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The paper presents a computational model for highly nonlinear 2-D water waves in which a high
order Boundary Element Method is coupled with a high order explicit time stepping technique for
the temporal evolution of the waves. The choice of the numerical procedures is justified rom a
review of the literature. Problems of the wave generation and absorption are investigated. The
present method operates in the physical space and applications to four different wave problems are
presented and discussed (space periodic wave propagation and breaking, solitary wave
propagation, run-up and radiation, transient wave generation). Emphasis in the paper is given to
describing the numerical methods used in the computation.

Key Words: Boundary Element Method, nonlinear wave analysis, solitary wave, transient wave

generation, overturning wave

1. INTRODUCTION

1.1. Numerical modelling of ocean waves

The numerical modelling of ocean wave situations that
aims at analyzing their nonlinear interaction with
engineering structures will always require a relatively
large degree of spatial resolution and, hence, can only
cover a limited area in the neighborhood of the structure.
Therefore such models will always contain three essential
elements:

e A generation of the waves to be studied. The
generation simulates the waves that in the nature just
propagate into the region that has been chosen for
modelling.

e An element that numerically propagates the waves
through the region of computation and accounts for
their interaction with structures inside the region.

e A mechanism which prevents that waves propagating
outward, toward the boundary of the computational
region are reflected back into the region in a
non-physical manner (far field representation).

Those are essentially the same elements we find in a
traditional laboratory wave tank. Therefore the numeri-
cal modelling of nonlinear ocean waves can be considered
in many respects as the computational equivalent of a
traditional wavetank (a ‘numerical wavetank’). Several
techniques have been developed for all three elements in
the list, and a brief literature review is given herealter. In
most studies so far, however, starting with Longuet-
Higgins and Cokelet?® the generation and absorption of
the waves (lst and 3rd elements) have been entirely
avoided by assuming the waves to be two-dimensional
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only and to be spatially periodic in the direction of their
propagation.

1.2. Solution technique

The Boundary Integral Equation Method (BIEM) and
the Boundary Element Method (BEM} have been very
successfully used in the selving of a large number of linear
two- and a few three-dimensional wave problems. For
reference one can consult the reviews by Shaw?! and Liu
and Liggett?*. In such problems, the method offers the
great advantage of describing the flow by its boundary
values only (reducing the problem dimensions by one,
and thus the computing time}. Moreover, unlike the
situation in many structural analysis probiems, in the
analysis of wave motions the boundary shape, and the
velocity or velocity gradient on the boundary represent
the only information needed in the computations. In
those problems, the BEM has thus showed to be up to one
order of magnitude faster, for a same accuracy, than
domain discretization methods, like the Finite Element
Method (Grilli*!!3).

Applications of BIEM or BEM to nonlinear waves lead
to computational models which essentially consist of two
coupled parts. The first is a solution of the Laplace
equation (the continuity equation in a nen-viscous
irrotational fluid model), at a given time. The second part
is a forward stepping to the next time level at which the
Laplace equation is again solved and so forth.

The time stepping consists of integrating the two
nonkinear free surface boundary conditions (kinematic
and dynamic) and the relevant boundary conditions
along the rest of the boundary and, thereby, establishing
both the new position of the boundary and the relevant
boundary conditions along the new boundary at the next
time step.
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For the far field representation, several methods can be
used, including the coupling of interior and exterior
solutions.

2. BRIEF REVIEW OF THE EXISTING
SOLUTIONS

2.1, The first numerical solutions

Reviews of analysis of highly nonlinear wave problems
can be found in Yeung®® and in Liggett and Liu?'. The
first contributions to the method can be divided into four
parts.

1. The first successful numerical computation of 2-D
steep deep water surface motions and overturning
waves was made by Longuet-Higgins and Cokelet®®.
In this first publication the Laplace equation was
solved by a BIEM based on 3rd Green’s identity, and
the idea was introduced of working in a conformally
mapped space. In the time stepping they used a
lagrangian description of the free surface, but
approximated the partial differential expressions of
the free surface boundary conditions by ordinary
differential equations. The integration in time was
then performed by an Adams-Bashforth-Moulton
method and initiated by a Runge—Kutta scheme. This
approximate time updating procedure induced
sawtooth oscillations on the free surface which
required smoothing procedures to be introduced.
Many applications of the method can be found in the
literature, up to very recently, but without any further
real innovations except, perhaps, the extension to
finite depth by New, Mclver and Peregrine?®,

2. Vinje and Brevig** modified the previous method by
using a Laplace solution based on Cauchy’s complex
integral theorem applied to the physical space, and
studied finite depth breaking waves and forces on a
submerged pipeline (Brevig, Greenhow and Vinje*).
The method created less sawtooth oscillations. It was
also well suited to less time-consuming iterative
methods for solving the matrix equation. Their use of
both velocity potential and stream function te obtain
a problem formulated entirely as a Fredholm
equation of the second kind was in fact already
outlined by Svendsen?3.

3. The method of double layers has been utilized by
Baker, Meiron and Orszag', who computed finite
depth breaking waves and derived an efficient
iterative method of solution.

4. Dold and Peregrine’ developed an accurate explicit
time stepping method by using a higher order Taylor
expansion in time for the free surface position in a
lagrangian formulation. To get the Taylor series
coeflicients, they solved a succession of Laplace
problems for the velocity potential and its time
derivatives, each problem solution providing the
nonlinear free surface boundary condition for the
next one, Their methed for solving Laplace was
similar to the one by Vinje and Brevig, but in a
conformally mapped space. In addition to being of
high order, their method of integration in time also
correctly accounts for the inlluence of the derivatives
along the surface, which were only included to lower
order in Longuet-Higgins and Cokelet’s time
stepping method. The methed allowed them to use
large time steps and provided a very good stability

(permitting them to avoid almost any smoothing),
and it was an order of magnitude [aster than
Longuet-Higgins and Cokelet’s method, mainly due
to their large time steps. :

For completeness, reference is also made to the implicit
iterative time stepping methods developed by Liu and
applied by Kim, Liu and Liggett'? and Liu and Liggett?3
and the error correcting method developed by Nakayama?’.

2.2. Solutions in the physical space

As mentioned, all the contributions described above
studied space periodic waves. In addition, they used
complex variable relationships such as conformal
mapping or the Cauchy theorem. Thus, they were also
limited by nature to two dimensions.

In order to analyze waves that are not period in space, it
is necessary to work in the physical space, which provides
the additional advantage that we are able to extend the
method to three dimensions and to introduce structures of
arbitrary shape into the domain. Vinje and Brevig** also
worked in the physical space and could introduce
structures. Their method has been very successfully used
and improved by Lin, Newman and Yue®?.

The combination of physical space and 3-DD problems is
still very rare, and poses [ar-field representation problems
(see below). Isaacson'® studied the 3-D nonlinear forces
on structures. He used a BEM based on a 3-D free space
Green’s function, and a time stepping similar to that of
Longuet-Higgins and Cokelet, and Dommermuth and
Yue® studied an axisymmetric heaving problem using
equivalent procedures in an axisymmetric formulation
which essentially is a problem that can be described by
two dimensions. Romate?® developed a 3-D panel method
he applied to weakly nonlinear waves.

2.3. Wave generation

The methods listed above can propagate the wave in
space and time but, as already pointed out, it is necessary
in the physical space to generate the wave motion and to
absorb it.

If the waves are generated by simulating a wave maker
or a body movement, singularity problems are created at
the conftuence of boundary conditions (Kravichenko'®)
or numerically speaking, corner problems. To remove this
singularity, Lin, Newman and Yue?? suggested to specify
both the potential and the stream function at the body
part of the corner. Doing so, they could generate
nonlinear waves by a wave maker. Dommermuth and
Yue?®, following the same principle as Lin et al., imposed
both the potential and its normal derivative at the body
part of the corner in their BEM formulation.

2.4. Absorption and radiation af the waves

For linear waves absorbing boundary conditions have
been developed by Engquist and Majda®. The absorption
of waves by damping was first used, for linear waves, by
LeMehaute?®, A similar idea termed a ‘sponge layer’ was
introduced, for Boussinesq equations, by Larsen and
Dancy'?. Hybrid methods coupling the BEM solution
with exterior solutions based on eigen function
expansions or on flat bottom numerical solutions, have
also been very successful for linear waves (Liu and
Liggett?*, Grilli*!:12:13),

For nonlinear waves of non-permanent form, however,
no general absorbing or radiation condition is available,
Some rather heuristic boundary conditions have been
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" used instead, like Isaacson'®, who simply imposed a zero
velocity on the lateral boundary of the compuiation
{corresponding to a reflecting wall), which limited the
validity of the solution to a few wave periods. Qiher
authors matched exerior linear solutions at a finte
distance, like Lin, Newman and Yue?? who coupled
successfully a 3-D exterior flat bottem linear solution to a
nonlinear 2-D numerical solution. Their solution was
claimed to work for an indefinite time, without producing
reflection, because of the energy decay in the 3-D radiated
field (the corresponding 2-D solution did not work).
Dommermuth and Yue® used the same method for the
forced heaving motion of a cylinder,

2.5. General features of our solution

In the present paper, the Laplace equation is solved in
the physical space, since we intend to generate
non-periodic waves and 1o absorb them. The presentation
is limited to problems in a 2-D model, but can in principle
be extended to 3-D problems.

The solution of the Laplace problems is based on a
non-complex method which is, in our case, a high order
BEM, using the [ree space Green's function.

The time stepping is equivalent to Dold and Peregrine’s
which is a stable and fast method. Besides, it has the great
advantages of being explicit and without the approxi-
mations of the method introduced by Longuet-Higgins
and Cokelet.

The wave generation is performed by simulating a
wavemaker movement in the model, or by imposing
extended periodicity conditions {space periodic wave
train). But other methods like the generation by internal
sources (Brorsen and Larsen®) could equally well be
implemented.

Wave absorption has so far only been implemented for
constant shape waves, like the solitary or simple period
waves.

Finally the very high overall stability in time of the
above described method, permitted us to avoid
smoothing procedures in any of the examples presented in
section 5,

3. MATHEMATICAL FORMULATION

3.1. Governing equations and boundary conditions

We assume an inviscid irrotational flow (for the time
being restricted to 2-D) described by a velocity potential
$(x, ), and the velocity field is given by u= V¢ = (u, w).
Thus, the continuity equation in the fluid domain £Xt)
with the boundary T'(¢) becomes a Laplace equation for ¢
(Fig. 1),

Vi¢=0 in Q) (1)

Using the free space Green’s function G(x,x,), this is
solved as the boundary integral equation,

a¢ aG(x9 xl’}
= — —p— 2
a(x)(x) L[ 3n Olex)—¢ =20 ar ()
where x and x, are the coordinates of points on the
boundary, and (x,) is a peometric coefficient.
On the free surface T {t), ¢ satisfies the kinematic
boundary condition,

Dr /@
E=(E+u.V)r—u on [,(t) (3)

with 'r, the position vector of a lree surface fluid particle.
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Fig. 1

Thus

Dr
T

and the dynamic free surface boundary condition,

on Ty{1) (4)

D¢ 2 pa
e =~ 97+ UVl p
where g is the acceleration due to gravity, z is the vertical
coordinate (positive upwards and z =0 at the undisturbed
free surface), p, the pressure at the surface and p the
specific mass of the fluid.

In case of wave generation by a wave maker, the normal
velocity is continuous over the surface T, {t) of the paddle.

on I{¢) (5)

V¢.n5@= Vix,t) on I;,(t) {6)
on

where n is the unit cutward normal vector, and V the wave
maker velocity. On a stationary bottom I}, (6) is satisfied
with V=0,

In case of the absorption of a wave of permanent form
with velocity ¢, the Sommerfeld radiation condition on
the boundary T,,(t) reads,

dp_ _19¢
on cdt

whereas a reflection condition will be expressed by (6)
with V=0.

In case of a space periodic wave train, T, (1} and T} ,{¢)
are vertical boundaries following the [ree surface wave
particle motion. On those vertical boundaries we impose
the periodicity conditions,

on [,(1) (7)

o¢ __0¢
n (5, ()= ~an (L2t) (8)
AN =G (1)) + V(t)al 9}

where V,{t) is the velocity of a current uniform over the
depth, L the wave train length and a is an integer number.

3.2. The time stepping method

The time stepping consists of integrating the two
nonlinear free surface conditions (4) and (5) to establish,
both the new position of the free surface and the relevant
boundary conditions of Laplace’s problems at the next
time step. Following the approach used by Dold and
Peregrine’, the updating of Ty(t} is based on a truncated
Taylor expansion in a lagrangian formulation which
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corresponds to following a fluid particle,

(A1) D'r(r) .t
T +O[(A) "] (10}

r(t+ A =r(t)+ E

(Az)* DMr(e), 1)
T D
+O[A) Y] {1

To get the coefficients in the expansions, we solve a
succession of Laplace problems for the velocity potential
¢ and its time derivatives, each problem solution
providing the nonlinear free surface boundary conditions
for the next one. Indeed, the Laplace equation (1) is valid
for all the time derivatives of ¢b. In our model, the series
are presently limited to the second order terms (n =2}, but
the procedure described can in principle be extended to
higher order terms.

The expansion coeflicients are expressed in terms of ¢,
d¢p/an and §@/ot 8n, and of their derivatives along the
free surface. We adopt a local coordinate system at the
free surface defined by (s, n), the tangential and normal
unit vectors to the free surface (Fig. 2). This formulation
provides simpler expressions for the high order
derivatives than the (x, z} system. Using,

lr(t+ Ar), 1+ A= lr (1), £} + Z

Ox .
cos ﬁ-—g, sin f=—
we obtain by (4),

2 [Sens Bs s binn o

The continuity and wrotauonalny c0nd1uons yield,

w_ o Po__
gz  dx st on?
ow  ou Fo ¢
ax oz o nds dson (13)

and after some calculations we get,

D (3¢ 0pd°¢ 6’¢)
F‘[(a:as”as o Y onamas) P

dp*p dpdd Pp 3P
*(aaT‘mT‘m_'V‘f"’)““ﬁ

Fo_0b0¢ 00 36 o
(ﬁ ot T dsanas |V¢l2) cos §
¢ 099 3¢ 3¢ )
+(a:as+ os a2 T ananas) P (14)

Fig. 2
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In the same way, D¢p/Di is oblained from (5} and we then
get,

Di¢_0¢ 3¢  0¢ I'¢ , 0¢ (50552‘1’ Lo 3’¢)

D 3sdtds onor 8:1 ds \ 3s 0s2  on dnds
o {0p P o 3

n\on ds° s onos
o op . IDp.,
._g(acosﬁ+—a—ssmﬂ) > Dt (13)

where Dp, /Dt is the total rate of change of the surface
pressure in time. After solving the Laplace problem at
tume ¢, for ¢ and J¢p/dn, we express the boundary
conditions for the d¢/dt and #*¢/0tdn problem. By
(5}-(9) and (13) we get,

o . 2_Pa

e LAY (16)

¢

=0 onh (17)
For the wave generation,

¢ 8Vix,1)

Zon o I () (18)
and using (1),

aqu az¢

al an a rw) on l-;l(t) (19)

- For the space periodic wave train,
X3 __ &
wra Tl = === (L) (20)

2 =2 0+ Zl4

21)

4. NUMERICAL IMPLEMENTATION

4.1. Solution of Laplace's equation by a high order
BEM

4.1.1. Principle of solution

Provided we know the initial conditions at given time,
t.e. the domain Q) and the solutions to the above
mentioned Laplace problems, we can update the free
surface position and the free surface potential to the next
time step. A first Laplace probiem is defined for ¢ and
d¢p/én by (1) and (5)-(9). Its solution provides the
boundary conditions of a second Laplace problem for
/ot and @P/otdn. Both Laplace problems are
expressed in the same geometry Qi) which makes their
numerical solution very [ast. In case of the absorption
condition (7) the first Laplace problem can not be solved
directly, because of the unknown value of 3¢/t on T}, at
the new time step. An iterative predictor—corrector
method described in 4.3 is implemented for that purpose.
Since each iteration is performed in the same domain
geometry, it again makes the method very efficient.

4.1.2. Boundary Integral Equations (BIE)

We solve the Laplace problems for ¢ and d¢/ot, by a
Boundary Element Method (BEM}, based on (2). A set of
N collocation nodes is used to describe the variation
along the boundary (Brebbia, Banerjee and Butter-
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field?). Thus we write

. 3G du_. 4G
a(x,)u{x,}:JAr. ’:anG—ua ]dr+J‘r‘ |:6 G- ua ]dr

I=1,...,N; 22)

with 1 as the unknown field (either ¢ or d¢b/dt) and &, dufon
some values prescribed by the boundary conditions.
G=G(x,x,) is the Laplace problem Green's function
given in two dimensions by,

1
G=-—1
5. logr
0G__1rm
on 2nrt
=|r}, r=x-—x, (23)

r is the distance from the integration point x to the
collocation point x,, belonging to the boundary I T, is all
parts of the boundary where du/dn is imposed {Neuman
condition), and I all parts where & is imposed (Dirichlet
condition). Depending on the case we get (Fig. 1):

For a wave generation problem,

L=1,,ulul, ;=T (24)
For a space periodic wave train problem,
LeL, WL L=Lub, (25)

The a(x,) coeflicients are functions of the interior angle 8§
of the boundary at x,,

)= 26)

4.1.3. Discretization

To perform the integrations involved in exact equations
of the type (22) the boundary is divided into elements.
Within the k-th element I't both the boundary geometry
and the field functions (&, du/on) are discretized using the
same high order shape functions (isoparametric ele-
ments). The number of elements is M and there are m
nodes per element. These shape functions are analytically
defined on a simple reference element I, to which the M
‘physical’ elements, of complex shape, are related by a
change of variable {Fig. 3}.

The use of high order shape functions increases the rate
at which an approximate solution converges to the exact
solution, when reducing the normalized size h of the
discretization, i.e. the average distance between two
boundary nodes. This rate is indeed proportional to A™ for
an m-node element (Nam Seo?®).

The cubic splines, used by some authors (see e.g.
Liggett and Salmon??), provide a good accuracy because
they ensure the inter-element continuity of the slope.
However, they have been demonstrated to be time

4(8)

consuming {Nam Seo?®*), and they require the specifica-
tion of the slope at the extremities of the free surface,
which is unknown in case of wave generation in the
physical space. -

The intrinsic coordinate on the isoparametric reference
element I, is £ and £e[— 1, 1]. The variation of the fields
X, u, gufon over each element of I" is described by their
nodal values x;, U;, dU,/0n respectively, where j numbers
the nodes wnhm each el’cmenl and by the shape lunctions
N(£) as,

X=N,-(C)x,-
u(€)= N0, a“@ ,(:)—
ji=1,....m; onQ 27N

Notice that the summation conveation is used for re-
peated subscripts. To determine the coeflicients in the
shape functions, we require that u(£) in (27) takes the
value U, at the nodal point x,, that is,

u(é(x;))= Nj(éi}Uj= U

We get for the i-th node of an m-node reference element,
§i=(2i—m—1)/(m—1)
N{&)=46; Li=1,....m; on I (28)

where §;; is the Kronecker's symbol.

N (&) 15 assumed to be a polynomial which hence is of
degree m—1 in &. Therefore (28) gives the corresponding
polynomial coeflicients. For example, in case of a cubic
reference element (m=4) we get,

N(§)=16(1-8)(9¢* - 1)

N =%%(1-¢H)(1-3¢)

N3 (§) =161 - &)1 +3¢)

NA(&)=7s(1 +8)(9¢* - 1) (29)
4.1.4. Transformation of coordinates, high order
s-derivatives

The change of variables from the k-th physical bound-

ary element of I": T% to the reference element I, (Fig, 3), is

described by the Jacobian of the transformation, which by
(27) is,

a5 [(dNGE Y faN© \TTP
WO= [(_fé""") +( it )}

on [ (30

In the same way, the cutward normal vector is given by
(Fig. 2),

n(g)={(—sin §,cos f)=

j=t...om k=1, M

! [_de(g)z

dN (&)
o x"]

¢ U ag
8N

Using v to denote cither of the variables ¢, dg/dn or dp/ot
and V; to represent their nodal values, we have,

d_ 1 dNQ),
3 Jq8 dE !

22 0

25" (B ae?
L dNOENGE)
L@ g

{cos Bx;+sin ﬂzi)] v,
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s (J (&) d&?

from which the various s-derivatives in {14) and (15) can
be determined.

The description (27) of the fields inside each element,
only provides a continuity between the elements of the
fields themselves, not their derivatives. For the evaluation
of the s-derivatives (32), we use a sliding 4th order
element, independent of the above described discretiz-
ation. It provides a local continuity on the boundary I';, of
at least the 2nd s-derivatives computed at a nede !
identified as its central node. After each computation, the
whole element is moved forward to the node I+1.
However, it will have to remain in the same place for both
the three first and the three last nodes of T, (except when a
space periodic problem is considered),

(cos Bz; —sin fx;) (32)

4.1.5. Discretization of the BIE
The equation (22), discretized by (27) and (30), leads to
alinear algebraic system of equations. For consistency the
boundary conditions u, and du,/dn have been discretized
in the same way as u and du/én. Here s refers to nodes on
boundary section [, (total N nodes) and p refers to nodes
on I (total N nodes). We get,
oU, ou —
[cp! + Kn,,] Up - Kd,, _a7= KJ, —5;2 - l:csl + Kn,]Us

(33)
with the following definitions (using j for s or p),
M aG X M
K,=Y f Ny XD e 5
k=1 Jr on k= |
M M
Ki= 2 | NAOGK(E), x W (&ME= Y 1,
k=11 k=)
jd=1,.. N s=1,..., N,
p=1,...,N; Nr=Ng+ N, (34)

K, represents integrals with 0G/dn and K, integrals with
G

The term ¢, represents a diagonal matrix. Its diagonal
¢y is equivalent to the geometric coefficients «(x,). Instead
of computing the ¢, by a direct numerical evaluation of
the angles & in (26), these coeflicients are deduced by
considering a particular Dirichlet problem where a uni-
form field & is applied on the whole boundary T=T,
(Brebbia®). In such a case, the normal gradients du/on
must vanish at each node. Thus by (33),

[cj,+K,,_]UJ-=0, U;=c,#0 (35)
or by isolating the diagonal terms of (35),

[CH+KN.,]= - E Ku,
jtat)

which provides the diagonal term of a row of (35) by
minus the sum of its of-diagonal coefficients. This method
can be shown to be of the same nature as the method
suggested by Hsiao and McCamy!3, in which the condi-
tioning of systems such as (33) was improved by introduc-
ing a correction term ¢ into a Dirichlet problem imposing
the exact fulfilment of a zero-global-flux condition. The
comparison of numerical results in which the ¢, were
directly computed or deduced from (36) showed, in our

=1, ., N¢ (6)

case, a decrease of the system matrix condition number of
more than one order of magnitude.

Finally it should be pointed out, that in {33) the only
approximalion is the use of shape functions to interpolate
inside the M elements.

4.1.6. Computation of matrix terms

Due 1o the high order shape lunctions, the integrals
involved in (34) can not be caiculated analytically on each
element. When the collocation node I doesn’t belong to
the integrated element, a standard Gauss—Legendre
quadrature is used. When it does belong to the element r
becomes zero at one of the nodes and special techniques
are used for computing both I} and I, (Grilli'*; Bruch,
Grilli and Lejeune®; Grilli'?).

In the intervals where r=0, we extract the singularity
by adding and subtracting logié—¢&,|. For each of the
integrals,

15,=J GIEWHEME,  fHE=N (V.

in (34), we get after some transformations,

1 +1 zr (5;)
k 1 i ki et
e 2“,[—: |:Og|‘f'—fa|fj(é)

+¢p log éplfft{Cpl. &'—¢,)
+6&,2log Cp:fj*(épzf +&,1 )] d¢

1 1
w2 [ sie-26,0)

+ & fHEH26,08)) loggdc' o

with £, given by (28), in the case of a m-node element, and
=&+ 1)2, £,,=(&—-1)/2. In (37) one can easily
sﬂow, that the first integral is not singular. Thus a
Gauss-Legendre quadrature formula is used. The sec-
ond is weakly singular and can be integrated by the
Berthod—Zaborowsky quadrature formula (Stroud and
Secrest®?), which provides the same error properties for
the singular logarithmic kernel as the Gauss-Legendre
formula does for non-singular integrals.

The accuracy of the computation of If,’ also needs to be
improved when r =0, although this integral is not singu-
lar. This integration is based on a change of variable,
similar to the one performed by Longuet-Higgins and
Cokelet2¢,

2(&) -z,
x(€)—x,

coupled to an analytic integration by parts, which makes
it possible to avoid any numerical s-derivation. We have,
for an m-node element (Fig. 2), that,

w(&)=arctan (38)

v _ | 9G()
= f “an- NG
becomes,

| ' dN,
h=5 [m(—l)alrmna..ﬁ j -—d'::{—é)mé)dé] (39)

Since g, can be singular when x(¢) = x,, the formulae (38)
and (39) are only valid for elements in which the ‘element
slope’ (slope of a straight line from node 1 to node m) is
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< lpy (1) £45°. I this is not the case, v and z must simply be
permuted in the definition {38) of g, and the right hand
side of (39) multiplied by —~ [. The integral in (39) is
regular and again performed by the Gauss-Legendre
quadrature formuia. Terms such as (39) are zero for
straight line elements, and very small for gently curved
ones. However, due to the high curvature in the crest of a
wave approaching breaking, those terms can become very
important and require a lot of care.

{n each element, we use N, integration points, and N,
is chosen to be even in order to avoid having integration
pointsat {=0. In the examples shown in section 5, up to 8
integration points have been used (for the case of m =4).
In regions of I'; with high curvature and concentration of
nodes, however, we have used 12 integration points
mainly because of the rapid variation of the jacobian
within the elements. This problem could also be solved by
redistributing the nodes (‘regriding’, Dommermuth and
Yue®). Properly done using the interpolation functions
already in the computation this would not represent an
actual smoothing.

4.2. Behavior near the corners

In the domain corners 4 through D (Fig. 1) we use
double nodes to describe the integrand of (22). The
coordinates of the two nodes are the same but their
normal vectors dilfer and reflect that they belong to the
two different parts of the boundary. Also d¢gh/dn is different
at the two nodes of a corner. In the two representations of
(22) thus created at points with the same position,
continuity of ¢ is imposed.

At C and D this simply replaces one of the representa-
tions of (22). At the free surface corners A and B, the
procedure depends slightly on which problem is con-
sidered. In the study of periodic waves, periodicity
conditions are used to control the unknowns {in addition
to continuity in ¢). In the case of wave generation the
local boundary conditions are used to replace one of the
representations of (22). For reasons of space limitations
the details are left our here.

The introduction of these ‘compatibility’ conditions at
the double-nodes reduces the condition number of the
system matrix significantly, and the accuracy of the
solution is thereby dramatically improved close to the
corner nodes. The integration of the rapidly varying ¢ in
the corner region {shown to be theoretically logarithmic
by Kravichenko'?) in case of the wave generation is
automatically accounted for in our model by the
Berthod-Zaborowsky integration technique mentioned
above.

4.3. Absorption of a constant shape wave

The wave absorption on [,, in the case of constant
shape waves, is performed by using the implicit boundary
conditions (7} and (19). The [oliowing iterative method is
implemented for that purpose. Alter updating the domain
to the new geometry €t + At), the two Laplace problems
for ¢ and d¢p/ot are solved at time ¢ + A, starting from a
first prediction of 6¢b/Ot given by its value at time ¢. After
predicting d¢/t on I,,, the Laplace problem for ¢ is
solved by using (7), and then the one for d¢/dt by using
(19). Hence a corrected value of 9¢p/dt is computed on T,,,
equal to the mean of its previously and newly computed
values, The process is repeated until an iteration criterion
is reached.

It must again be pointed out, that the domain geometry
remains the same during all the iterations, Thus the latter
only constitute new ‘loading’ vectors of (33), which are
solved very fast. :

4.4, Updating of the lateral houndaries

For a solution in the physical space, the lateral
boundaries I, and I, (Fig. 1) must be updated after each
time step. In the periodic wave train problem, these
boundaries remain vertical and follow the movements of
the corner nodes 4 and B. However, small numerical
ecrors occur after each step. Their effect of invalidating the
periodicity of the wave train is removed by using the mean
value of the movements in 4 and B and similarly for ¢pand
its derivatives with respect to ¢, s and n. In case of the wave
generation, I, follows exactly the wave maker move-
ment, while T}, is fixed in case of a reflection boundary, or
moves with the particles, in case of a constant shape wave
radiation.

4.5. Checks of accuracy

The global accuracy of the numerical scheme depends
on the two numerical processes we isolated before, i.e., the
solution of the Laplace problems at a given time, which
requires the use of a spatial discretization, and the time
integration which requires a temporal one. Each of these
processes can be separately checked.

A global check of the accuracy of the Laplace solution is
provided by the continuity error ¢, relative to the initial
volume V' of the domain Q,

ac=|: L%fdr] AV (40)

and by the condition number k, of the algebraic system
(33), which is an indicator of the well-posedness of the
problem boundary conditions. We have,

;.m“(K 'IKI"} {
= —
k [A"""{K,-fKu):| “h

with K, the system matrix of (33), and A™*, Jmin
maximum and minimum eigenvalues respectively.

A global check of the time stepping accuracy is
provided by the volume error g, refative to V', and by its
comparison with g. We have,

|

One of the most demanding tests for the entire pro-
gram, however, is fo let it propagate a steep nonlinear
wave of constant form determined, e.g. {rom a high order
stream function approximation (Rienecker and Fen-
ton®®). Results of such a computation can easily be
checked by calculating some characteristics of the wave
whose exact value are known such as:
the mean water level z,

.1

G

z
al Jp,

and the total energy E,, computed as the sum of the
kinetic energy E, and potential energy E,, where,

p d¢
E,=-L | o2
K ZGLJT¢5ndr

dx (43)
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The integrals of {43) and (44) can easily be computed by
introducing the discretization (27) and (30).

5. APPLICATIONS

The model has been applied to the four different situations
listed below, for which some preliminary results have
aiready been published (Grilli, Skourup and Svendsen!?).

1. The propagation of a periodic wave of permanent
form where we utilize the periodicity to close the
physical space (creating situations equivalent to
those studied by Dold and Peregrine?).

2. The propagation of a very steep sine wave which
rapidly develops into a plunging breaker (corre-
sponding to the situations examined by Longuet-
Higgins and Cokelet?%).

3. The generation of a solitary wave generated by a
piston type wave maker and its run-up on a slope (as
studied by several authors including Kim, Liu and
Liggett'™),

4. A transient wave generated by an articulated wave
maker (Lin, Newman and Yue??),

The results from the computations are briefly described
below. The purpose is to demonstrate the versatility, and
the accuracy of the approach. It is worthwhile to empha-
size that no smoothing procedures have been used.

5.1. Space periodic waves propagating in physical space

An initially periodic nonlinear wave is generated by
using the Rienccker and Fenton? method for waves of
permanent form (with 24 Fourier components). The
physical dimensions are 2 depth d =10 m, a wave height
H=1m, a wave period T=6.14s and a wave length
L=30.2m. This type of situation for which conformal
mapping is normally used with the BIEM and which has
been used in the past to study the overturning of waves.
The wave conditions tested were introduced at time ¢ =0.
A region of one wave length was analyzed, and the
program let the wave propagate in time. The boundary
was discretized into 30 cubic elements (m =4), with z total
of 92 nodes of which 49 were placed on the free surface.
The C.P.U. time was 0.38s (IBM 3090) per computed
time step.

Fig. 4 shows the computed free surface at different times
of one wave period. Time steps of At==T/20=0.31 s were
used for the results in this figure.

The continuity error |sil and the error of E; were less
than 2.107 % and 2.107*% respectively, in the Laplace
solution. The condition number k, varied between 245
and 283 during one period, or 2.7 to 3.1 times Np, which is
excellent. An error in total energy of 0.1% per time step
develops during the time stepping. This error can be
decreased by a reduction of the time step size. A time step
of T/30 reduces the error to approximately 8/27, and a
time step of T/60 reduces it further to 1/8 of that, This is
consistent with the third order accuracy of the time
Integration.

The fluctuations of the mean water level 7 over one
wave period are less than 0.005% of the wave height, even
for A= 7720, indicating the high degree of accuracy with
which the program operates.

0.8
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0.4

0.2 1

7 {m)
|~
P
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-0.2 1
—0.4 1
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-3 -20 -0 o 0 20 30
x {m)
Fig. 4. Periodic wave (d=10m, T=6.14s, dt=T/20).
Stream fet. wave (H/L=0.02), T/10 to T, each T/10

n ™)

7 0o 25
x (v

Fig. 5. Overturning wave (d=60m, T=840s,
di=T/120). Instability of sinusoidal wave, 0.0 to 3.15s,
each 0.63s

5.2. The breaking of a sinusoidal wave

Numerical experiments with the periodical version of
the model also included the development of a wave with
form and boundary conditions corresponding to a linear
sinusoidal wave. Longuet-Higgins and Cokelet?® found
that such a wave breaks very rapidly.

The physical dimensions were d=60m, H=20m,
T=8.40sand L =110 m. The discretization of the bound-
ary was the same as in the previous example, and thus the
C.P.U. time per step.

Fig. 5 shows the results of the numerical experiment up
to the last instant before the overturning of the wave.

"Time steps of At =T/120=0.07 s were used for the results
in this figure. The computations were continued further
with smaller At, and the initial stages of a plunging
breaker obtained (Fig. 6).

In this application, k, increased from approximately
3.3 times Np, in the beginning of the computation, to 4
times that value when the wave started overturning,
which is still satisfactory since all the computations are
performed in double precision.
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Fig. 6. Overturning wave (d=60m,
dt =T/500). Curves every .336 s, from 3.15 s

T=840s,

5.3. A solitary wave propagation study

Solitary waves have been studied by many authors
using various methods. Their reflection on vertical walls
or run-up on slopes have also been investigated and used
for comparisons. In the present study, a steep solitary
wave is generated by using a vertical piston type wave
maker, whose movement is determined [rom a [irst order
solitary wave theory (Goring'®). The physical dimensions
were d = 10 m for a computational region 200 m long. The
boundary was discretized into 38 quadratic elements
(m=3), with a total of 80 nodes of which 41 were placed on
the free surface. Time steps of 0.2 s were used. The C.P.U.
time was 0.58 s (IBM 3090} per computed time step. In
that time, 61% corresponded to the computation of the
BEM matrix (34), 12% to the solving of (33} for the two
Laplace problems, 2% to the time updating of the domain
to the next step, and 25% to postprocessing, printing and
saving lor plotting purpose.

For a solitary wave predicted by the first order theory
to be 0.2 times the water depth, Fig. 7 shows a comparison
of the generated wave with the analytical profile after
propagation over 10 water depths (t=18.4 5). The agree-
ment between them is excellent (the generated solitary
wave is 0.2005 times the depth). In Fig, 8, the wave is
reflected on a vertical wall modelled at x =200 m. Two
other run-up problems have been studied. Fig. 9 shows for
the last 100 m of the computation domain, stages of the
run-down of the solitary wave, alter its run-up on a 45
degree slope (the wave moves [rom up to down in this
figure), and Fig. [0 shows the last 30 m of the run-upona
15 degree slope.

In those problems the errors [¢] and |¢,| go up to
9.1075% and 0.01%, respectively, over the first 12
seconds. After that, however, they go down to less than
3.107%% and 0.001%, respectively. This is presumably
due to small inaccuracies introduced by the piston
movement which vanish when the piston stops moving (at
t=12s). Thefairly low value of k,, less than 13 times N in
all the computations, shows the well-posedness of the
problem boundary conditions, especially in the corner
double nodes.

The results can be compared with data available in the
literature. Qur vertical run-up (4.25m at t=27.8s) is in

E 14
0.: -1 Legend
o 30 3 ?n:) 150 00
Fig. 7. Solitary wave (Hfd=0.2, d=1i0m, dt=0.25s).
Time: 1845
451
)
£
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Fig. 8. Solitary wave (H/d=0.2, d=10m, dt=0.25s).
Run-up (90 deg.), 11 to 285, each Is

n (m)

Fig. 9. Solitary wave (H/d=0.2, d=10m, dt=0.2s).
Run-down (45 deg.), 29 10 32.6 5, each 4 5
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condition. However that only increased the C.P.U. time
per step by 15%.

5.4. Transient wave generated by a wave maker
Generation of a periodic wave from a state of rest
creates a transient problem, which has been studied by
Lin, Newman and Yue?*, and Dommermuth and Yue®,
Fig. 12 shows results for the case examined with
d=50m, a computation region 700 m long and a wave
period T=8.4s. The paddle wave maker was hinged at
the bottom and oscillated sinusoidally in time with a
maximum velocity of 2.0 m/s at the mean water surface.
Thirty-three time steps were used per wave period for the
wave which eventually became 7.1'm high and had a
steepness of 6.5%. The boundary was discretized into 59
quadratic elements, with a total of 122 nodes, of which 71

x {m) o were placed on the surface (approximately 13 per wave
Fig. 10 Solitary wave (H/d=0.2, d=10m, dt=0.205). ~ length). _ o
Run-up (15 deg.}, 23 to 32s, each ! s The situation in Fig. 12 was obtained after 35 s which is

almost as far as we have carried out the computation. It
only shows the first 500 m of the computation region.

257 Fig. 13 shows a blow-up of the first 200 m of the same
wave motion.
15 -
10 -
5_
E 0 jq\ ;‘\\ %
= v v Bagoc?”
_0-5 T F L) T T - —5-
90 W 130 150 P2
x {m) ~10-
Fig. 11. Solitary wave (H/d=0.2, d=10m, dt=0.2 5).
Radiation, 18 to 325, each I s -5
¥ 1 T L) 1
] 00 200 300 400 500
x ()
complete agreement with Nakayama's®” numerical re- Fig. 12.  Periodic wave {(d=50m, T=8.4s, dt="T/33 s).
sults and with experimental results. Qur 45 degree run-up Time: 35.00 s
(4.89 m at t=28.8 5) is slightly less than the one computed
by Kim et al'” (5.04m), and the same applies to our 25 -
run-up on a 15 degree slope (7.54 at =32.6 s instead of
7.66m}. In the Kim et al. study, however, the time 20 -
development of the run-up is performed in a manner 5
which, for small steepness of the slope may influence the
accuracy of the solution substantially while in our model, 101
we follow the particle motion exactly. Thus, we believe 5
that our results may be more accurate. 3
Finally, a radiation problem has been studied by rd 0 \W%ZD
imposing on the right vertical boundary of the domain, -5
the radiation condition (7), which should be satisfied
exactly for a wave of constant shape (Fig. 11). The wave 0
stays almost unperturbed and propagates out of the -15 -
domain as it should without ‘feeling’ the boundary. The —20-
procedure works well, up to 32.0s, when the wave is
aimost out ol"thc domain, with a residual elevation of less -25 T T T )
than 15% of its amplitude. After that, the solution starts 0 %0 109 =0 200
to qsmllate,‘ presumably due to difficulties with the x (m)
moving vertical boundary. In this computation, 2 maxi- Fig. 13.  Periodic wave (d=50m, T=8.4s, dt =T/33s).
mum of 8 iterations were used in the radiation boundary Time: 35.00 s
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From the computational results, however, it is evident

that the radiation condition (7) does not work satisfactor-
ily on the transient front of the waves.

6. CONCLUDING REMARKS

The computation examples presented here suggest that
with suflicient accuracy in each of the steps, the Boundary
Element Method may also be applied to more general
wave problems than the development of space period
waves for which is has proved to be so eflective. Substan-
tial amounts of development, however, are particularly
needed for the absorption or radiation of the waves
generated.
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