape in

undistorted scale (case 1, Table 1). (c) Free surface sbapade
1 (Table 1) att’ = (——) 15.75T"; (- - - - - ) 16.75T".

mild slopes, nonlinear properties of waves of differenghéiand period

but same deep water steepnks#& ., were found to be almost identical

when compared for the same relative depth(with & = 2=z /L). In the

shallower water region, linear, weakly nonlinear, and kigbrder steady
wave (Sobey and Bando, 1991) theories did not, in generayrately

predict shoaling wave properties, especially féf2 > 0.15. Linear

wave theory (LWT,; e.g., Dean and Dalrymple, 1984), in patfc was

in error by up to 85% for the wave height and celerity at theakiregy

point. The weak nonlinearity and/or the lack of wave skewrieshese
theories were identified as the main sources of errors.

In this paper, the same methodology as in GH’s study is agpdie
periodic waves shoaling over a barred-beach (Fig. 1). Rhyfatures
of periodic wave propagation over a bar are first discussgdieral, and
then analyzed in detail. Dashes indicate nondimensiomialas (length
scale :h,.; time scale i\ /ho/g, with g, the gravitational acceleration).

GENERAL FEATURES OF WAVE PROPAGATION OVER
BARRED-BEACHES

Fig. 1a shows a sketch of the NWT used in the present studybabe-
profile for the beach has the shape of Dean’s (1991) equitibtbeach
profile, with a 1:50 average slope. A bar, with a 1:20 seawad &
1:10 shoreward slope, and a crest with nondimensional d®gthis lo-
cated toward the top of the slope. [The geometry of this basirs-

lar to that of Beji and Battjes’ (1994) experiments which Gbed to
validate their shoaling computations.] As in GH, since v&wé mod-
erate incident steepness initially behave as predictedWy, L.compu-
tations are initiated in intermediate water, in the soezhitle-shoaling
zone (where wave height initially decreases during shggliat a depth
h!: = 0.6h,. Corresponding wave characteristics in deep water (dep
h,) are back-calculated using LWT. Three incident waves ofjlhiei
H'} = H}/h, = 0.06 and periodsI” = T\/g/h, = 5.5, 6.5, and
7.5 are successively generated at boundiagyof the NWT, as exact fi-
nite amplitude zero-mass-flux streamfunction waves (Gt Horrillo,
1997). Initial characteristics for these three waves anemsarized in Ta-
ble 1. An AB is specified in the NWT far’ > =, = 30, with a tapered
bottom variation aimed at improving energy absorption [{iGand Hor-
rillo, 1997); the depth at the AB’s entrancetis= 0.1, andh{ = 0.5 at
its extremity. Numerical data in the NWT (i.e., spatial aachporal dis-
cretizations) are selected for each case in order to engginealscuracy
of the computations.

A typical result for the calculated free surface shape isnshin
Fig. 1, for case 1 (Table 1) at = 86.64 = 15.75T7" from the (cold)
start of the computations. At this stage, the initial trensiwave front
has been absorbed in the AB and computations have reachedsa qL
steady state. This can be seen in Fig. 1c which shows two tndace
profiles obtained at a one-period time interval : the two psfare nearly
identical, except for small high frequency oscillationesd to the AB
entrance£’ > 28). On the figure, seaward of the bar (< 21), wave
shoaling appears qualitatively similar to that obtainedrfanotonous
mild slopes (GH) : as waves propagate up the beach, theitHeaduces,
their height increases, and their profile becomes incrgisfront/back
asymmetric (i.e., skewed), with higher and narrower crestsl longer
and shallower troughs. Shoreward of the bar¥ 21), however, the free
surface profile appears very different from typical shagfimofiles, and
decomposes into higher-frequency oscillations. Justrbefatering the
AB, close to the breaking poin&{ > 28), waves somewhat recover the
sawtooth/soliton-like shape typical of pre-breaking dimogvaves.

In the present study which, unlike in Driscoll et al’s (19%hd
Ohyama and Nadaoka'’s (1994) studies, features a varyinthitepogra-
phy, when waves reach the bar, due to the initial shoalingttveemildly
sloping base-profile of the beach, they are already significaonlin-
ear, with a height about 45% of the local depth, and signifiemergy
transferred to bound second and higher-order harmoniissviih be de-
tailed in the following Section). Upon reaching the deepatex region
behind the bar, wave nonlinearity drops and, as over a flabigtthe
higher harmonics are released as free waves. These free iraiee
significant spatial modulations of the wave profile, quitpanent in Fig.
1, over some distance but, further onshore, as waves agagiagate up
the base-profile of the beach and depth decreases, shaafimgurs and,
for sufficiently shallow depth, the free higher harmoniagia, become
bound to the main wave and the wave profile more or less reveessa
typical shoaling shape. Therefore, unlike with underwatestacles over
constant depth (as, e.g., in Driscoll et al., 1992) the matitwi region
shoreward of the bar is limited in extension by the reducigypth, clearly,
as a function of incident wavelength, bar berm geometrypmaath slope.
In the case of Fig. 1, the modulation region covers a horaatistance
of about 56k,

DETAILED FEATURES OF PERIODIC WAVE PROPAGA-
TION OVER BARRED-BEACHES

Results for the three wave propagation experiments in thd Ml now
be detailed. The variations of local wave parameters stilalfegGH over
mild slopes (i.e., normalized heiglif/ H., and celerityc/c,, asymme-



try s»/s1) will be analyzed over the barred-beach of Fig. 1 and, mor
| No. || H) | 17" | HD | ki | kohi | koHo | specifically, in the modulation region beyond the bar wheagawehav-
1 0.0635] 5.5 | 0.06 | 1.305[ 0.79 | 0.0852 ior becomes very irregular.
2 0.0626| 6.5 | 0.06 | 0.934| 0.56 | 0.0594
3 0.0614| 75| 0.06 | 0.702| 0.42 | 0.0361

Surface e evations and wave har monics

Table 1: Input characteristics of incident streamfuncti@ves in Figures 2, 3, and 4, parts a to ¢, show surface elevationslagdd for

the NWT : H deep water wave heighf wave period;H"} ini- cases 1 to 3 in Table 1, respectively, at three separate takes over a
tial wave height in depth’; = 0.6; k’ = (2r/7")? (linear) deep one-period interval after computations in the NWT have heaa quasi-
water wave numbert, H, initial wave steepness;, = 7"/(2) steady state (this can easily be confirmed by comparing paatsl c of
andLg — C;T, the linear deep water wave celerity and wave- each figure). The plotted curves have been limited to th@redirectly
length, respectively. above and beyond the bar, where the bar effect is most signifitt <

z' < 30). In each case, successive individual waves have been mathbe

i in such a way that they can easily be followed as a functionnoé.t
Z

o (a) Part d of the figures gives, for each case, the spatial vansitf the first
0.1 A three normalized harmonic amplitudes{/ H,;: = 1, 2, 3). These were
8‘82 3 ‘ 5 | N obtained from the Fourier transforms of time series of sugrfelevations
0.04 - 1 o A 4 ﬂ 3 I“ taken at several “numerical gages” in the NWT.
0.02 -£-f N /- i\ ;'\“\ o | The general picture presented in the previous Section ifiroved
0.0% E /’/ \\\ // . \ /,5 “'\\// 1 Was J with, in each case, standard wave shoaling occurring poigeaching

0.04 b . ; | AT 0 B S i s the bar and wave decomposition beyond the bar. As in GH, eafwr
14 16 18 20 22 24 26 28 30 bar (' < 21), wave energy is continuously transferred from the funde

mental to bound higher-order harmonics (the initial sligicrease inz,

is due to reflection by the slope). As a result, wave shaperhesan-

creasingly skewed and sawtooth-like. Upon passing ovebéneberm

(z' > 21), waves reach the deeper water region beyond the bar and r

i E monics are released as free waves. This results in markdthtiens in

;‘l 4 harmonic amplitudes and in strong spatial modulations eftiave pro-

) 6| 7 file. The modulation length fod, is approximately 4.8, 5.6, and &.8,
/ "\,‘ S \f/ for each case, respectively, i.e., about twice the wavéteinghe middle
‘ f"/ KPR IR part of the modulation region. For cases 1 and 2, waves rgvastheir
26 28 30 ° sawtooth-like shoaling shape before entering the ABX 30), and the
harmonic amplitudes seem to come back to a prolongation af tiey
z/h, (63 were before reaching the bar. For case 3, the modulationrrenitends
0.1 - ; | S Y . up to the AB.
0.08 — gt
008 premafrn}
0.04 - fi )
0.02 i Wave height
0 o=t
g:gi L . Fig. 5, parts a to ¢, shows normalized wave height variatiasulated
30 ° for cases 1,2 and 3 in Table 1, & = H/H,. [As in GH, envelopes
of minimum n,,;,, and maximumy,,...;, surface elevations are first cal-
2a/H culated in the NWT, for successive incident waves, and theevaight
1_2i ’ 1 | ‘(‘?) .‘ . - | is defined ad?(z) = Mmaz(2) — Mmin(z). Results in Fig. 5 represent
. i / - ! ] the average of at least 6 successive waves in the NWT, aftepettions
a1 | e e ~ ‘ have reached a quasi-steady state.] In each case, in addittbese re-
Gl e e r——— \ : sults, both the FNPF wave height variation calculated for5® hatural
0.6 - ‘ PENNE BN A slope (i.e., the base-profile of the beach without the ban &) and the
0.4 - 3 5 P i e wave height variation predicted by LWT for the barred-bedeve been
(1 T — - = ‘ i — plotted for comparison. For each case, the FNPF wave hedgletion
R R oy WP s o™ AP PR PR for the barred-beach departs from that corresponding tbaise-profile,
14 16 18 20 22 24 26 28 so0 ° upon reaching the bar berm. Toward the end of the modulaégion

beyond the bar, however, the barred-beach results seenrde hgtter
with the latter. As expected from earlier studies, LWT siigaintly un-

Figure 2: Computed surface elevations for case 1 (Table 1) atderpredicts wave height.

t = (a) 86.64 = 15.75T"; (b) 89.38 = 16.257"; and (c) In Fig. 5d, due to wave modulations, the FNPF height varnietio

92.13 = 16.757". [Numbers on the figures;_identify specific waves for the barred-beach are multiple-valued functions oftiedadepthk A
) ] (whereas LWT gives superimposed single-valued resultsytbuld also

at different times.] (d) First three normalized wave harfo@m- be the case for results of the base-profile). The patternsauéweight

plitudesa; . variations beyond the bar in the three cases show cleasitiait.
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Figure 4: Computed surface elevations for case 3 (Tablet1)at
(a) 84.38 = 11.257"; (b) 88.13 = 11.75T'; and (c)91.88 =
12.25T". (d) First three normalized wave harmonic amplitude
a;.

Figure 3: Computed surface elevations for case 2 (Tableil)at
(@) 78.00 = 127”; (b) 81.26 = 12.57"; and (c)84.5 = 137". (d)
First three normalized wave harmonic amplitudgs
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Figure 5: Computed wave height for cases (Table 1) : (a) 1; (b)
2; and (¢) 3. (——) NWT computations for the barred-beach of
Fig. 1; (—~—-) LWT results for the same case; (— - =) NWT com-
putations for the natural 1:50 base-profile (without the bgig.

(d) shows the NWT barred-beach results as a functidh, bffor
cases : (—)1; (---) 2;and (- - - -) 3; and (- — -) indicates
LWT results.

Wave asymmetry

Fig. 6, parts a to ¢, shows normalized wave slopes calcufatechses
1to 3in Table 1, ags/~., with v, = H,/L,. For the back and front
slopes of the wave, we have = H/L: ands, = H/ L., respectively,
where (L1, L.) denote distances between a wave crest and the pre
ous and next troughs, respectively (a trough is defined agpdire of
minimum surface elevation in between two successive ciesite wave
train). Part d of Fig. 6 gives the ratio of front to back wavepss,
s2/s1 = Li/L2, i.e., a measure of wave front/back asymmetry simil
to skewness (see also GH).

In each case, prior to reaching the bar, both front and bagesl
continuously increase due to shoaling, with a larger ngaticrease for
the front slope than for the back slope, because of incrgagive skew-
ness. As a result, the front/back asymmetry also contirlyanusreases
before the bar, from a value of 1 in deep water (corresponiirgym-
metric waves). For the beach base-profile, GH showed thafptititern
is maintained up to reaching the AB. On the barred-beachelierythe
modulations in wave shape beyond the bar induce signifidearges in
wave slopes. In each case, the wave front slope first reagnegianum
at aroundz’ = 19, then drops over the bar berm and stabilizes beyor
the bar, to finally increase again. The back slope keepsasurg over
and beyond the berm and reaches a maximum at about 2.8, 4.3,7an
h, after the front slope reaches its maximum, in each casecteplg;
the back slope then drops until = 25 (where water depth is about equal
to the bar berm depth) and then stabilizes.

In Fig. 6d, except for a backward shift in spacd 6fh, or so (equal
to the berm width), wave front/lback asymmetry seems to aeavell
with the variations ofH/H,, in Fig. 5, in the spatial region over and
beyond the bar.

Wave cderity

Fig. 7, parts a to ¢, shows normalized wave celerity vanetig'c, cal-
culated for cases 1 to 3 in Table 1. [These are phase cedariieulated
for the wave crests’ displacements.] In each figure, in &midib these
results, both the FNPF wave celerity variation calculatedaf1:50 nat-
ural slope (i.e., the base-profile without the bar, as in Ght) the wave
celerity variation predicted by LWT for the barred-beacivdbeen plot-
ted for comparison. The FNPF wave celerity variation catad for the
1:50 natural slope, and scaled for the depth variation ob&ireed-beach,
has also been plotted.

For each case, the FNPF wave celerity variation for the Hasemch
departs from that corresponding to the base-profile upahieg the bar
seaward slope. When scaled for depth, however, the latteittsestay
accurate until reaching the bar bermadt= 20. This is because the
1:20 seaward slope is mild enough for the FNPF results, tzatxl for
the same depth on the 1:50 natural slope, to apply in the prease. As
expected from GH'’s study, in each case, LWT significantlyarpcedicts
celerity before reaching the bar berm, and increasinglsteolonger the
wave. This underprediction is due to amplitude dispersftetts in the
nonlinear shoaling waves (GH).

In each case, celerity increases over and beyond the barreas a
sult of the increasing depth, and then strongly oscillatethé modula-
tion region, due to changes in wave height inducing varyimpléude
dispersion effects for the celerity. Finally, just befoeaching the AB,
wave celerity seems to stabilize and agree better with theF-isults
calculated for the base-profile without the bar. As exped@dPF re-
sults calculated for the base-profile and corrected fortdépiot capture



the celerity oscillations in the modulation region. Thegoabverpredict
celerity over the bar berm. This is also the case for LWT.

In Fig. 7d, due to wave modulations, the FNPF celerity vt
calculated for the barred-beach are multiple-valued fonstof relative
depthk,h (Whereas LWT gives superimposed single-valued resuits; th
would also be the case for results of the base-profile cador depth).
Similarly to wave height, the patterns of wave celerity aians beyond
the bar show clear similarities in the three cases.

Wave nonlinearity parameters

The results for wave shape and celerity variations over agdrd the bar
show that highly nonlinear phenomena of wave decompostianmonic
generation, and nonlinear exchanges of energy betweerohasnccur
which strongly affect the variation of local wave paramstes compared
to the case without a bar. A further illustration of the sggamave non-
linearity is given in Fig. 8, parts a and b, where the typicahimearity
parameters§ = H/h ande = kH/2, have been calculated for each
case, as a function af. Due to shoaling, the wave height to depth ratio
already reaches a large 45 to 50% value over the bar, theis 8eypnd
the bar, due to the increasing depth. Ebr> 25, as shoaling re-occurs,
J starts increasing again, to eventually re&fi) values or more, be-
fore waves enter the AB. Similarly, wave steepnes&eeps increasing
due to shoaling up to reaching a large 0.10 to 0.12 value abdhgit
then oscillates beyond the bar to finally increase again @pitd to 0.17
(for comparison, the deep water steepness of the limitiogetwave is
el = 0.44).

In Fig. 8c, the shallowness parametee= kh has been plotted for
each case as a function of One can see that the large values @ind
e calculated over the bar occur for intermediate water( u < =/10)
and, hencey? cannot be considered to be very small either. In fact,
waves only enter shallow water fef > 28 or so.

CONCLUSIONS

Shoaling of three periodic waves with incident steepriess,, = 0.036-
0.085, was calculated over a barred-beach, in a 2D-FNPF-NRéF
sults show that : (i) prior to reaching the bar bemgve shoalingc-
curs as was observed over mild slopes by Grilli and Horrill®98);
(i) for waves with large nonlinearity over the bar (such asenwith

H/h = 0.45—0.50), the increasing depth beyond the bar induces highly-

nonlineaiwave decompositiophenomena, in which energy transfers oc-
cur between harmonics and bound higher-harmonics aresedéto free
waves; (iii) amodulation regiorappears beyond the bar, with a spatial
extension function of the incident wave period/length, imieh wave pa-
rameters such as celerity height #, and asymmetry./s:, become
strongly oscillatory; in this regior, and H aremultiple-valued functions
of depthk,h; (iv) repetitive patterns of variations of wafent and back
slopeoccur in the modulation region; (v) ahoaling re-occurdeyond
the modulation region, waves eventually re-assume a shapleehavior
similar to that observed over mildly sloping beaches; angtfie high
value of wavenonlinearity parameters ande, over and beyond the bar
requires using a fully nonlinear theory such as FNPF in thelNfst an
accurate computation of wave transformations.
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