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A higher-order hypersingular boundary element
method for the modeling of vortex sheet

dynamics
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A new model is proposed to compute the time evolution of interfaces between inviscid
fluids represented by vortex sheets (VS), under the controlling effects of gravity,
density difference, and interfacial tension. In this model, a higher-order boundary
element method (BEM) is used to compute flow velocities on the VSs, based on
Biot-Savart integral equations, and an explicit Taylor expansion scheme is used for
time updating. An accurate numerical method is proposed to calculate hypersingular
integrals occurring in the BEM.

Applications are presented for the steady flow around a circular cylinder, for the
propagation of a nonlinear surface wave over constant depth, and for a periodic
Kelvin—Helmholtz instability. The effects of model parameters on the accuracy of the
solution are discussed. © 1998 Published by Elsevier Science Ltd. All rights reserved
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1 INTRODUCTION

In the modeling of flows in stratified systems made of
regions of ideal fluids separated by interfaces, vortex sheets
(VSs) are used as an asymptotic model for the thin shear
layers at the interfaces, in which the tangential velocity has
a jump AV, and vorticity has the local value, y = AV, (e.g.,
Batchelor,l Lambz). In such systems, the VSs’ strength ()
changes with time due to both the density jumps and the
surface tension effects at the interfaces. If no other vorticity
is created inside the fluid regions and there is no external
fluid flow, the flow results only from the VSs’ effects;
hence, when prescribing initial VS geometry and vorticity
distributions, the flow calculation can be reduced to
describing the time evolution of the VSs' geometry,
kinematics, and strength.

In VS models of surface or interfacial waves, flow
velocities are usually calculated using Biot—Savart (BS)
integral equations (e.g., Batchelor') and, typically, the
VSs are discretized by a finite number of point vortices
(e.g. Moore,3 Rangel & Sirignano,4 Zaroodny &
Greenberg’®), by piecewise-constant vortex distributions
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(PCVSs) (e.g., Fink & Soh.® Van de Vooren,” Grilli
et al.s), or by higher-order methods (e.g., Baker et al.®
Hu & Grilli'%). Point vortices have been shown to model
well the initial deformation of interfacial waves but, after a
large time, usually to exhibit non-physical chaotic
motion;>!' the use of PCVSs and/or vortex regridding
methods (introduced for instance by Rangel & Sirignano®)
has been shown to reduce but not to totally eliminate such
chaotic motion.

In fact, in stratified systems, as time increases, strong
shear instabilities of the interfaces/VSs may develop,
leading to VS roll-up™’ (this can, for instance, be seen in
experiments with oil and water;'” see also Fig. 1): such
so-called Kelvin—Helmholtz (KH) instabilities intensify
with an increase in AV, and decrease with an increase in
density difference across the interface and/or interfacial
tension” (see Grilli ef al.® for a more detailed discussion
of KH instabilities, particularly for the case of interfaces
between oil and water). In point vortex representations,
the singular terms in the BS integrals, representing vortex
self-induced velocities, are neglected®; these terms,
however, become large when, due to VS roll-up, the
distance between vortices reduces, leading to increasing
inaccuracies. In PCVS representations, the singular terms
are calculated over each VS element as Cauchy principal
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Fig. 1. Sketch of periodic Kelvin—Helmholtz instability with wavelength A (with £ =x/A,n=y/\) at the interface between two fluids.
Uy, U, are uniform velocities and pg, p, are densities of fluid 0 and 1, respectively. (- - - -): initial perturbation on the interface; (—):
unstable interface computed at a later time (from Hu and Grillim).

value integrals, with the approximation of constant local
vorticity.® PCVS methods are thus more accurate but still
give poor results when intense VS roll-up occurs, leading to
close proximity of vortex elements and, hence, to inaccurate
computation of BS integrals. Moore,"? in fact, showed that a
weak singularity does form on similarly discretized VSs,
after a critical time beyond which numerical instability
occurs. Meiron er al.'* confirmed these findings and found
a curvature singularity of the VSs. Krasny,'' using discrete
Fourier analysis, showed that numerical perturbations due to
round-off errors in BS integrals are responsible for the
observed irregular motion of point vortices.

The numerical instabilities observed in many VS
computations are thus likely to be non-physical artifacts
of both the selected method of discretization and the
numerical integration of BS equations. To limit these
instabilities, VS models should be able to correctly
represent the intense VS roll-up that may occur during
KH instability. This requires using a higher-order
discretization of both the VSs’ geometry and vorticity,
together with an accurate integration of BS equations,
including the correct representation of hypersingular
terms. In this work, we have attempted to do so by
developing and validating a higher-order VS BEM model.
Cubic representations of both VS geometry and vorticity are
introduced, based on the sliding polynomial method
developed by Grilli & Subramanya.'” An explicit time
stepping method, based on a second-order Lagrangian
Taylor series expansion, is used to calculate the VS’
time evolution. At each time step, discretized BS
integrals are numerically integrated to calculate velocities
along the VSs. The hypersingularities occurring in these
integrals as a result of self-induced velocity terms are
carefully analyzed using two methods: (i) a direct Taylor
series expansion around the singular point; and (ii) a
Laurent series expansion in the reference element
containing the singular point.'® Both methods are shown
to provide identical results and allow us to accurately
calculate the contributions of hypersingular terms in the
BS integrals.

The VS models and the discretization/integration
methods are validated using examples for the flow around
a simple cylindrical geometry, and for the propagation of a
nonlinear surface wave of permanent form over constant
depth. An application of the model to the periodic KH
instability of the interface between two fluids is finally

presented (more results and details about this may be
found in Hu & Grilli'").

2 THE MATHEMATICAL MODEL

2.1 Governing equations for flows induced by vortex
sheets

In a two-dimensional stratified system in the vertical plane
(x, y), made of incompressible, inviscid, irrotational fluid
regions of constant density p, separated by interfaces
modeled by VSs, the flow at any time ¢ can be represented
by a continuous velocity potential ¢ satisfying Laplace’s
equation. Due to the kinematic requirement of continuous
normal velocity, the normal gradient of this potential is
continuous through the interfaces v, = d¢/on, but a jump
in potential occurs at the interfaces/VSs between regions.
The potential can thus be represented by a distribution of
dipoles of strength & (positive clockwise) along the VSs
(Baker er al.”)

G
o(x, )= JF(X,)a(s')Wx, X'(s)ds’ (1)

with x=(x, ¥y) a point in the fluid regions,
x' =(x'(s"), ¥'(s")) a point on the VSs represented by
the closed (or infinite) boundary T', and s’ the curvilinear
abscissa along T G=(—112m)logr, with
r={x—x) +-y)»Y1", is the free space Green'’s
function, and n is the unit normal vector to an interface,
pointing out of the region considered.

Introducing the complex notation z=x+1iy, with
i=+/ —1 and z* the complex conjugate, we define the
complex potential, ® = ¢ + iy (with y, the streamfunction)
and the complex velocity, g=u+iv, with g =d®/dz.
Hence, eqn (1) can be transformed into

: 5() 2 )

P(z) = — .
(@ 27 Jre) z=2z

with ' =x'(s"Y+iv'(s’). For a VS between two fluid
regions, say ( and @, (e.g.. Fig. 1), the dipole strength
results from the potential jump at the interface; hence,
8z )=%)— &, =AP, and the potential on the VS is
defined as ®(z) = (P, + ®,)/2, with the VS velocity being
defined as, g = (qq + q,)/2.
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The VS’s velocity can be expressed by differentiating eqn
(2) with respect to z— I' and integrating, as

dz i .. ds’

dr —2—;? JF(:')’Y(S )z —~72'(s" (3)
with y = d6/9s = V,, — V|, = AV, the vortex sheet strength
(i.e. vorticity), equal to the jump in tangential velocity V, at
the interface/VS; and d/dr, a Lagrangian time derivative
operator, following the VS’s motion. Eqn (3) is known as
the Biot—Savart (BS) integral equation and, as point 7 € T,
it must be understood in a Cauchy principal value sense
(P).

In real form, eqn (3) reads

qg@=u—iv=

1 y=y'(s")
Ve — = — P B ' N 4
u(.X5 )) dr o JI‘(S') r?_(s,) Y(S )dS ( )
dy J x—x'(s")
v(x, y)= prinii —P o )4’)/( yds’

For an infinite periodic interface between two fluids, with
spatial periodicity A (e.g. Fig. 1), eqn (3) transforms into

. T N (= 1 ,

with m an integral number. The summation formula (e.g.,
Van de Vooren’)

4%
1 T by
e = Ot = (2 — 7 6
,,:Z_xz—z’+m>\ )\CO A ) ©)
can be used and, hence,
A T
q(2)= 2)\ Jov(s)coti(z—z(s ))ds (N

which, in real form, reads

L dx 14*
u(x, ))—E—ﬁ 0

sinh 2%(y—y’(s'))
X (s )ds’
cosh 2% (y—»y'(s)) —cos 2% (x—x'(s")

dy 1,J*
vix, y)= dt—_ﬁf 0

sin 2—)\1[ (x—x'(s")
X Y(s")ds" (8)
cosh 2% (v—y'(s"))—cos 2% (x—x'(s")

2.2 Time evolution of interfacial vorticity

Grilli et al.® derived the expression for the rate of change of
VS strength v as a function of time, due to gravity, density
difference, surface tension effects at the interface between
two ideal fluids of density pg and p, and interfacial tension
oy, (fluid O is above fluid 1; e.g. Fig. 1). This expression,

which generalizes other similar expressions proposed by
various researchers,”*'”” combines Euler equations for
each fluid, on each side of the interface, with the pressure
jump due to surface tension; it reads

d dV, a "9

Yok W\ oo B

dt dr 6? t + @ as?
with aq;" =g /p1, @ =pp/or = 1. k=(1 = @)/(1 +¢), the
Atwood number, and 38/9s, the curvature. The tangential
velocity at the interface is defined as V, = u cos 8+ v sin 3,

with 8 the angle between the tangent to the interface and
the x-axis; hence, the tangential acceleration reads

dV, du dv ds
i dt sﬁ+—sm6+—~(vc056~usm6)
(10)
which can be further developed into
dv, du dv 148
o Bt g sinB o
X {(u* —v*) sin 28 — 2uv cos 28} (11)
in which
ad ay
cosB:—xand sinB:—)— (12)
as ds

have been used.

The VS accelerations, (du/dt, dv/dr), needed in eqn (11)
may be obtained by Lagrangian time differentiation of BS
eqn (3) for the non-periodic cases

_()_d_u_ dv_ i?J‘
dr dt 27 Jre)

LN N 4—9'6) } :
X 4§ — — (s = od
{df(s )z—z’(S’) v )(z—z’(S’))" ’
(13)
or BS eqn (7) for the periodic cases

dg” du dv i J)‘
E(Z)_—cg— T 2)\T 0

dy T
X{—&t—(s)cotx(u—.;(s))

NLPVRS ful ACONEN P (14)
M sin? S

3 THE NUMERICAL MODEL
3.1 Time marching
At any given time ¢, for a known distribution of VS strength/

vorticity y(x, 1), the VS velocity (u(x, ?), v(x, ?)), as well as
the flow velocity anywhere else in the fluid regions, can be
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explicitly calculated by discretizing and numerically
integrating BS eqn (4) or eqn (8).

The same quantities can be calculated for a next time
level, say -+ At, by first time marching the VS geometry,
through time integration of BS eqn (4) or eqn (8), to find
x(t + Ar), then by time marching the VS strength,
through time integration of eqns (9) and (11), to find
v(x, 1+ Af).

In the present VS model, time marching is done using
an explicit time stepping method based on truncated
second-order Taylor series

P+ AN =F(0) + At —(r) U (A’) d“f (1) +0l(An']

(15)

where 7 denotes any of x, y or vy, whose first-order time
derivatives are given by eqn (4) or eqn (8), and eqns (9) and
(11). Second-order time derivatives of x, i.e. the accelera-
tions, could be calculated by discretizing and integrating
eqn (13) or eqn (14). As can be seen in these equations,
however, dy/dr is included in the expressions of the VS
accelerations, which makes eqn (9) (with egn (11)) a
Fredholm equation of the second kind for dy/ds. This was
pointed out by Baker et al.” who proposed an efficient
iterative method for solving these equations. Rangel &
Sirignano® mentioned a discretization and explicit solution
of an algebraic system of equations to calculate the VS
accelerations, and Grilli ef al.® used a similar procedure
in their piecewise-constant VS method. In the present
study, since the focus is on the higher-order discretization
and numerical treatments of hypersingular integrals, we
decided, as was done in many earlier VS models, to
simply calculate the VS accelerations used in eqns (11)
and (15) by a backward finite time difference of velocities,
involving several time levels. (Note that an Adams-
Moulton predictor—-corrector method could be used as
well, as in Stansby & Slaouti.'”) It is expected, however,
that even more accurate and stable numerical results could
be obtained by discretizing and integrating eqn (13) or eqn
(14), together with eqn (9). Second-order terms d2~y/dr2 in
eqn (15) are also calculated by backward finite time
difference of earlier calculated dv/dr values.

The time step At is either fixed or adaptively calculated as
a function of a constant mesh Courant number ( = 0-30),
based on maximum tangential velocity and minimum
distance between nodes on the interface (see application
in Section 4.2).

3.2 Spatial discretization

Using a boundary element method'® (BEM), the VSs’
boundary I' is divided into M elements over which geometry
x and vorticity v are discretized using a set of m locally
continuous polynomial shape functions N;(u), analytically
defined on a reference element, with intrinsic coordinate u
varying between —1 and 1, using m discretization points

(nodes). Hence, over element £,

A=Y N Y= D N
i=1 j=1
Y= Niwn} (16)

j=1

where x yj, and 'yj denote nodal coordinates and vorticity
for element k. Derivatives with respect to u (u-indices) are
easily obtained from eqn (16), using explicit derivatives of
shape functions.

Expressing BS eqn (4) in this discretization, we get, for
nodal points i =1, -+, N, of coordinates (x;, y;} on the VSs,

y; - rk
ux;, yi)= 5= Z J (”) Sy M (s (w)dp

lk
v )= — —Z J " )(") * ()sh ()

T
(17)
with r; = {(x,« —x’k(u))z + (v, —y’"(,,,))z}”z, and sf; is the
Jacobian of the transformation from element k& to the

reference element.
For BS eqn (8), we similarly get

I < (*
ulx;,, v;)= > Z ?J,
k=1

" .27 p
v"*(w) sinh == (v; — y"*(w)

X )\

k
> " > su(u)dp
cosh BN (v —y"(u)) — cos N

(x; — " ()

A
5A§1T‘[‘

vix;, y)= —

: 2
% () sin %(.x,- —x"*(w) k
X 27 2 su(p)dp
cosh 5% (=" () = cos 5 (x; x4 ()

(18)

In both egns (17) and (18), dashed variables are calculated
at u, for each element &, using discretization (eqn (16)).
Integrals in eqn (18) will be calculated by numerical
integration (see next section).

To provide sufficient local continuity of both the
discretized geometry and vorticity, the BEM discretization
is based on using the middle interval of a 4-node cubic
isoparametric element to interpolate between successive
pairs of nodes on the boundary. In this method, developed
by Grilli & Subramanya,'® shape functions and interpola-
tions of geometry and vorticity in eqn (16) are thus
calculated within the cubic element, i.e. using 4 nodes, but
only the middle interval is used, and remapped onto the
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interval [—1, +1], before integrations are performed. To
interpolate between the next pair of nodes on the boundary,
the element is slid forward by one node, and so forth.

Various components of evolution eqn (9) (with eqn (11)),
are functions of 1st, 2nd and 3rd tangential s-derivatives
along the boundary. Over each element k, these are
expressed as 4/ds = (1/s£)6/6p. with, using eqn (12),

k k

x )

cos = sin =" sh={GP+0DY"E (19
Su S

and
2 K k .
a_ﬁz Yo €O B~ Xy sin B 3
ds? (s,’if 2(5;,1)4

X [2x},¥5, cos 28 — ((xh,)" — (vk,))sin 28]

ouM
(20)

all of which could easily be calculated over each boundary
element, using p-derivatives of eqn (16). To calculate these
s-derivatives and provide sufficient accuracy, however,
particularly for the curvature, a 4th-order 5-node sliding
isoparametric element'” was first used. When this method
was applied to highly distorted interfaces, however,
computations rapidly failed after showing the initial trend
of so-called VS roll-up,'™® and led to irregular motion of
nodes, independently of flow conditions and physical
properties. A repetition of these calculations using cubic
splines to calculate the s-derivatives did not improve the
results. A more detailed analysis of these problems'’
showed that the irregular motion of nodes was first
triggered by inaccuracies in the higher-order s-derivatives,
mostly at locations where a fairly non-uniform distribution
of nodes occurred on the boundary. It was found that the
mapping of geometric elements, with irregular node
spacing, onto a reference element with constant node
spacing created small errors in the high-order s-derivatives
which, through time updating and enhanced surface tension
effects (for instance in VS roll-up regions of high
curvature: Fig. 1), rapidly propagated and led to sawtooth
instabilities of the interface geometry.

A new method, referred to as parity mapping, was thus
proposed by Hu and Grilli'” to calculate s-derivatives more
accurately. In this method, a monotonic mapping variable y
is defined, in between the transformation from s to u, to
create an element with node density similar to the geometric
element. The parity element is then mapped onto a reference
element with intrinsic coordinate x varying between [ — |,
+ 1] and irregular node spacing. Results showed that this
method eliminates (or at least greatly reduces) fluctuations
induced in tangential derivatives due to irregular node
spacing. We believe that some of the problems pointed
out in earlier studies,"''*'* and usually attributed to
round-off and other errors in the integration of BS
equations, might have been due to, or at least enhanced
by, similar inaccuracies in the calculation of tangential
derivatives.

Finally, when intense roll-up occurs, the VS’s length
may significantly increase. In order to maintain sufficient
resolution of the discretization, the regridding method
developed by Grilli & Subramanya'’ may be used to
adaptively add and redistribute discretization nodes
along the VSs (see the third application in this paper,
and Hu & Grilli,' for applications of this method to VS
roll-up).

3.3 Numerical integrations

At any given time £, the discretized BS eqn (17) or eqn (18)
are numerically integrated to calculate velocities at N points
i along the VSs. When point i does not belong to element £,
integrals are regular and a simple Gauss quadrature rule is
used. When point i belongs to element k, as indicated by eqn
(3), since both z (i.e., z;) and =" belong to boundary I', when
2’ =z, a l/lz—z'| = I/r; hypersingularity occurs. In eqn (7)
for the periodic cases, noting that'’

. s .
lim cot X(z—z')z lim

I3

w(z—2")

im : 2n

'
e 2 >
& <

LI y 3
—ﬁ& ) =0l &,)]}

X
—N—
>

5 >

we expectedly get the same order hypersingularity.

The hypersingularity in BS equations will be analyzed
using two methods: (i) the singularity will be removed
from the integrals and evaluated using a direct Taylor series
expansion of (z—z') around the singular point, in a way
similar to the method used by Cooker® for the complex
potential (using the Cauchy integral theorem) and by
Baker®' for BS eqations (also used by Stansby & Slaouti'’
for periodic BS eqations); (ii) following the more general
method proposed by Guiggiani et al.,'® the singularity will
be removed from the part of the integral performed over the
reference element containing the singularity, using a
Laurent series expansion in terms of polar coordinates
centered on the singular point; a Taylor series expansion
of (x —x') will be expressed around the singular point to
evaluate the terms in the series; final results will be shown to
be identical to method (i).

3.3.1 Direct Taylor series expansion

In the neighborhood of the singular point we have |7’ — zl
and s’ — s| < 1; hence, a truncated Taylor series expansion
can be expressed as,

= = )z 4 K, =) 5 + Ol — 5)) (22)
where subscripts denote partial differentiation. Therefore

1 1 Zys ,
0l - 9) (23)

Z—z (5 —s5)z 22
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In view of eqn (23), the hypersingularity in BS eqn (3) (or
eqn (7)) can be extracted as

oo i YsH v g
7@=7 27 Jm {z—z’ (S—S')Z.x}d3

i y(s) ds’
2r z, Jrsns—vs’

(24)

The first integral is bounded for z" — z and can thus be
accurately calculated by numerical integration. For a
closed or a periodic boundary, the kernel of the last integral
is a total differential, —d Inls —s'l, which provides zero
contribution to g*.

For an arbitrary boundary, the singular part can be
explicitly expressed by replacing eqn (23) into egn (24),
only for a small boundary segment I',, of arclength As,
symmetrically located around the singular point z(s). We get

_ 7(3
61()~—L( —

1 F\{v( Z)_— 7( )+7(S)~_\\}ds,

27 Fat 272
. s+ As/2 '
i (s ds
+ *'Y( ) : (25)
27 7z, Js-As2s—s§

In the second integral, according to eqn (22), the
denominator of the first term can be approximated by
(s — s")z,; hence, the first term can be approximated by,
—~,/z,; the third integral, again, provides zero
contribution. Multiplying up and down in the second
integral by the complex conjugate z,, we get

- Y(s") s’

q() J’I‘m r\z—z’s
+ As Oy 26
277,25 { ¥ 2z, }m (20

where the second term is evaluated at point z(s). Finally,

noting that z,z, = 1 and z,,7; = — 7,25, We get
N , i J y(s') .,
q (2) = us) IV“) 27 Jrey-r,z—7' y
i ., Zas
— —A vl — 27
= 5{7543 +’Y 2 }2(5) ( )

in which the integral can be calculated numerically and the
second term can be written as (i — ivy), with

e )
27[_ ’YS.yS zySS X(‘\'b)

{Y‘X Ty 2 }x(s) (28)

where all values are calculated at point x(s) = (x(s), y(s)).

uy (x(5), ¥(s)) =

vo(x(s), ¥(5)) =

3.3.2 Laurent series expansion in the singular reference
element
In discretized form, the integrand of BS eqn (17) or eqn (18)

can be expressed as
F M (u) = Ni(w)sp (i " () (29)

where f" " denotes one or the other kernels of the BS
integrals. Since, as discussed above, both the non-periodic
and the periodic BS equations show the same singular
behavior near the singular point, for simplicity we will
only consider the kernels of eqn (17).

Following Guiggiani er al..,'® for each element k, the
singularity in the integrand can be represented in the
neighborhood of the singular point x;, of intrinsic coordinate
u; on the reference element, by means of a Laurent series
expansion of the form (Fig. 2)

Fip, 0) = F_(0)
0

+ Fy(8) + O(p) (30)

where (p, §) denote polar coordinates centered on point u,
in the reference element, and Fy(8) and F_(6) are O(1)
functions of the VS geometry around point i. The
contributions of element k to the integrals in eqn (17) can
thus be expressed as

F_,0)
p

e Hr
ﬁ=Lfmmmmw+L[ +mﬂw

+1
+J%F@mxwmw=ﬁ+é+é (31

where (u¢, 1,) denotes a small interval containing the
singular point p;.

The first and last integrals in eqn (31) are regular and can
be calculated using the Gauss quadrature rule, after
transformation of their respective intervals to [—1, +1].
The middle integral, 1’2‘, is singular and can itself be divided
into three parts, by defining a semicircular boundary of
vanishing radius e centered on the singular point, as

k= leO{_ L Am[pﬂ‘;(vr)_kpo(w)]dp
_ J { _1(0)+F”(0)}esm 6do

T E_(0)
+ { . +F0(0)}dp}

€

—F_,(0)yIn Br—Fi J F_ ((8) sin 6d¢
Hi — e 0
+ (g — p)Fo(m) + (1, — p)Fo(0) (32)

where, by definition of the geometry on the intrinsic
element, p=p;+pcosb and the property
F_,0)= — F_ (64 m) (which is a consequence of the
residue theorem) have been used to combine the first
(singular) terms in the first and last integrals.'® If p, and
w, are selected symmetrically around point i, we have
Bi — B¢ =pr — i =Ap/2, with Ap=p, — e, and eqn (32)
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Fig. 2. Sketch relating to the singular integration at point i of
reference element k.

further simplifies to
k " . Ap
L= oF’ 1(0) sin 6d6 + T[FO(W) + Fo(0)] (33)

Following the general method proposed by Guiggiani et
al.,'® the calculation of Fy(6) and F_(f) in eqn (33) first
requires defining a local intrinsic coordinate expansion for
the vector x — X; in the neighborhood of the singular point
x; (i.e.,, for small p), where x denotes another point of
element k. To be able to account for changes or gradients
perpendicular to the element in this expansion, a new
coordinate system (u;, u-) is introduced, as indicated in
Fig. 2, with the following relationships,

W =p=p;+pcosf and u,=psinb (34)

as a function of the polar coordinate system introduced
above; in this coordinate system, the singular point is
defined as (y;, 0). We thus get

[5).¢ ox
X—X; = — ( — )+ — 2
01 ), 0) o2 ) . 0)

¥x } ( )
Bi— i)l
wiopaf,,
GZX} ( — )’ + azx} I 4
-5 - O - A i 0 — e
Wi 0y 2 a2
(35)
Now, using the definitions of eqn (34), we have
a d
— = —~tanf — (36)
) Iy
e tan @ 3 1Y\ 9 &
= »_ —-l—temze—2
dus psinfcosf\du; cosb) dy, A

and, combining eqn (35) with eqns (34) and (36), we get
x(1) — %; = p(A(6) + p* (w)B(6) + O(p") (37)

with

d
A() = 51‘7(#»0(0)

with C(6) =cos 6 — tan 6 sin 6 +

tan® 0 dp 1
2 |du cosé

(38)

and

2 2 2
B®) = x| S0 1 gine( 0 (39)
du 2

2

where the first and second components of A(f)=(A,, A,)
and B(#)=(B,, B,) refer to the x and y coordinates,
respectively.

Using eqns (37)—(39), we can now express various parts
of F(u) for BS eqn (17) and put them in the form of
expansion {(eqn (30)). After some calculations, we get

! SM, v 0 v
£ (o), 8()) = —;( )4 55 6) + 0(p) (40)
with
u, v - F AZ. I(B)
SIO= % @6+ A20)
i, v - F B?., 1(6)_D(0)A2 1(0)
S 0= % = Ao 1 Ak0) 40
and
()= 2 MHOBIO) + Ax0)B(0) w

A(0)? + A0

We also have

Nilo(w), B())sklp(r), 8(1)) = ag(8) + a,(8)p + O(p°)

(43)
with
ap = sh(p )N ()
a1(8) = C(O)[sp(uN, (s} + sk (N () (44)

where p-indices indicate derivatives. Hence, from eqn (30),
we have

Fi "(0)=apSy "(0) +a,(0)S™ [(6); F*“ [(6)=ayS" [ (6)
(45)

which gives the terms of the Laurent series expansion.

Using eqn (45), with eqns (41) and (44), one can now
analytically calculate the integral in eqn (33) and show
that it vanishes. Accounting for relationships between
odd and even functions of § at 0 and =, the second
term in eqn (33) can also be calculated, using eqns
(38)-(45), as

A ; ) ) i, vV
—2&[173‘ (m) + Fg "(0)) = AulaSy "(0) + a,(0)S" [ (0)]
(46)
with A(0) =x,, B(0)=x,,/2, C(0) = 1, and

XuXup T YV

D(0)= (sﬁ)z

(47)
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Fig. 3. Sketch of uniform flow of velocity U past a circular cylinder of diameter D. Numbers on streamlines correspond to constant values
of the streamfunction ¥. (O) denote the N BEM discretization nodes on the VS/cylinder interface.

and hence
Sy '0y=7F W, x)w(sﬁ)z = 200 %) (XX + Vi)
0 471'(sfj)4
i, V' — (.y7 x)p.
ST 0= 48
—1 ( ) + 27('(5{1)2 ( )

Using eqns (33) and (46), together with eqn (48), one can
then, after some final transformations, calculate the singular
part of eqn (31) as

kT Au

P 49
* 2mk ) @

[Nu/ (v, X), + %Nj(y’ x)w} =
for the element k containing the singular point, i, in the first
and the second BS integrals (17) or (18), respectively. All
terms in eqn (49) can be expressed as a function of element
shape functions and nodal values, using eqns (16) and (19).

3.3.3 Discussion

We will now show that eqn (49) is identical to eqn (28),
derived using the first method. To do so, due to the BEM
discretization, we first have to multiply eqn (49) by 'y;‘ the
nodal vorticity for element &, and perform a summation over
m nodes. We then need to replace Ap =As/sﬁ,
(v, x), =, x)ssﬁ and (v, x),, = (y, x)”(sﬁ)z in the equa-
tion. We thus get, for the hypersingular contributions to
BS equations,

s %)+ 20, 0] (50)

As
27r[
which is indeed identical to eqn (28).

In eqn (28) or eqn (49), the first and second derivatives of
geometry and vorticity with respect to s or u are needed at
the singular point in order to calculate the hypersingular
contributions to BS equations. Hence, this justifies using
both a higher-order discretization and accurate methods
for calculating the s-derivatives in the numerical model.

Since our BEM model is based on using, and integrating
within, a reference element, method (ii), leading to eqn (49),
is the relevant one for the model. Furthermore, if needed,
this method can more easily be extended to even higher-
order representation of hypersingularities, by keeping more

(up, vp)= +

terms in the Laurent series (eqn (30)) and other related
expansions.

4 APPLICATIONS

Validation tests are first conducted to evaluate the numerical
accuracy of BS integrals for a steady uniform flow past a
circular cylinder; results are compared with the analytical
solution. The propagation of an exact nonlinear free surface
periodic wave over constant depth (a so-called stream-
function wave (SFW)) is calculated next, also to test the
time marching procedures. Finally, an application of the
model to the periodic KH instability at the interface between
two fluids is presented.

4.1 Steady flow past a circular cylinder

Fig. 3 shows the set-up for the computation of a uniform
flow of velocity U past a circular cylinder of diameter D. In
this simple case, the complex potential is found by super-
posing the potentials for a uniform flow and for a doublet, in
which the strength is such as to get a separation streamline
on the cylinder boundary.' We thus get

D2
@(z)zU(z-l— 47> (51)
from which the potential and the streamfunction read
D
&(r, 8) = U sin 6<r+ —>
4r
D>
Y(r, 8)=U cos G(r— Z) (52)

respectively, where (r, §) denote polar coordinates centered
on the cylinder (Fig. 3), and the water velocity components
read

D’ cos 260
u(r, 0)= U{l _ e }
-
D? sin 26
vlr, )= U207 (53)
4 r
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Fig. 4, Uniform flow of velocity U past a circular cylinder of diameter D. (a) Values on the cylinder of: (— —) u /U (- - - ) v JU; (- - =)
YU; and (—) V.= /u24vo, as a function of the angular position 627 (see Fig. 3). (b) Numerical error (O),

ey =max|(Vggm — V. )/Viem!, as a function of the number of BEM nodes N; (—) least-square fit to the results, &, x N~ '

respectively, with the total velocity V. = lu.l= /u? + v2.
According to the definition of VSs, the circulation on the
cylinder is (r = D/2)

Y0)=AV, =V =u.s=u (D72, §)sinf

—v.(D/2, B)cos 6 (54)

in which s denotes the tangential vector to the cylinder and
V. 18 the water tangential velocity. In Fig. 3, a few stream-
lines corresponding to = * | and =* 2 have been plotted
according to eqn (52) and, in Fig. 4(a), the velocity
components, total velocity and circulation have been
plotted around the cylinder boundary using eqn (53) for
r=D/2, and eqn (54).

In this application, the velocity components («, v) and
total velocity V on the VS/cylinder boundary are computed,
in various BEM discretizations, using BS eqn (17). For
simplicity, we use U/ = D = 1 and the exact circulation v
from eqn (54) is specified as input to the model.
According to the definition, the total flow velocity is
calculated as Vggy =2V, and the maximum error
between the computed and anaiytical flow velocities,
ey =maxl(Vggy — V.)/Vggml, is calculated and plotted in
Fig. 4 as a function of the number of nodes in the
discretization, N = 23, 45, 90 and 180. We see on the
figure that &y is cut by roughly half each time the number
of nodes is doubled. (In fact, a least-square fit to the results
gives, ey * N™') As both & and v, as well as the geometry,
vary fairly smoothly around the cylinder, a small number of

nodes with cubic interpolation in between is sufficient to
well represent their variation; hence, the observed error
behavior reflects that, in this case, the accuracy of the
integrations is not too dependent on the interpolation of
fields and is just proportional to the number of elements,
i.e. integration points, used.

These results confirm both the accuracy and the
convergence of the numerical integration methods used
for calculating regular and singular terms in BS equations.

4.2 Propagation of a periodic surface wave

Finite amplitude periodic surface waves over constant depth
hy can be generated with the accurate numerical method
developed by Dalrymple;** this method applies Dean’s
streamfunction wave theory in a coordinate system
moving with the wave celerity ¢ =NT (with \ the wave-
length and T the wave period). The streamfunction wave
solution is defined as

J
(o, v)= Z X(j)sinh jk(hg + y)cos j6 — (U —c)y  (55)
j=1
with 6 = k(x — cr), the phase, and X(j) a set of J coefficients,
which are numerically calculated for the solution (eqn (55))
to satisfy the kinematic and dynamic boundary conditions
on the free surface I';, a no flow condition on the bottom
'y, and specified wave height and wavelength (H, \) (Fig.
5). As part of Dalrymple’s solution, the shape of the wave
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Fig. 5. Sketch of a finite amplitude streamfunction wave of height H and length A propagating over constant depth .

is also found, as n;, at a set of J points on the free surface
with phase 6, = (j — 1)@/(J ~ 1). (Note that the wave height
is defined as the distance from crest to trough, i.e.
H=1(05)—n0) in Fig. 5.) Wave particle velocity
components (i, v,) are obtained from eqn (55) as

ay

uw(ev y) - E

J
= — ) (jRX(j)cosh jk(hy + y)cos j8 + (U — ¢)

i=1 » ,
VB, y)=22= = 3 (RX(j)sinh jk(hy +y)sin j8

i=1

(56)

In this application, the periodic BS eqn (18) and the time
marching algorithm (eqn (15)) are used to propagate a
wave, defined as above, over a fixed number of periods,
in a coordinate system moving with the wave (i.e. at
velocity ¢). Two VSs are used, one on the free surface I';
and one on the bottom I'y, (Fig. 5), and each is discretized
with N nodes per wavelength A. In this coordinate system,
the wave should appear to be stationary. Since the VSs’
velocity is half the water velocity, however, the nodes,
which follow the VSs’ motion, move slower than the
wave and hence change their position along the VS
interfaces — and thus their circulation — as a function
of time. The regridding method applied at each time step
ensures that the distribution of nodes stays constant along
the wave. The BEM model is initialized, using velocities
(eqn (56)) to calculate the vorticity v on the free surface
and on the bottom as

’Y(ev .V) = sz = llw(o, }’)COS 6+ VW(G, V)Sln 6

for y = 9 and y= — hj, respectively, with cos 3 and sin 3
defined as in eqn (12). To initialize the time marching
algorithm, dvy/dr is similarly calculated using eqn (9), in
which the VSs’ tangential acceleration is calculated from
eqn (11). In this equation, according to the definition, the
VS’s velocity and particle acceleration are given by

(57)

1
u= "z‘l.lW

Ju, ou,, ou,
Fr 4{"““ ax T y

du_

PTi (58)

Pol—

Partial derivatives of wave velocity components with
respect to (x,y,f) can be obtained from eqn (56).
Periodicity conditions are specified at nodes A and B on
the free surface (Fig. 5), and similarly on the bottom, to
more accurately calculate the BS integrals, and various
terms involving s-derivatives in the time marching
algorithm. For the latter, in particular, up to three nodes
are added at each extremity, beyond points A and B, with
values taken one wavelength apart inside the domain.

In the numerical tests, a wave of height H = 0.1 m, period
T =3.1416s and length A = 6.895m (¢ = 2.195ms™ ") is
generated in depth Ay = 0.5m by the method of
Dalrymple,22 and used to initialize the BEM model as
described above. (This wave is a moderately steep inter-
mediate water wave with H/h; =0.2 and H/L=0.0145.}
To adjust to the BEM discretization, the VSs’ velocities
are first recalculated using BS equations. The wave is then
propagated over four periods, successively using numbers
of nodes N = 41, 61, 81 and 101, for both the free surface
and the bottom discretizations. Nodes are initially located at
equal arclength distance on the VSs and, during time
stepping, regridding is applied to redistribute the nodes at
equal distance. To analyze the accuracy of the time
marching algorithm, the time step is set to three successive
values, At = 7/500, 7/1000 and 772000, and maintained
constant throughout computations. Hence, 12 sets of
computations with different spatio-temporal discretizations
are made.

Fig. 6(a) shows the error on wave height H,
ey = (Hgpm — H)/H, as a function of dimensionless time #/
T, for Ar = T7/1000 and for the four discretizations; &y
gradually decreases as NV increases. Using a similar wave
propagation model based on potential flow theory, Grilli &
Subramanya'® found that, for a given spatial discretization,
numerical errors were minimum when the mesh Courant
number, Co=At'/Ax" = 0.35, in which dashes indicate
non-dimensional variables and Ax is the minimum distance
between nodes in the discretization. In the present case, we
have Ax" = Ax/\ = /(N — 1), hence Cy = At'(N — 1), with
At’ = At\/g/N=0.0075, 0.0037 and 0.0019 for the three
different time steps, respectively. Fig. 6(b) and (c) show
the RMS and maximum errors on wave elevation for the
12 test cases, &, =(max or RMS);I(ngpm, — mi)/mil, as a
function of Cy. (Note that, for N = 101 and A’ =0.0075,
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Fig. 6. Numerical errors for the propagation of a wave of height H
and length A\ in depth A, over four periods, with N = (- - —) 41;
(----- ) 61; (-~ —) 81; and (—) 101. The mesh Courant number is
Co = A'(N —1), with, Ar'=T'/500, 7'/1000 or T'/2000. (a)
Errors on wave height, ey = (Hppy — H)/H, for Ar' =T'/1000.
(b) (O) Root mean square errors on wave elevation,
g = (RMS);(nppm, — 7)1, (¢) (O) Maximum errors on wave

elevation, g, = (max),l(ngem, — 7.)/7; .

computations became unstable before the wave could
propagate over four periods; hence, one result is missing
in Fig. 6(b) and (c) for this combination of parameters.)
Looking at the results, we see that there is indeed an opti-
mum Courant number range, around Cy,=0.2 to 0.4, for
which both errors are minimum for each spatial
discretization.

More specifically, for a given spatial discretization (i.e. N
or Ax), decreasing the time step below the optimal C, does
not lead to better results, unless Ax is similarly reduced (or
N is increased), in order to stay within the optimal range of
Courant number values. In this case, errors increase,
probably due to increased round-off errors when many
small time steps are used to propagate the wave. Similar

observations can be made beyond the optimal C; range
where, for a given spatial discretization, errors increase
with Cy (i.e. At") at a fairly high rate; in fact, one could
show that g, « (Ar')?, corresponding to the truncation
error of the Taylor series used in the time marching
algorithm. These observations are consistent with the earlier
results of Grilli & Subramanya.'> Looking at points
corresponding to the same time step on different curves in
Fig. 6(b) and (c) (for instance, the smaller time step results
with Ar' = 0.0019 = T7/2000 at the first ( ¢ ) on each curve),
we see that, in accordance with the results in Fig. 6(a), errors
keep decreasing at a high rate when C; (i.e. N) is increased.
In fact, a least-square fit to each set of results in Fig. 6(b) or
(c) for At =cst gives &, = N4

Overall, Fig. 6(b) and (c) show that, in all cases, provided
the Courant number is close to the optimal value, small
errors (less than 0.5%) are obtained in the model after
2000 to 8000 time steps of wave propagation. Hence, this
indicates the good accuracy of the time marching algorithm,
combined with the accurate discretization and integration of
the periodic BS equations, in the model.

4.3 Periodic KH instability

One case of periodic KH instability (Fig. 1) is now
presented for a very unstable pure shear flow problem,
with a velocity jump AU=U,— U, =0.5ms™" applied
between two layers of an identical inviscid fluid with,
hence, ¢ = 1 and ¥ = o, = 0. The initial amplitude of
perturbation is a = 0.0025 m and the wavelength is selected
as A = 0.1 m, corresponding to an instability at the ripple
scale (the wavelength, however, does not matter in this
problem and results would be self-similar for another
wavelength'?). The initial vorticity y(x, 0) on the interface
is calculated assuming a linearized perturbation.'”

The initial discretization has N = 101 equally spaced
nodes per wavelength; more nodes are added through
regridding at each time step, in order to maintain a constant
spatial resolution as the VS length increases when the KH
instability develops. To ensure high accuracy, the initial
(non-dimensional) time step is set to a small value
corresponding to a mesh Courant number Cy=0.2, i.e. at
the lower bound of the optimal range (see previous section).
We thus get At =Af/g/N=Cp/(N - 1)=0.002, ie.
At =0.0002. In the present application, however, a different
non-dimensional time is used, based on the velocity jump
at the interface, 7=rAU/\, hence, the present
non-dimensional time step is A7= ArAU/A=0.001. Since
the spatial resolution is maintained constant through
regridding, the time step (and the mesh Courant number)
also stay constant throughout computations. Periodic BS
eqn (18) and the time marching algorithm (eqn (15)) are
used to calculate the interfacial instability as a function of
time. One wavelength is discretized and periodicity
conditions are specified at each extremity. Model results
for the time evolution of the interface over 3000 time
steps are given in Fig. 7. At the end of computations, the
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Fig. 7. Interface shape (¢ = x/A\,n = y/N) for periodic KH

instability with wavelength A = 0.1 m, AU = 05ms™", ¢ = |

and oy = 0, at non-dimensional time 7 = rAU/A = (a) a: 0.001,

b: 0.301, ¢: 0.601; (b) a: 0.001, b: 1.651, ¢: 1.951; (¢) a: 0.001,
b: 2.701; (d) a: 0.001, b: 3.001.

number of nodes has increased to N = 328 per wavelength
(Fig. 7(d), curve b).

Overall, results show reasonable predictions of VS
evolution. In Fig. 7(a), for small time, the interface
perturbation slowly grows up while more or less preserving
its initial shape; the initial growth rate in fact closely follows
the linear growth rate>'? and, hence, this is referred to as the
quasi-linear regime. At the same time, a relative motion of
crests is observed; this phenomenon, which is not observed
in point-vortex models,®* indicates that, as the instability
develops, interfacial waves travel at a modified phase
velocity. In Fig. 7(b) it is seen that, after the quasi-linear
initial growth, the larger nonlinearity in the flow field leads
to both increased wave amplitude and skewness and,
eventually. to a crest overturning similarly to a surface
wave breaking; this is referred to as the nonlinear regime.
In Fig. 7(¢), the similarity of results with surface waves
disappears as the interface VS rolls-up. In Fig. 7(d), as

time further increases, the interface roll-up becomes more
pronounced and, as the ‘roll-up cells’ become more
elongated, the amplitude of disturbance starts gradually to
decrease.

5 CONCLUSIONS

A higher-order boundary element model (BEM), based on
hypersingular Biot—Savart equations, was proposed for the
modeling of vortex sheets (VSs) representing interfaces
between fluids moving at different velocities (shear layers).
Depending on the case, periodic or non-periodic BS
equations were used. An explicit Taylor expansion scheme,
based on Lagrangian time derivatives with respect to the
VS8s® motion, was proposed for the updating of both the
geometry and vorticity of the VSs, thus defining a time
marching algorithm which allowed the modeling of VS
dynamics.

In the BEM model, integrations were performed
numerically on the reference element. Hypersingular
terms in the integrals were explicitly expressed in two
ways, using perturbation expansions around the singular
points; both approaches were shown to give identical
results, but the approach based on Giuggiani er al.’s'®
method is more general and, if needed, should be more
easily extended to higher-order accuracy and/or degree of
hypersingularity.

The integration of BS equations, using a cubic
representation of both the geometry and the vorticity, was
first tested for the steady-state case of a uniform flow past a
circular cylinder. In this special example, convergence of
the results toward the analytic solution, with the refinement
of the discretization, was shown to be = 1/N, where N is the
number of nodes. The propagation over constant depth of a
permanent form, finite amplitude surface wave was tested
next. A numerically exact solution’® was used to initialize
the BEM model, and errors on both wave height and wave
shape were calculated for the propagation over four time
periods (i.e. four wavelengths or 27.6 times the depth in
the present case). For each spatial discretization, errors
were shown to be minimum when the time step was such
as to achieve a mesh Courant number C, = 0.30; beyond the
optimal Cy, errors increased with (C(,)z, corresponding to the
truncation error, (At')3, of the time marching algorithm.
This is similar to earlier results by Grilli & Subramanya.'”
In all cases, for a constant time step, errors decreased as
= 1/N*. Although the resolution of the wave discretization
was maintained constant through regridding, an adaptive
time stepping procedure could be used, as in Grilli &
Subramanya,'” to accommodate varying spacing between
discretization nodes while achieving an optimal C, value.

In a final application, the Kelvin—Helmholtz (KH)
instability of a pure shear flow between two layers of a
fluid moving at different velocities was presented. The inter-
face was initially sinusoidally perturbed and computations
showed a rapid growth of instability, leading to intense
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interface/VS roll-up. It is worth pointing out that standard
point-vortex or PCVS computations usually fail before the
stage of Fig. 7(b), whereas the present model provides very
stable numerical results for the full stages of development of
VS roll-up. More cases of KH instability calculated using
this model, particularly for different fluids (i.e. oils with
different density and oil/water interfacial tension), will be
presented in a forthcoming paper, and results for the
interfacial shape and growth rate will be analyzed in
detail (Hu and Grilli*”).
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