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ABSTRACT

We present the validation and application of a numerical model for the
simulation of wave-induced sediment transport. Our approach is a one-
way coupling of an inviscid flow model (i.e., a Numerical Wave Tank
based on potential flow theory; NWT) to a Navier-Stokes solver, to sim-
ulate near bottom wave-induced turbulent boundary layer flows. Only
two-dimensional incident wave fields have been considered so far (i.e.,
long-crested swells), while the near-field wave-induced turbulent flow
and sediment transport are fully three-dimensional. Good results are
obtained for steady streaming velocities when applying open boundary
conditions (i.e., zero velocity gradient), a quarter-wavelength from the
edge of the domain without the assumption of periodicity. For turbulent
test cases, we solve the Navier-Stokes equations using a large-eddy sim-
ulation using an approximate (log-layer) wall boundary condition and a
dynamic Smagorinsky subgrid scale model. After validating the model
hydrodynamic predictions, we simulate wave-induced sediment transport
over an idealized rippled bed, and find reasonable agreement with lab-
oratory results for oscillatory flows over full-scale sand ripples. Both
idealized and more realistic test cases are presented.

KEY WORDS: Computational Fluid Dynamics; Hybrid model cou-
pling; Large eddy simulation; Wave-induced oscillatory flows; Steady
streaming; Sediment transport; Sand ripples

INTRODUCTION

In this paper, we present the development and validation of a hybrid nu-
merical model of wave-induced sediment suspension and transport in
shallow water near (but outside) the surfzone. This study was initially
motivated by the U. S. Navy’s interest in mine burial prediction, which
over 2000-2008 led to extensive experimental (e.g., Elmore et al., 2005;
Guyonic et al., 2007) and some numerical (e.g., Hatton et al., 2007) stud-
ies on the subject. Similar research into the modeling seabed morphology
was also motivated by interest in predicting scouring around submarine
pipelines (e.g., Liang and Cheng, 2005). The present work is an improve-
ment of earlier work by Gilbert et al. (2007), into sediment transport pre-

dicted by a Numerical Wave Tank (NWT).
In the absence of bottom obstacles, the velocity field of non-breaking
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water waves propagating over a smoothly varying seabed can be accu-
rately represented by an irrotational flow core, with thin turbulent Bound-
ary Layers (BLs) near the bottom and free surface. Moreover, for short
distances of propagation (i.e., a few wavelengths), dissipation in these
thin BLs does not significantly affect wave shape and kinematics. An
object protruding from the seabed, however, creates a significant pertur-
bation to the irrotational wave flow, in the form of shed vortices, extend-
ing over a a few significant diameters in each direction (see e.g., Grilli
et al., 2003). Laboratory experiments in a wave tank with a mobile bed
show that small changes in the bottom topography, as compared to the
incident wavelength, usually only affect near-field flow velocities within
2-3 equivalent diameters of the object and thus have negligible effects on
the propagation of incident surface waves (e.g., Voropayev et al., 1999).
Using a full Navier-Stokes (NS) model to simulate a large part of the
wave transformation region would both be prohibitive and also less ac-
curate than using an irrotational model, as far as wave propagation is
concerned, since NS schemes typically cause excessive numerical diffu-
sion that damps incident waves in a non-physical manner. For this reason,
hybrid models have already been introduced in earlier two-dimensional
(2D) and three-dimensional (3D) work, which couple irrotational and
Navier-Stokes (volume of fluid; VOF) models to study wave propagation
and breaking, (e.g., Biausser et al., 2004).

In the proposed hybrid model, as in Gilbert et al. (2007), far-field inci-
dent waves and their transformations, over complex bottom topography
from offshore to the obstacle, are simulated in an inviscid and irrotational
2D potential flow NWT, with fully nonlinear free surface boundary con-
ditions (Grilli and Subramanya, 1996; Grilli et al., 2003). The 3D oscil-
latory BL flow induced by waves around the obstacle is then simulated
in an embedded 3D large-eddy simulation (LES) of the turbulent fields
similar to that of Zedler and Street (2006). The NWT approach allows
simulation of ‘far-field’ wave transformations without the effect of the
bottom obstacle, and thus provide background wave velocities for driv-
ing the ‘near-field’ 3D turbulent flow model around the bottom obstacle.
Since observations indicate that a small obstacle does not significantly
affect wave propagation over short distances, feedback from the 3D-NS
model to the NWT can be neglected. Instead, the overall effect of bot-
tom friction on wave shoaling is represented as a free surface dissipation
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Fig. 1: Typical set-up of the embedded LES domain — the velocity u is
decomposed into the inviscid velocity, W, and a perturbation, uP, and the
NS equations only need to be solved for the boundary layer (for y < dpr).

in the NWT (see Grilli et al., 2003). Although it is more common to
apply a Reynolds-averaged approach than a LES to solve NS equations,
Chang and Scotti (2004) showed that a LES provides a better representa-
tion of flow over ripples, when considering the vertical velocity, turbulent
kinetic energy, or Reynolds stresses.

Although the weakly coupled approach from Gilbert et al. (2007) ap-
pears sound, it is in a formalism that made it difficult to properly spec-
ify boundary conditions. Also, these earlier simulations did not extend
over enough time to reach a quasi-periodic state, nor were they validated
against experimental data. Finally, and perhaps more importantly, in
the earlier model, waves effects were simply simulated in NS equations
by the addition of an ad hoc wave-induced dynamic pressure gradient,
whose theoretical justification was not fully rigorous. By contrast, in the
present study, we decompose the total flow velocity and pressure into
an irrotational wave flow and a viscous perturbation flow and solve NS
equations for the perturbation flow only, using exact forcing terms calcu-
lated based on the irrotational wave flow. Note that many simple analyt-
ical/numerical solutions exist to obtain the latter, other than using a full
NWT, which will be used both for theoretical and experimental valida-
tion. More advanced applications involving complex incident wave fields
simulated in the NWT will be reported in future work. In the following,
we present equations and boundary conditions for the hybrid model and
its validation for some standard solutions of wave-induced flow and sed-
iment transport in an oscillatory BL.

EQUATIONS FOR THE HYBRID MODEL

We briefly present equations for the one-way coupled hybrid model that
is used here, whereby the irrotational wave flow in the NWT forces the
LES computations, and resulting oscillatory turbulent BL, but the cor-
responding near-bottom dissipation does not affect the wave flow. The
upper boundary between the LES domain and the rest of the NWT do-
main is determined ad hoc, and is roughly the height of the boundary
layer, 8py, (Fig. 1). Similar approaches have also been proposed by Kim
et al. (2005) and Alessandrini (2007) who used Reynolds-averaged ap-
proaches to study ship waves. Note that in this hybrid approach, the in-
viscid velocity field is obtained directly from another model, and hence
is not subject to the numerical errors of the NS solver.

Large-Eddy Simulation

The NS equations for an incompressible, isothermal, Newtonian fluid

read:
du; du; 0 P du;\
a—Xi_O, §+ij<uzuj+551/ Vaxj>—0 (1)
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where u; and p are the water velocity and dynamic pressure, respectively,
in a fluid of density p and kinematic viscosity v. We adopt the convention
that x, is a vertical distance measured from a point on the seabed.

Many flows, such as those induced by ocean waves, can be closely
represented by inviscid fields (u{- , p1), which outside of thin BLs are de-
scribed by Euler equations:
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We introduce a decomposition of the total flow into an inviscid free-
stream flow, with velocity ulI and pressure py, and a defect or perturbation
flow, with velocity uf and pressure pp:

3

Subtracting Eqgs. 2 from Egs. 1, yields governing equations for the per-
turbation fields as:
dul uf 9

o " o Tox

i =) +ul; p = pr+pp.

11, PP du;

Applying a spatial-average operator (overbar) to the NS equations
yields momentum equations for the resolved perturbation as:
dal 9 i

duf __ 71 PP i
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where 7;; = u;u; — i;ii j is the subgrid scale (SGS) stress. Here we neglect

the grid filtering of the inviscid velocities (i.e., assuming u{ ui ~ ull ug-),

since typically the LES grid has a much smaller scale than variations in
the inviscid field. Note that, typically, SGS models only consider 7;; —
Ty /3, because the resolved turbulent pressure, 5, is different from the
resolved hydrodynamic pressure: p*/p = p/p + Ty /3.

For turbulent applications, SGS stresses are expressed as:

%

Tij = = Tk = —2VrSij

3 (6)

where vy is eddy viscosity and S;; is resolved shear strain rate. The
eddy viscosity is determined using the dynamic Smagorinsky model of
Germano et al. (1991). Additionally, following Chow et al. (2005), the
eddy viscosity is increased at the wall, in the SGS model, in order to
augment the near-wall shear stresses. Specifically, following Zedler and
Street (2006), for all points between the bed and a height 2Ax;, eddy
viscosity is specified as:

Xy
(VD )torat = (V1)sGs + Kituxp cos” (4Ax1 > '

@)

This scheme increases the near-wall stress and smoothly varies the eddy
viscosity from that in the inner wall modeled region to the outer region
in the LES domain.

The governing equations are discretized as in Cui and Street (2001),
i.e., using a finite-volume formulation with 2nd-order accuracy in both
time and space on a non-staggered grid. The Quadratic Upstream Inter-
polation for Convective Kinematics (QUICK) (Leonard, 1979) scheme
is used to discretize the convective terms of the fluid flow, and 2nd-order
centered differences are used for the remaining terms. The convective
terms are time integrated using the 2nd-order Adams-Bashforth tech-
nique, and the diffusive terms with a 2nd-order implicit Crank-Nicolson
scheme. The Poisson equation for the pressure field is solved with a
multigrid technique.



Velocity Boundary Conditions

The bottom boundary condition is a no-flux condition with a shear stress
applied depending on the flow conditions, i.e., Ty = pv[du/dn],_.
where 71,, is wall shear stress and n the normal direction to the wall.
This is numerically implemented through ghost cells outside of the do-
main. Combining this with the condition that the eddy viscosity is zero
along the bed, we can implement the boundary condition through the vis-
cous stress terms as [Ju/dn],_q = u? /v, where u, is the friction velocity,

which is related to the wall shear stress as: 7,, = pu2. We apply one of
two different boundary conditions, depending on the application.

For laminar cases, we consider a no-slip condition, such that
uv

Z

Us = (®)
where here i refers to the magnitude of the tangential velocity at height
z above the bottom boundary. This condition is applied based on the
locally resolved velocity at the gridpoint adjacent to the boundary.

For rough turbulent cases, we assume that the von Karman-Prandtl
equation describing a logarithmic sub-layer can be applied at the first
gridpoint above the bed. For hydraulically rough conditions, this reads:

Lo ot ©)
Usx K 20

where k is the von Karman constant, taken to be 0.41, and zq is roughness
length, which can be related to the Nikuradse roughness as: ks = 30zg.
Note, there is still some debate regarding the accuracy of using a log-
layer assumption (see e.g., Stoll and Porté-Agel, 2006), but it is com-
mon practice to apply this in LES models of atmospheric flows (Moeng,
1984). For a review of LES wall modeling see Piomelli and Balaras
(2002). The use of the log-layer law for zero-pressure gradient BLs is
supported by the experiments of Nakayama et al. (2004), but especially
when flow separation is important, more complicated boundary condi-
tions may be required (e.g., Loureiro et al., 2008).

Suspended Sediment Concentration

An advection-diffusion equation governs the Suspended Sediment Con-
centration (SSC), C, with settling velocity wy, as in Gilbert (2006):

aC d

acC
iC—wgdpC—Kk=— | =0
<uj Ws0i2 axj )
where Kk = % is the diffusivity and o the Schmidt number (assumed to be
1.0 in this manuscript). In the context of the LES model, Eq. 10 becomes

the spatially averaged advection-diffusion equation:

oaC 9 [_ - - vadC
§+ij' <ujcfws5ichgaixj+xj') =0 (11)
where
- aC
x]:MJ —lztjC:—KTaixj. (12)

This formulation of the SSC equation assumes that the sand concentra-
tion is low enough to prevent strong particle-fluid and particle-particle
interactions beyond a constant settling velocity; the upper limit of con-
centration at which this assumption can be applied before other effects
need to be considered is discussed by Villaret and Davies (1995) and
Elghobashi (1994).

The motion of the sediment at the seabed is governed by bedload trans-
port, the settling of suspended sediment, and sediment pickup. These

580

processes can be represented using nondimensional parameters includ-
ing the density ratio, s = p;/p, the Shields parameter, 6, and the particle
parameter, D.,:

uy T (s—1)g]'"/>
67(S*l)gd*(mfp)gd and - Do =dso {T} -

The onset of sediment motion on the seabed is determined by compar-
ing the Shields parameter to its critical value, 6, which can be found
using an empirical expression from van Rijn (1993). For the sand used
for the simulations in this paper, dsg = 0.44 mm and the latter yields a
critical Shields number of 6. = 0.0314. [Note, the effect of bed slope
is neglected in this expression.] Similarly, for this sand, the same work
predicts a constant settling velocity of 5.32 cm/s.

Sediment re-suspension is modeled using the empirical relationships
proposed by van Rijn (1984) for noncohesive sediments with grain sizes
between 200 um and 2000 um. Sediment pickup, which occurs for a
Shields parameter greater than the critical value, is given by applying
van Rijn’s formula in an instantaneous sense, as suggested by Nielsen
(1992):

P =0.00033 (6 ; 9")

cr

1.5 (S _ 1)0‘6g0'6d0'8
y0.2

(14)

Alternate pickup functions are discussed by van Rijn (1993). The pickup
function acts as a boundary condition for the SSC. Since the eddy diffu-
sivity, like the eddy viscosity, tends to zero at the bed, the gradient of the
SSC is given by P = —kdC/dn.

The suspended sediment transport equations are discretized as in Cui
and Street (2001), like the momentum equations, i.e., using a finite-
volume formulation with 2nd-order accuracy in both time and space on
a non-staggered grid. The Simple High Accuracy Resolution Program
(SHARP) (Leonard, 1988) scheme is used to discretize the convective
terms, and 2nd-order centered differences are used for the remaining
terms. Note the SSC is expressed as a dimensionless volume fraction.

APPLICATIONS

Initial applications of this velocity perturbation approach were aimed at
validating the model for simple cases, such as turbulent BLs over flat
beds (see Grilli et al., 2009), for oscillatory currents, with zero mass
transport. A full account of these is given in Harris (2010) and one such
case is presented in a following section.

In progressive waves, a small but significant wave-induced mass trans-
port is generated in the BL, which flows in the direction of wave prop-
agation. This steady streaming is an important aspect of coastal bottom
BLs, which strongly affects sediment transport and must be correctly
represented in the model. This is studied in a following section.

Finally, we present an application of the full model to predicting sed-
iment suspension and transport over a complex seabed, represented by a
ripple of idealized but realistic geometry.

Oscillatory turbulent BL

We simulate Jensen et al. (1989)’s laboratory experiment #13, for a
horizontally uniform oscillatory flow in a flume (U-tube), defined as
ull = §;1Upsinwr, with: Uy =2.00 m/s, T =9.72 s (0w =2x/T), v =
1.14 x 107° m?/s, and ky = 0.84 mm. We then compute the mean ve-
locity and Reynolds stresses, which were measured as a function of time
and elevation over the rough bed in the BL.

To compare simulations and experiments, we average the relevant field
variables over horizontal planes and at each half-period between 57 and
107. A fine grid with 128x32x64 cells is used, slightly larger than that
used by Radhakrishnan and Piomelli (2008) who recently reported on
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Fig. 2: Simulations of turbulent oscillatory BLs: mean wall stress as a
function of phase (determined by log-law for test #13 of Jensen et al.
(1989).
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Fig. 3: Same as Fig. 2: mean streamwise velocity profiles for test #13 of
Jensen et al. (1989).

similar comparisons. The use here of a three-dimensional grid is im-
portant for resolving the spanwise turbulent fluctuations. Exponential
stretching is used in the vertical direction with a stretching ratio of 1.1.

For test #13, Jensen et al. did not measure wall stress (7,,), but rather
a time-series of the mean streamwise velocity at a very small height over
the wall, y/A = 0.0006 (equivalent to y ~ 1.86 mm), which we used
together with a log-law assumption to calculate the experimental wall
stress. Results in Fig. 2 shows a good agreement of model results with the
latter (and hence these results would also reasonably predict the Shields
parameter used later). Results in Fig. 3, for the mean flow velocity (u)
at six selected phases of the flow over half a period of oscillation, are
similarly in reasonable agreement with experiments.

A more demanding model validation test is to compare turbulent in-
tensities to those measured in experiments. In Fig. 4, for instance, we
see a good overall agreement between model and experimental values
of streamwise turbulent intensities (1) 1/2, although simulations under-
predict turbulent intensities measured near the wall. Similar discrep-
ancies were found in Radhakrishnan and Piomelli (2008)’s recent LES
study (using different SGS models), who also compared their results to
Jensen’s test case #13. Their results for the near-wall turbulent intensity
were similar to ours for most phases of the oscillations.

In our own tests, the near-wall discrepancies are likely due to the grid
aspect ratio near the wall. In a grid where Ax = Ay = Az, the resolved

erturbation velocity ﬁf would, generally speaking, include fluctuations
or all scales larger than the grid, and none smaller, as the implicit grid-

scale filter would average over the smaller scale fluctuations. The vertical
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stretching of the grid near the wall results in “pancake”-like cells, where
Ax and Ay is much larger than Az. As a result, the implicit grid-scale
filter averages over many turbulent eddies, and the resolved turbulent
fluctuations are much smaller in magnitude [which incidentally is related
to why the enhanced eddy viscosity from Eq. 7 is needed].
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Fig. 4: Same as Fig. 2: streamwise turbulent intensity profiles for test
#13 of Jensen et al. (1989).
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Far from the wall, there is an occasional underprediction of the tur-
bulent intensity. Other numerical studies have had this problem as well,
which Mellor (2002) suggests is an experimental artifact. The ampli-
tude of oscillations for test #13 is 3.1 m, so a fluid particle can move as
far as 6.2 m over the course of each oscillation. Hence, at the end of
each period (i.e., around 0?), some of the fluid particles being measured
may have been outside of the 10 m straight test section of the U-flume
a half-period earlier. Although Jensen et al. took some additional mea-
surements to attempt to show this would have no effect, it does seem to
explain the outliers seen at the O degree phase angle (e.g., Fig. 4). Our
results far from the wall are similar to Radhakrishnan and Piomelli’s,
although our turbulent intensities match experimental values somewhat
better than theirs at phases 0° and 30°.

[Results similar to Fig. 4, not shown here, are obtained for the other
Reynolds stress terms.]

Steady Streaming with Open Boundary Conditions

Longuet-Higgins (1953) was the first to show the occurrence of and cal-
culate the mean mass transport velocity (u) induced in an oscillatory BL
under progressive waves (i.e., steady streaming). This mean velocity oc-
curs even when the forcing is from a fully symmetrical wave, such as
obtained from linear wave theory, although flow asymmetries resulting
from wave nonlinearity will intensify it, through the creation of a non-
linear Stokes drift. Thus, using linear wave theory for simplicity, the
particle velocities in a progressive water wave over a flat bed are given
by (see e.g., Dean and Dalrymple, 1991):

k coshk

ul (x,y,1) = gEcosth cos(kx — wr) (15)
k sinhky .

by (x,y,1) = A% COShk)}]l sin(kx — ot) (16)

for an amplitude A, wavenumber &, and angular frequency . While this
can be applied for any amplitude, this equation assumes a small wave
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Fig. 5: Eulerian drift predicted by NS solver (-) versus theory (—).

steepness, kH /2. Additionally, the linear dispersion relation reads: 0? =
ktanh kh, with h the water depth. For such waves, Longuet-Higgins found
the Eulerian drift of a laminar oscillatory BL as:

koA [3

1 1
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u) = e 2Cosg + —e >sing + —e
) sinh?kh | 4 ¢ 2 ¢ 4
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where & = z/8g (Longuet-Higgins, 1958; Nielsen, 1992) and &5 =
v/2v/ is the so-called Stokes-layer thickness.

In the model, assuming 2D periodic case, we specify periodic bound-
ary conditions in the horizontal directions. The domain is uniformly
discretized in the streamwise and vertical directions (and the spanwise
direction is irrelevant for this 2D laminar case, in contrast to the turbu-
lent case). No eddy viscosity was consider in this laminar case. Finally,
rather than solving for the perturbation pressure to enforce mass conser-
vation, we note that uy(x,z,1) << uj(x,z,t) in this case, so that we can
ignore the vertical momentum equation and instead compute the vertical
velocity from mass conservation:

% gl
ih (xy) = -, a—xidz’

This is an ad hoc solution, whereas a more appropriate solution would
include a pressure boundary condition. [As pointed out by Mouazé et al.
(2002), it is not clear what form an explicit boundary condition should
look like in the far-field. Future work will focus on resolving this far-field
boundary condition so that more accurate simulations can be conducted. ]
Because this bypasses the Poisson equation solver, which is normally
used in the model to calculate pressure, the speed of computations with
the NS solver is dramatically increased. However, using a correct pres-
sure boundary condition would be more accurate and consistent. Pre-
liminary tests suggest that setting the perturbation pressure to zero along
the upper boundary gives good results and is consistent with the velocity
boundary condition, but we have not applied it in these tests.

In this application, we compute steady streaming for periodic waves
withA =0.23 mand 7 = 6 s, in depth # = 5 m. [These are incidentally
the conditions from an example used by Myrhaug and Holmedal, 2005.]
We use a grid of 256 points in the streamwise and 32 points in the vertical
directions, and a time step Ar = T/256. With this data, the spatial grid
covers one wavelength (27t/k) in horizontal by 168y in vertical direction.

Results in Fig. 5 show that the calculated Eulerian drift velocity, after a
long ramp-up and model stabilization time of 1000 wave periods, agrees

very well with theoretical Eq. 17.

18)
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The convergence of model results to the theoretical solution is assessed
by calculating the difference between the steady streaming velocity high-
est point in the domain, ., versus the theoretical solution, first as a func-
tion of discretization, and then boundary conditions.

In Fig. 6, we see an approximate 1st-order dependence of the solution
on grid size in the vertical direction (from 16 to 128).

While the above results confirm that the model produces relevant re-
sults, applicable to wave-induced BLs, these were obtained from a spa-
tially periodic solution in the lateral directions with a computational do-
main length L, equal to one wavelength A = 27 /k. In most practical
applications, however, one needs to specify open boundary conditions
(BCs) instead. In earlier work, (e.g., Gilbert et al., 2007) used BCs
of the type: du/dn = 0. Because of the need of correctly represent-
ing steady streaming in wave-induced BLs, it is important to investigate
effects of such non-periodic BCs on simulated steady streaming veloci-
ties. In the present perturbation scheme, we thus specify du’ /dn = 0 on
lateral boundaries (i.e., zero perturbation velocity gradient) and test the
effects of such open BCs on results of the above test case. To test model
behavior over several spatial orders of magnitude, for Ly > A and L, < A,
we vary the computational domain length with respect to the wavelength
as, Ly = A,2A,...,2% 4 and L, = 1,1/2,...71/24. In order to preserve
Ax and not alter the discretization error, this has the effect of changing
the number of gridpoints at the same time. Specifically, for the large
domains, we use Ax = A /32, and for the small domains, Ax = 4/256.

In Fig. 7, we see that applying simple open BCs we achieve similarly
good results for steady streaming velocities, as in the periodic domain,
a quarter-wavelength from the edge of the domain. The gradient-free
boundary condition is thus reasonably successful, as long as the NS do-
main is at least a wavelength long in the main flow direction. Simulating
steady streaming in smaller domains would most likely require more so-
phisticated BCs.

Sediment Transport over Ripples

In order to validate the proposed velocity perturbation method for sedi-
ment transport over complex bathymetry, we consider the Mr5b63 exper-
iment of van der Werf et al. (2007), who tested bi-harmonic (vertically
uniform) oscillatory flows over a moving sandy bed, with free stream
(forcing) velocity given by:

Uoo(t) = Uj cos(@t — ) + Up cos(2mt —27) (19)

The phase shift y = arccos[(1/U? +8U35 — U;)/(4U,)] is used so that at
a starting phase @t = 0 the forcing flow velocity is also zero. In exper-
iments, the sand grain diameter was dsg = 0.44 mm and the oscillatory
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Fig. 6: Relative error in far-field Eulerian streaming velocity.
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Fig. 7: Eulerian drift predicted by NS solver versus theory using open
BCs for domains of length 84, 44, 24, and A (upper) and A, 1 /2, 1 /4,
and A /8 (lower).

flow had a period T = 5.0 s, with the first and second harmonics of the
forcing velocity amplitude being U} = 0.54 and U, = 0.095 m/s, respec-
tively. The test generated ripples with a wavelength of 27/k = 0.41 m,
and a height of n =0.076 m.

The LES had a domain of size 0.41 x 0.35 x 0.1 m, discretized with a
grid of 64 x 64 x 32 points, with periodic boundary conditions in both the
streamwise and spanwise directions. Here we model this case by consid-
ering flow over an idealized periodic ripple profile defined parametrically
as:

x:éfgsinké and y:+gcosk§. (20)
which we then match to the dimensions of the experimentally generated
ripples. The computational grid, over the (£, ) domain, is given by the

conformal mapping:
x:zg—gsinkéeka and y:XJrgCOSkéeikl 2D

A uniform grid spacing was used over the £ direction and an exponen-
tial stretching was used over the )y direction (with a stretching ratio of
1.05). The governing equations were integrated in time over 10 periods
of oscillation using a timestep of 0.5 ms (i.e., 100,000 timesteps). One
can show analytically that combining Eq. 19 with Eqgs. 21 results in the
inviscid velocity:

1— %nkcos(k?j)exp(—kx)
1 —nkcos(k&)exp(—kyx) + }ﬁ'[zk2 exp(—2ky)
— 3 nksin(k&) exp(—ky)
1 —nkcos(k&)exp(—ky) + }mzkz exp(—2ky)
Ripple Shape. In Fig. 8, comparing the shape of the experimentally gen-

erated ripple profile with the analytic expression that we use for the LES
domain, we see that the idealized ripple being used is steeper than the

ull(éva):uw(t) (22)

(&, %) = Ueo(1) L @23)

experimentally generated one. This could be corrected in future work by
better matching the domains or numerically predicting the ripple profile

(and inviscid flow), by taking into account a mobile seabed, but in our
present investigation, we only consider a fixed seabed.

Velocity Field. In order to compare NS-LES results with experiment, we
first process the particle image velocimetry (PIV) data of van der Werf
et al. (2007), similarly to van der Werf et al. (2008). Specifically, the
PIV data is a record of the sediment velocity, which is not necessarily
the same as the fluid velocity, and no data was recorded in some gaps at
the edges of the domain (e.g., from not having a high enough sediment
concentration to obtain clear results). We corrected for these issues by
horizontally applying a linear interpolation to the velocities at each height
onto a 6.31 mm grid (i.e. 64 points per ripple wavelength). The velocity
data was also assumed to be periodic, so that the gaps at the edges of the
domain accordingly were filled in. Finally, the instantaneous horizontal
average of the vertical velocity was removed at each height, correspond-
ing to the application of mass conservation.

Fig. 9 shows an overall good agreement between velocity fields in NS-
LES simulations and experimental results, at a phase angle of wf = 120°
at which point a lee eddy or recirculation vortex exists. [Similar results
(not shown) are found for all phases.] The biggest discrepancies may be
due to the ripple shape — the sharper ripple crest in simulations results
in a larger spawned eddy. The other likely reason is that the log-layer
assumption used as a boundary condition is invalid when there are strong
pressure gradients, which prominently occurs at the ripple crest.

Suspended Sediment Concentration. Fig. 10 shows there is several
times more sediment suspension predicted by the LES than in experi-
ments, but the general pattern and trends of the SSC field are rather sim-
ilar. This could be due to a number of factors. In experiments, van der
Werf et al. (2007) mentioned that the SSC was measured with an acoustic
backscatter system (ABS), which may not have reported measurements
very close to the bed where SSC would be higher but, first and foremost,
that the ABS is only accurate to a factor of 2, which could account for
much of the difference. In simulations, in addition to the different ripple
shape, the LES ignored the effects that the SSC has on water density,
which could be important particularly at the grid cells directly adjacent
to the sand bed, where occasionally the SSC in small regions reaches
values as high as 30% (which no-longer have negligible effects on fluid
density). Although sediment is lifted from the vortex ripples in the eddies
that are shed off of the ripple crests, the SSC near the bed could be much
more similar than implied by Fig. 10.

y/n

Fig. 8: Ripple shapes used for LES (-), and experimentally measured
ripple profiles (-) from experiment Mr5b63 of van der Werf et al. (2007).
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Fig. 9: Sample comparison of velocity field measured by experiment (left) and predicted by LES (right) at roughly @t = 120°.
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Fig. 10: Sample comparison of suspended sediment concentration (C) measured by experiment (left) and predicted by LES (right) at roughly ot = 120°.

CONCLUSIONS

A perturbation approach to the Navier-Stokes (NS) equations, imple-
mented using a Large-Eddy Simulation (LES), is validated for wave-
induced BL flows and related sediment processes. This perturbation tech-
nique is likely to be particularly useful for coastal engineering problems,
where the region of the seafloor requiring full NS modeling may be rel-
atively small. Preliminary validation for turbulent oscillatory BLs was
reported by (Grilli et al., 2009). Here, we considered this and additional
cases of laminar steady streaming and oscillatory BLs over ripples.

We first showed the ability of the LES to predict the mean flow, wall
stress, and second-order turbulent statistics for turbulent oscillatory BLs
over a rough wall. All our results compared favorably with the experi-
mental data of Jensen et al. (1989). Our simulations with dynamic SGS
showed somewhat better agreement with the measured turbulent intensity
far from the wall than the recent results of Radhakrishnan and Piomelli
(2008). This may be due to using a gradient-free boundary condition, as
opposed to setting the vertical velocity to zero in the free-stream, and to
increased model accuracy when using the perturbation method.

We considered the two-dimensional case of a wave-induced BL. At
first we limited our consideration to spatially-periodic boundary condi-
tions in both lateral directions. Using linear wave theory to force the flow,
we found that the computed steady streaming velocities in the BL closely
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matched those theoretically predicted by Longuet-Higgins (1958). By
varying the number of vertical gridpoints, we further showed an approxi-
mate first-order convergence to the theoretical solution. We then consid-
ered the effect of open boundary conditions for non-periodic domains,
by specifying du’ /dn = 0 on lateral boundaries. This is one of the sim-
plest open boundary conditions available and very similar to that used by
Gilbert et al. (2007) in earlier work. We found that, in all cases consid-
ered, the steady streaming velocity agreed well with the theoretical solu-
tion, except with a quarter-wavelength from the open boundaries. This
distance, over which the solution adjusts itself, was largest on the side of
the domain where the waves were propagating from.

The LES was also shown to correctly reproduce some the major fea-
tures of the flow over vortex ripples, including spawned lee eddies. We
reprocessed data from van der Werf et al. (2007)’s experiments in order
to validate the velocity and suspended sediment concentration fields. In
particular, we considered a test case with vortex ripples were generated
over a sandy bed, inside an oscillatory flow tunnel under rough turbulent
conditions. Overall agreement was found to be reasonable, in view of
the reported experimental errors. Note, our model results also compared
favorably with the recent model results of van der Werf et al. (2008).

Future work may extend upon these results, in particular, by consider-
ing a seabed which moves over the course of the simulation in response
to sediment pickup and bedload transport.
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