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The mathematical and numerical modeling of groundwater flows in random
porous media is studied assuming that the formation’s hydraulic log-transmissiv-
ity is a statistically homogeneous, Gaussian, random field with given mean and
covariance function. In the model, log-transmissivity may be conditioned to take
exact field values measured at a few locations. Our method first assumes that the
log-transmissivity may be expanded in a Fourier-type series with random
coefficients, known as the Karhunen—Loéve (KL) expansion. This expansion has
optimal properties and is valid for both homogeneous and nonhomogeneous
fields. By combining the KL expansion with a small parameter perturbation
expansion, we transform the original stochastic boundary value problem into a
hierarchy of deterministic problems. To the first order of perturbation, the
hydraulic head is expanded on the same set of random variables as in the KL
representation of log-transmissivity. To solve for the corresponding coefficients of
this expansion, we adopt a boundary integral formulation whose numerical
solution is carried out by using boundary elements and dual reciprocity
(DRBEM). To illustrate and validate our scheme, we solve three test problems
and compare the numerical solutions against Monte Carlo simulations based on a
finite difference formulation of the original flow problem. In all three cases we
obtain good quantitative agreement and the present approach is shown to provide
both a more efficient and accurate way of solving the problem. © 1997 Elsevier
Science Ltd
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1 INTRODUCTION

Due to the inherent nonuniformity of porous media in
geologic formations and to the lack of complete knowl-
edge of the medium at all locations of a large natural
formation, it has long been recognised that flows in
porous media could be more realistically treated as solu-
tions of boundary value problems (BVP) with random
parameters.l_6 Uncertainties in the medium properties
(e.g. hydraulic conductivity) and/or in initial and
boundary conditions, however, result in uncertainties
in the system output which must thus be predicted in
a probabilistic framework. For instance, large-scale
heterogeneity of natural formation is believed to be
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the cause of important discrepancies found between
field measurements of solute transport and their
numerical predictions based on deterministic models.’
We consider here the numerical solution of steady-
state saturated flows with specified boundary heads or
normal fluxes in two-dimensional domains. Hence, we
consider the problem at the so-called regional scale,
that is, at the horizontal scale of an entire aquifer, so
that the flow variables can be averaged over depth.
The relevant property of the medium at this scale is
the hydraulic transmissivity, that is, the hydraulic con-
ductivity averaged over the entire depth of the domain.
The equations relating hydraulic head. specific dis-
charge, hydraulic transmissivity and recharge intensity
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are reviewed in Section 2.1. The medium is assumed
bounded, nonuniform, isotropic, and statistically homo-
geneous, with hydraulic transmissivity 7" described as a
homogeneous random field with (unconditional) log-
normal probability density and specified spatial corre-
lation (or covariance) function. We introduce the
log-transmissivity ¥ =In7T and treat its modeling by
unconditional or conditional probability densities. In
the latter case, the modeling is based upon probabilities
conditioned on a finite set of known (deterministic)
values of Y at specific measurement locations. In this
case, the transmissivity is necessarily a non-homogeneous
random field.

In this paper, unlike in most earlier work, we do not
solve the corresponding stochastic BVPs by a Monte
Carlo technique, i.c. deterministically solving for a
large number of output realizations associated with
input realizations. Rather, we address the problem in a
fully stochastic sense. To do so, our computational
scheme first assumes that the medium log-transmissivity
can be represented by a truncated Karhunen—Loéve
(KL) expansion on a discrete set of uncorrelated
N(0,1) Gaussian variables. The theoretical basis of
KL expansion of random fields can be found in
Papoulis.® Its use has been pioneered by Ghanem and
Spanos’ for the solution of stochastic BVPs. The KL
expansion of random fields has very attractive proper-
ties and essentially amounts to a discretization of the
field in the space of random events. Since it requires
only the mean and covariance of the random field,
it can be applied equally to homogeneous, as well as
nonhomogeneous random fields and hence, lends itself
to conditional modeling (kriging) as shown in Section
2.2.

In Ghanem and Spanos,” upon discretization of the
spatial operators (for instance by finite elements), the
original stochastic BVP is reduced to an algebraic
system of equations in terms of a finite set of uncorre-
lated Gaussian variables. This system is subsequently
solved by expanding the vector of nodal unknowns
along a basis of Wiener—Hermite multivariate poly-
nomials of the random variables at hand. We note
that this approach cannot be adopted here due to the
large number of terms that must be retained in the KL
expansion for a medium characterized by small correla-
tion scale. Instead, we have to resort to a perturbation
scheme, that is, assume that the standard deviation oy
of the log-transmissivity is a small parameter. We then
express the unknown potential as a perturbation expan-
sion of this parameter. To the first order of pertur-
bation, it is found in Section 2.3 that the potential can
be discretized along the same set of random variables
as the long-transmissivity. Hence, by combining the KL
expansion with a perturbation expansion, we obtain a
hierarchy of deterministic equations governing the coef-
ficients of the perturbation expansion. Other types of
perturbation solutions have of course been used in the

past, for example in Refs 2, 5, 10 and 11, for the solution
of flows in random porous medium.

In Section 3, we present a numerical scheme whereby
the corresponding deterministic BVPs are spatially dis-
cretized and solved by a two-dimensional boundary ele-
ment method (BEM'?), taking into account deterministic
boundary conditions. Random boundary conditions
may be accounted for in a similar way, but we are
mainly interested in the more difficult problem of predict-
ing the effects of the medium heterogeneity upon the flow.
Domain integrations (some of them containing problem
unknowns) appearing in the resulting integral equations
are transformed into boundary integrals by using the
dual reciprocity BEM approach (DRBEM'?). After
numerically calculating boundary integrals, the resulting
problems become algebraic systems of linear equations.

Finally, Section 4 is devoted to applications that illus-
trate our procedure. Three case problems with a simple
square geometry and deterministic boundary conditions
are treated in detail. In these problems, we employ a par-
ticular unconditional covariance function which leads to
closed-form expressions of the KL expansion of the log-
transmissivity. Qur third example' deals with a modeling
of Y conditioned upon five measurement values. It
should be stressed that our test cases do not assume a
small value of the standard deviation oy, so that the valid-
ity and accuracy of our proposed scheme must be tested
by comparing the ensuring numerical results with those
obtained by Monte Carlo simulations, based on a finite
difference formulation of the original BVP.

2 THE MATHEMATICAL MODEL

2.1 Governing equations and boundary conditions for
porous media flow

The steady flow of water, assumed homogeneous and
incompressible, through a porous, isotropic and non-
deformable medium is described by the macroscopic
flow variables, q, the specific discharge (or u = q/n, the
velocity vector, n being the medium’s porosity) and 4
the potential (hydraulic head), with p = pg(h — z), the
pressure. These quantities satisfy continuity equation
(in the absence of recharge),

V.q=0 (1
and Darcy’s law,

q=—-KVh )

where K is the hydraulic conductivity of the medium.'

Here, K is a scalar function, that is, we assume that
there exists no systematic anisotropy of the measured
core samples. By eliminating q between eqns (1) and
(2), we obtain an equation governing the potential 4,

V- (KVh) =0 (3)
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This equation, with proper boundary conditions, is rele-
vant at the so-called local scale, that is, at the scale of the
formation thickness in both horizontal and vertical
directions. Hence, at this scale, the problem must be
treated as three-dimensional. However, in a stochastic
context, it is possible to obtain effective properties of
the medium, i.e. to relate the mean macroscopic vari-
ables 4 and q through an average Darcy equation,

q= _Kefv}; (4)

where K is referred to as the effective conductivity of
the medium.

At the regional scale, that is, at the horizontal scale L
of an entire aquifer considered much larger than the for-
mation thickness D, it is possible to reduce the problem
to a two-dimensional one by integrating the continuity
equation and Darcy’s law over depth. Hence, potential
and hydraulic conductivity become functions of only
the planar coordinates x = (x, x,). It can be shown
that if X is replaced by the transmissivity 7 = DKy,
and the potential # by ¢ = h, the governing eqn (3)
now reads,

V-(TV$) = —R (5)

where we have included a recharge R to account for
infiltration or leakage, and pumping or recharging
wells. By introducing the log-conductivity ¥ =1InT,
this equation can be rewritten as

V¢+ VY -Vp=—Re (6)

Hence, the direct problem consists of solving eqn (6)
over a domain {2, given the medium log-transmissivity
Y and relevant boundary conditions on boundary T,
such as the Dirichlet condition,

¢ = ¢ on I'y (7

for the specification of a hydraulic head ¢y, and the

I'=I,ul;

Fig. 1. Sketch of porous medium with boundary conditions on
Ty, where ¢ = ¢y, and on T, where g = 9¢/0n.

Neumann condition,

¢ _ Oy

on~ on
for the specification of a normal flow velocity — includ-
ing the case of impermeable boundaries with zero
normal velocity — with T' = I'y U T, (Fig. 1).

Numerous field data show that T is not a smooth,
slowly-varying function of space, and that, as a rule,
aquifers are heterogeneous. The next section provides
a mathematical characterization of Y.

onT, (8)

2.2 Representation of stochastic fields

We assume that the log-transmissivity Y varies in space
and is subjected to uncertainty. Hence we treat Y(x) asa
random field, that is, at each location x; € €) the quantity
Y(x;,w) is regarded as a random variable, where the
realization w is considered an element of the space of
random events (this notation will be omitted whenever
needed). To completely describe the probabilistic struc-
ture of Y(x,w), we need to specify the infinite sequence
of unconditional joint probability density functions

(p.d.f),

(n)

pY(xl), Y(x3), ., Y(x,,)(yl’yZ’ <3 Vn)
forn=1,2,..., and for all locations x; of Q. By assum-
ing that the field is Gaussian and statistically homo-
geneous, its p.d.f. can be entirely defined by the mean
my = E[Y(x,w)] (constant over ) and covariance
Ky(x,X) = E[Y'(x,w)Y'(X',w)] = 6% py(x — X}, with
Y =Y —my (the random fluctuation part of Y).
Here, oy and py denote the standard deviation of the
field, constant over €2, and the correlation coefficient, a
function of the separation vector r = x — x’ between
two locations x and x’, respectively. The operator EJ-]
is the expected value, that is the ensemble average over
all possible realizations of the random variable it acts
upon. The restriction of the homogeneity of ¥ may be
somewhat relaxed by assuming that only the fluctuation
Y' =Y — my is homogeneous and, hence, allowing a
trend (or drift) in terms of a non-constant mean field
my(x).

The log-normal property of the transmissivity is well
supported by field measurements at both the local and
regional scales, and various models of covariance func-
tions for ¥ have been proposed in the literature.® The
key parameters in these models are the correlation
scales in the two spatial horizontal directions, which
are proportional to the integral scales,

1

I] =—2J Ky(rl,O)drl,

l o0
L= —J Ky (0,ry)dr,

% Jo
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If L, and L, are characteristic length scales of the
domain  in the x; and x, directions, then the ratios
I)/L, and I, /L, are measures of the level of heterogeneity
of the medium. We denote Iy /L = min(l,/L, L /L,).

A key ingredient in our work is the representation of
the random field as a Karhunen—Loéve (KL) expansion,
a type of Fourier expansion for random functions,
which amounts to a discretization in the space of
random events,?

oQ
Y(x,0) = my(x) + oy Y &aw)Ad (%) (10)
n=1
in which the set {£,(w)} denotes N(0,1) uncorrelated
Gaussian random variables, i.e. with zero mean,
E[¢,] =0, and covariance E[{nén] = 6 n, and where
the functions { f,(x)} and scalars {)\,} denote sets of
deterministic eigenfunctions, orthonormal over domain
Q, and eigenvalues, respectively, of the kernel py, that
is, the solutions of the integral equation,

[, prix=x)r ) ax = A7 (1)

where py(x — x') is the specified spatial correlation coef-
ficient of the field Y. Note that the expansion on the first
k functions of any other set of orthonormal functions
will lead to an error greater than the one incurred by
the first £ KL functions { f,(x)}.

In the applications, we will use the following exponen-
tial spatial covariance function for ¥ which is represen-
tative of some field measurements,’

Ky(x,xX) = Ky() = 6}y () = 0% exp(_% ) %)

(12)
in which r = x — x' = (r|,r;). Note that this model is
anisotropic even if the correlation scales »; and b, are
chosen equal. For a rectangular domain, the corre-
sponding eigenfunctions and eigenvalues can be found
in closed form and are given in Section 4.2; other covar-
iance models over more realistic domains, however, can
be chosen, the corresponding eigenproblems (11) will
then have to be solved by straightforward numerical
techniques.

The KL representation of Y can be extended to the
case of conditional modeling which accounts for the
actual measured values of Y at a finite set of locations
in Q. Hence, the uncertainty at these points is kept at
zero, while the overall uncertainty at all the other
points is reduced as compared to that produced by
the unconditional modeling. This form of stochastic
interpolation (also referred to as kriging'®) is well
known in geostatistics and its benefits have been demon-
strated by Dagan.>® Assuming that ¥ has been mea-
sured at M points x;, j=1,2,..., M of §, the data
Y(x;) = Y; constitutes a realization of Y. By using
statistical inference techmiques, it is then possible to

estimate the corresponding unconditional probabilities
and the unconditional statistics for Y, i.e. my, oy,
and Ky(r), the statistical quantities first introduced in
this section. The realizations of the unconditional
modeling of Y at the measurement points are compat-
ible but yield different values than the measured values
Y(x;) = Y,. However, itis possible to estimate the statis-
tical properties of Y conditioned on the measured data,
so that the realizations of Y take the exact values
Y(x;) = Y; and display uncertainty at all points other
than the points of measurement. Assuming that the
unconditional p.d.f.s of Y are Gaussian, it can be
shown that:®

e the conditional mean of Y is given by

m (%) = E[Y(x[x1, X, -, Xpg)]
M
y() + 3 (XY (%)~ my(x)) (13)
j=1

where my is the unconditional mean of Y;
e assuming homogeneity in the unconditional covar-
iance, the coefficients y,; are solutions of the linear

systems,
Zu, Ky (x; — %;) = Ky(x — %)
(i=1,...,M) (14)

where Ky is the unconditional covariance;
¢ the conditional covariance at two arbitrary points x
and x' is given by,

Kgf)(x’ X’) = KY(X, X’|X1,X2, s ’XAI)

We note that the conditional random field Y is not
homogeneous, i.e. the conditional covariance depends
on the positions x and x' and not on the difference
(x — x'). The conditional mean is not a constant func-
tion, even if the unconditional mean is assumed con-
stant. Condmonmg causes a variance reduction, that
is, o(y (x) < oy(x). The equality is approached for
points far from the measurement points, ie. for
[x — x| > IY At the measurement points m(Y)(x) =
Y(x;) and oY (x) =0 for i=1,...,M, ie. the inter-
polator is exact. For a dense dlstrlbution of measure-
ment points, i.e. at distances much smaller than the
integral scale, the conditional variance approaches
zero and the interpolator tends to be deterministic.
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Given expressions of the unconditional KL eigenfunc-
tions {f,(x)},> and eigenvalues {},},>, the problem
is to find the conditional KL sets. First, the functions
{1:(x)}1 << ar can be expressed as

) = ko i) (16)
k=1

Given the following expansion of the covariance
function,

Kr(x,%) = 3 Nl fulX) (17)
k=1

we find that the coefficients {u; x}1<;<a are solution
of the linear systems [substitute eqns (16) and (17) in
eqn (14)],

M1,k Jfi(xy)
K = Ak :

: k=1,2,... (18)
B,k Se(xXar)

where K is the M x M symmetric covariance matrix of
elements k;; = Ky(x;, ;).

Similarly, expanding the conditional eigenfunction
£(x), solution of the integral equation,

[, K mx) 790 ax = X079 (19)

on the set of unconditional eigenfunctions, we obtain,
oc
%) =Y affi(x) (20)
k=1

Then, by substitution in eqn (15), we find that
({a,({c)}, Ay is the solution of the algebraic eigenvalue
problem,

ol

©
(A=Xpd %2 3 =0 (21)

ol

where the elements of the L x L matrix A are given by,

M
A = Mbg — > ki (22)
ij=1

and where the level of truncation in expansion (16) must
also be chosen as L. This approach will be illustrated in
Section 4.2. More general techniques may be employed
to solve the conditional eigenproblem (19), especially
if closed-form expressions of the unconditional eigen-
functions are not available. It is evident that the
representation (20) of the conditional KL functions
fk(c) in terms of the unconditional functions f; may
not lead to the most efficient numerical solution. The
important point here is that KL expansions are not
restricted to homogeneous random fields, but also

apply to nonhomogeneous fields as produced by
conditional modeling.

2.3 Perturbation expansion: solution of a hierarchy of
stochastic problems

Assume that the log-transmissivity admits a KL expan-
sion in the form of eqn (10). Here, the mean field my, the
KL eigenfunctions { f;} and eigenvalues {);} refer to
unconditional, as well as conditional modeling of Y.
In the unconditional case, the standard deviation oy =
a(;,') is a constant. In the conditional modeling, the stan-
dard deviation a(}f) is proportional to a(,‘,’), and ranges
from a value of zero (at the measurement locations)
to the maximum value approaching a(,',‘) far from the
measurement points. In the latter case, we assume that
the value of the parameter oy present in eqn (10) may
be chosen either as a(,‘,’), or as the spatial average of
the standard deviation field over the domain Q. We
denote in this section, ¥ = (Y —my)/oy and g =
AV 2f . Hence

Kk Jk s

N
Fx,w) =) &(w)ge(x) (23)
k=1

By replacing Y by my 4+ oy Y in eqn (6) governing
steady groundwater flows, we obtain,

v2¢ + me . V(i) = —O'YVY. v¢ - Re—my—dyf’
(24)

where Y is given by eqn (23). This equation is of
course very difficult to solve. The technique advocated
by Ghanem and Spanos’ consists first in discretizing
the spatial operators and obtaining an algebraic
(linear) system of equations containing the finite set
{€:(8)}1 <n<n retained in the truncated KL expansion.
The resulting unknown nodal values are then considered
as nonlinear functionals of the randem variables
{&}1<n<nt if these random variables are Gaussian,
such functionals may be expanded in a mean-square
convergent Fourier-type series of so-called Wiener—
Hermite multivariate polynomials in the £, (referred to
as polynomial chaos in Ref. 9). For low values of the
ratio Iy /L, however, the large number of random vari-
ables retained in the KL expansion for proper represen-
tation of Y precludes the use of a Wiener—Hermite
expansion.

We resort instead to a perturbation expansion by
assuming that oy is a small number. In practical appli-
cations, oy can range between 0-65 and 2-3 as reported
by Delhomme.'® We note however that the use of con-
ditional probabilities may significantly reduce the
value of the average standard deviation. This approach
has been employed in the pa.stz's’m'“’17 and good results
have been reported by Dagan!” for values of oy as large
as unity (this will be illustrated in the applications in
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Section 4). Hence, we expand ¢ in the following form,

B(X,w) = ¢o(X) + Tyd) (X, w) + TFPr(X,w) + ---

(25)

and by identifying terms of same order in oy in (24), we
find the sequence of equations, up to order 2,

Vi + Vmy - Vo =
Vg, +Vmy -V, =

—Re™™ (26)
—VY -V¢o+RYe™  (27)

Vi, + Vmy -V, =

We have assumed that the recharge intensity R, as well
as the boundary conditions, are deterministic, since it
is only the effect of the medium heterogeneity which is
of prime interest here.

At the leading order of perturbation, the correspond-
ing BVP (26) governing ¢, is deterministic, and hence
may be readily solved for specified mean field my(x)
and recharge R(x), given the boundary conditions,

—VY.Vé, — RV e™  (28)

b0 = ¢y on Iy (29)
O¢y _ Oy,
'-a; = W on Fn (30)

At the next order of perturbation, the BVP (27)
governing ¢;(x,w) is stochastic, but it can be trans-
formed into a sequence of deterministic BVPs by
expanding ¢; on the set of random variables {£;} >
used to represent ¥,

ff )1x(x) (1)

Indeed, upon substituting this expansion in (27), and
using the orthonormality property of the random vari-
ables &, we obtain (k= 1,2,...),

Vi + Vmy Vo, = —Vgi - Vo + Re ™ g,
(32)

Given ¢, and R, this equation can be solved for each
¢1,x(x) with the corresponding homogeneous boundary
conditions,

$rx=0 onTy (33)
9. =0 on Iy (34)
On

If the potential is approximated at this order of approxi-
mation, that is,

N

¢(x,w) = ¢o(X) + oy Z E(w) o, i (x) (35)
k=1

then ¢, and oy, represent the mean field m, and the

random fluctuation ¢ = ¢ — my about m,, respectively.

In particular, the potential covariance function takes

the expression:

Ky(x,X') = E[$(x) ]—UYZ¢1k )1k (x

(36)

If ¢, is determined at the next order of perturbation, it
will provide corrections to both the mean field m, and
the random fluctuation ¢. However, in the present
study, we limit computations to a first-order perturba-
tion scheme, that is, to the numerical solution of eqns
(26) and (32). This is detailed in the following section.

3 THE NUMERICAL MODEL

Equations (26) and (32) governing ¢, and the ¢, ;
(1 < k £ N), respectively, are Poisson equations which
can be transformed into integral equations (IE) by
applying the third Green’s identity. Since the only avail-
able closed-form expression of Green’s function is that
associated with the Laplacian operator in the infinite
domain (the so-called free-space Green’s function),
such IEs will involve both boundary and domain inte-
grals. In the numerical model, the latter are transformed
into boundary integrals using the dual reciprocity (DR)
method,'* which requires selecting Ng collocation nodes
over the domain. Boundary integrals are discretized
using Np boundary collocation nodes to describe the
variation of geometry, boundary conditions, and
unknown functions of the problem. Higher-order
boundary elements are used to interpolate between col-
location nodes, following a classical boundary element
method approach (BEM'?). The present numerical
model is thus referred to as a DRBEM model.

3.1 Boundary element method

Equation (26) can be transformed into the following
equation, for any point £ in Q or on I,

e(€)do(6) - L{G(e, X) 90 (3
- 6n(x) 5o (€3 b ar ()
_ L G(&,%)Vmy(x) - Vao(x) d(x)

- L, G(&, x)R(x) ™™ dQ(x) (37)

where G(&, x) is the (logarithmically singular) free-space
Green’s function of Laplacian operator in two dimen-
sions,

6(&x) = - Inlé ~ X )

and c(&) is a geometric coefficient equal to 1 for points



Probabilistic analysis of flow in random porous media by stochastic boundary elements 245

inside the domain (£ € 2) and 1/2 for points on a
smooth boundary (€ € I).
For eqn (32), similarly, we have fork =1,..., N,

¢1k

c(aqsl,k(z)—j{ (6,221 (x)

o oo, x)}dr<x)
- |, 6€09my(x)- 91,0 d0x)
- [ 6 (vam-vam

— gu(X)R(x) e} dO(x) (39)

Collocation nodes (§;; / =1,..., Np) are selected on
boundary T and eqns (37) and (39) are expressed for
each of these nodes. The boundary is further divided
into M quadratic isoparametric elements, each contain-
ing three nodes. Each boundary integral in eqns (37) and
(39) is thus transformed into a sum of M integrals over
each element. Nonsingular integrals are computed by a
standard Gauss quadrature rule. A kernel transforma-
tion is applied to weakly singular integrals which are
then integrated by a numerical quadrature, exact for
the logarithmic singularity.18

3.2 Simplification for point sources

In applications for which infiltration can be neglected,
the recharge R due to the presence of wells may be
modeled as the sum of N, point sources (or sinks) of
strength Q, at x,, that is, R(x) =E§v;leé‘(x—xs).
Then, the corresponding volume integrals of eqns (37)
and (39) become,

s

) =2 0:6Ex) e

(40)

JQ G(&,x)R(x) e ™®dO(x

LG@, Xge(x)REx) ¢ 42

G(&,x,)g(x,) &™) (41)

Mz

and do not require further treatment.

3.3 Dual reciprocity BEM

The second and third integrals in eqns (37) and (39) are
domain integrals. As discussed above, recharge terms
may be simplified as in eqns (40) and (41). Using the
DR method," the remaining domain integrals can be

expressed as boundary integrals of the form,

Jﬂ G(€, x)b(x) d(x)
——Za/{ 6 - [ [oe 0w

~ ) 50 (6] 0T} @)

where b(x) denotes part of the right hand side of
Poisson’s equations (26) and (32) (so-called ‘body
force term’), o; are coefficients determined by collo-
cation over DR points N, and #;(x) are particular solu-
tions of the inhomogeneous equation,

Viy(x) = F,(x)  (j=1,...,Np) (43)

where % ;(x) denote DR shape functions. Here, we
adopt local radial functions defined as,

2 3
r r

where r; = [x — x;|.
More specifically, for eqn (37) governing ¢, we have
by definition of shape functions,

Z o F (45)

Hence, by collocation, the coefficients o; are obtained
according to,

b(x) = Vmy(x) - Vo (x

Z S [Vmy(x,) - Vo (x,)] (46)
where the elements,
Fpy=Fi(x,) (j,v=1,...,Nq) (47)

define the DR collocation matrix, function only of the
geometry. Next, we assume a collocation representation
of ¢, inside the domain similar to (45) with coefficients
3;, leading to,

Vo (x Zﬂ,w /(%) (48)

Combining eqns (45)—(48), we have after some algebra,

Ng No Na
Z Z Z[F IF le](,bg(Xw)
v=1i=1 w=
Nq
Z ¢0(xw (.] =1... 7NQ) (49)

where

(jawzlv""NQ) (50)

Z Z[F’IF 1)

v=1 i=
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F::J—vm)'( )V‘/( ) (i,l):l,...,Nﬂ) (51)

Finally, using boundary conditions (29), (30) and eqns
(37), (40), (42) and (49) we have for each BEM and DR
collocation node,

mm&»] 68 %) 92 () dr (x)

+ [, S mntn are)
+ Z ¢0(xw){ ZF”{ c(&)u;(&)

-] [oten G0 - w0 F @] arco

Iy

=ja@) (x) dT(x)

- [, @

+2Qs (€nx,)e™™ ™ (I=1,...,Nr+ Nq)

(52)

In eqn (52), unknowns have been moved to the left
hand side, i.e. (i) ¢g at N, DR collocation nodes and
at BEM nodes belonging to boundary I', and (ii) the
normal gradient 0¢y/0n at BEM nodes belonging to
boundary Iy (note that there are Ny boundary
unknowns). Boundary conditions have been moved to
the right hand side of eqn (52) along with known
recharge terms Q;. As mentioned above, by numerical
computation of boundary integrals, (52) may be trans-
formed into a linear algebraic system of equations
which is solved for the unknowns by a direct elimina-
tion method (LU decomposition). Note that, in our
applications, DR collocation nodes always include
(i.e. overlap with) BEM nodes. This reduces the size
of the algebraic system derived from egn (52) to
(Ng x Ng). To obtain formally similar matrices in
BEM and DR boundary integrals in eqn (52), the func-
tions u; and their normal gradient are discretized along
the boundary in a manner similar to that of BEM
unknowns.

After derivations similar to those for ¢,, eqn (39) gov-
erning ¢, x (k=1,...,N) can be transformed into the
following equation, after taking into account the homo-
geneous boundary conditions (33) and (34),

¢1k

c@m&oj G(&, %) 221% (x) dr(x)

" Ln %g (&, %)1,k(x) dT'(x)

No

N
Z{mew O+ B (@)

[ gla

x) — (%) 2 @b)]mxm}}

N,
Z E[, ) mY(xx)
(I=1,...,Np + Ng) (53)
with
Nq Ny
Fk ZZF FUFY] (yw=1,...,Ng) (54)
v=1 i=

Fif =Vg(x,)-VF(x,)  (ibv=1,...,Ng) (55)
fork=1,...,N.

4 APPLICATIONS
4.1 Simplifications of DRBEM equations

Without loss of generality, it will be assumed that, in
unconditional modeling, ¥ has a constant mean over
the domain, my = 0, and, hence, Y (x;,w) is a N(0,0y)
random variable at all locations x; of the domain. We
will also assume that there are no recharges in the
domain, i.e. @, = 0.

With these hypotheses, DRBEM equations can be
simplified. Equation (26) for ¢, becomes a Laplace
equation and eqn (52) now reads,

Oy

d@%@)] G(€,%) T2 (x) dT (x)

fhE@M%mww
Oy

=j G(£rX) 22 (x) T (x)
—L 9G & %)6u(x) dT(x) (56)
forl:l,...,Np+NQ.

Unknowns in eqn (56) are only located on the bound-
ary and the first Np equations form a linear system yield-
ing boundary nodal values. The last N, equations
(minus overlaps of DR and BEM nodes on the bound-
ary) are used to explicitly calculate internal values of
¢p as a function of the boundary solution, needed for
the solution of ¢;.

With the above simplifications, eqn (53) for ¢
reads, fork=1,2,...,N

001«

(€014l — || 66105 ()T (w
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" Jr g_f(ghx)%k(x) dr'(x)
Nn" k
=2l {ZF"{ (&)
| loen i

-9 52 (6.] ar(o |} (57)

for I=1,...,Npr + Nq. Hence, the ‘forcing’ for ¢, «
in eqn (57) only comes from the mean potential
value ¢y.

4.2 Expression of KL expansion parameters in simple
geometry

In the numerical examples, for simplicity, we select a
particular random field Y over a rectangular domain,
for which closed-form expressions of the KL eigenfunc-
tions and eigenvalues are known. First, consider the
scalar homogeneous random process Y(x) defined
over the domain Q= [-L,L] C R with exponentlal
covariance function Ky(x,x') = o% exp{—|x — x'|/b}.
After introducing the nondimensional variable X = x/L,
and nondimensional correlation length b =b/L, the
solutions of the corresponding integral equation on the
interval [—1, 1] are given by,

25
A = m (k>1) (58)

where the frequencies wy (k > 1) are the roots of the
transcendental equations,

cotwy = wa for k odd (59)
tanwy, = —bwy for k even
and

- COS Wy X

= for k odd
S = a2

L (60)

fHi(®) = bl for k even

{14+ M /2}2

It is then possible to extend these results in two dimen-
sions and for the rectangular domain Q= {(x,x,)|
lxi] < Ly, |x3| < Ly}, it is easily shown that a separable
covariance function, i.e. Ky(x;,xs;x],x2) = K, (xl,xl)
K>(x3,x3), leads to separable elgenfunctlons ie. of
the form f, .(x),x;) = £ (2, ){ )(x,) with corre-
sponding eigenvalues )\m)n = /\(l )\,,2 , where the sets
{fn(a)} and {,\E,")} correspond to kernel K, (@ = 1,2).

1 K(x,x’)=exp(-Ix-x’I/b) ]
=
(,; 0.1 = 0.1
[3)
=
=
>
S = 1.0
& 0.01
=10
0001 b o . .
1 2 3 4 5 6 7 8 9 10
(a) n
=<
k=1
)
g
§=]
E
S
.80
[Sa]
-1 -06 -020 0.2 0.6 1
(b) X

Fig. 2. (a) The spectrum of eigenvalues for Ky(%, ) =
exp{—|% — &|/b}, (-1 <%<1) for =01, 1 and 10. (b)
The first five corresponding eigenfunctions for b = 1.

Hence, the random field ¥ = (Y — my)/oy admits
the following representation from eqn (23),

Zs,, Yo%)

n=1

K L 2
Z 3 & @A () 2 (x2)

k=11=1
(61)

A few numerical results are useful at this point to illus-
trate the qualitative and quantitative properties of this
expansion. First, as seen in Fig. 2(a), for each value of
b=0-1, 1 and 10, the spectrum of eigenvalue tends to
zero, thereby indicating convergence of the expansion
in the one-dimensional case. However, as the correlation
scale b tends to zero, this spectrum tends to flatten
out and hence the convergence of the KL expansion
tends to become slower. Figure 2(b) also shows that
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X2-Axis

Fig. 3. A realization of a Gaussian field Y(%,,%,,w) over
the domain —1 < %, %,;< 1, with covariance Ky(r|,r;) =
ay exp{—|ri|/b — |ro|/b2}, for b =b /L, =01 and
b2 :bz/Lz =01, with my =0 and Ty = I. N=10 KL
expansion terms are used in each direction.

the eigenfunctions tend to become increasingly more
oscillatory as the order k increases, and the high-order
eigenfunctions determine the small scale structure of
the realizations of Y. The case b = b/L = 01 is more
typical of porous media, and the slow convergence of
the expansion implies that more terms will be needed
to achieve a preselected accuracy of the computations.
Furthermore, in the numerical model, more internal
DR points will be needed in eqn (57), to accurately cap-
ture the oscillations of eigenfunctions corresponding to
large orders k. Figure 3 shows an example of a two-
dimensional realization of a Gaussian homogeneous
random field Y (x;, x,,w) with covariance Ky (r|,r;) =
o% exp{—|ri|/by = 2l /bs}, for by/L; =by/L, =01,
where N = K x L = 100 terms have been used to repre-
sent Y. This figure gives an idea of the difficult task of
performing Monte Carlo simulations to solve for the
flow, given each realization of the medium characterized
by a small ratio Iy /L. A grid size smaller than the cor-
relation scale 7y must be used to resolve the small scale
structure of the medium. The numerical problems (26)
and (32) involve similar equations, however the hetero-
geneous character of each realization Y (x,w;) has now

Fig. 4. KL representation of Y [with L = 25 unconditional
KL functions chosen to solve eqn (21)] conditioned at the
five points: 0(0,0) (Y(0) = 0), A(—},3) (Y(4) =0-5), B(3,})
(Y(B)=~1), C(=},~}) (Y(C)=1), DG,~H(Y(D)=0).
The unconditional covariance function (12) is chosen with
parameters b, = b, = 0-5 and oy = 1. (a) Mean field m5 (x);
(b) standard deviation o'(;)(x); (c) oy by exact numerical
solution of eqns (13), (14) and (15).
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q=0

Q

V-(TV$) =0

q=0 I

Fig. 5. Sketch of computational domain and boundary con-
ditions forcase l: ¢ =0onx, = —1,¢=1lonx; =1,g=00n

xy = £1 (with ¢ = 0¢/0n).

been replaced by the much smoother and regular behavior
of the mean field my and the KL eigenfunctions.

The approach described in Section 2.2 for con-
ditional modeling of the log-transmissivity is illustrated
in Figs 4(a) and 4(b), where the transmissivity is
conditioned on values obtained at five locations. This
figure shows the conditional mean m%(x) and stan-
dard deviation J(;)(x) computed by: (i) KL expansion
SV LAY (#9(x))?, where the conditional eigen-
values/functions are computed based on eqn (21); and
(ii) direct numerical resolution of the exact eqns (14)
and (15). Good agreement is seen, but we note that the
convergence of series of the type f ©(x) =
pa a,(f)fk(x) becomes slower as the ratio Iy/L
becomes smaller, and hence it may become more efficient
to solve the conditional eigenproblem by a direct
numerical method. We nevertheless adopt this scheme
for our last example in Section 4.6 (Problem 3).

4.3 Comparison of DRBEM with Monte-Carlo method

The DRBEM numerical method is applied on three case
problems with a square geometry © = {(x;,x)||x| < L,
|x2| < L}. A constant head gradient (¢, — $u2) is speci-
fied on the boundary I'y. In terms of non-dimensional
variables, ¢ = ¢/(d — ¢p2) and (X1, %) = (x1/L, x2/L),
the governing equations and boundary conditions are
given by (dropping the tilde notation from thereon),

V6 +VY-Vé=0, in —l<x,xp<1 (62)

¢=0, ¢=1, on Iy (63)

on Pd] N

Fig. 6. DRBEM results for oy, case 1: (a) b = 0-1, 15 x 15 KL
terms; (b) b =02, 9x9 KL terms; (c) b= 10, 6 x6 KL
terms.
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Fig. 8. Comparison between o, calculated by DRBEM
(continuous lines) and MC (dotted lines) on axis x, = 0, for
cases of Figs 6 and 7.

o9

On
The spatial correlation of Y is assumed to be given by
eqn (12), with corresponding eigenvalues and eigenfunc-
tions in the KL expansion given by eqns (58)—(60).

Our DRBEM scheme will be validated by comparing
results with those obtained by Monte-Carlo (MC) simu-
lations whereby the governing equation (6), with bound-
ary conditions (7) and (8), is solved using an alternate
direction of integration (ADI) finite difference method,
for a large number of realizations of the random log-
transmissivity Y. For an efficient generation of realiz-
ations of Y over domain (2, the KL expansion (10) is
used in which a corresponding number of independent
realizations of the Gaussian random variables & (w)
are generated. Each realization of the potential ¢ is cal-
culated over the domain corresponding to each realiz-
ation of Y. The potential mean m, and standard
deviation o, fields are then calculated by ensemble aver-
aging. Examples of realizations of the potential and of
its statistics are given in the following sections.

For each DRBEM problem, we must check for con-
vergence under increased number of terms in the KL
expansion of Y and under spatial grid refinement, that
is, under the increased number Ny + Ny of nodal
points on the boundary and inside the domain. For
MC simulations, convergence must be checked under
spatial grid refinement and increased number of com-
puted realizations (statistical convergence).

=0 onTl, (64)

4.4 Test problem 1

Our first application corresponds to the simple square
geometry and boundary conditions sketched in Fig. 5,

Fig. 7. MC results for o4, case 1. Same cases as in Fig. 6 with

number of realizations: (a) 5000; (b) 2000; (c) 1000, and spatial

step size A = A,: (a) 0-02 (100 x 100 nodal points), (b) 0-025
(80 x 80 nodal points), (c) 0-04 (50 x 50 nodal points).
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— 0 _g=1

V(TV$) =0

Fig. 9. Sketch of computational domain and boundary con-
ditions for case 2 (r = 0-1).

which essentially represents a uniform average horizon-
tal flow between two impermeable plates in a random
porous medium. Computations are made with the pre-
sent DRBEM approach, for various values of the para-
meters of both the physical problem and the numerical
method. Results are compared with those obtained
following the MC approach.

As shown in Fig. 5, the domain boundary corre-
sponds to x; = £1 and x, = 1. We impose ¢, = 0 on
x;y = —1 and ¢, = 1 on x; = +1. The lower and upper
boundaries x, = +1 are impermeable and g = 0¢/0n =
0 is imposed. The log-transmissivity standard deviation
is fixed to oy = 1, and correlation lengths are set equal
in both directions, successively to b= b =b, =01,
0-2 and 1-0. Note that the large value adopted here for
oy will make this a very demanding test for validating
our DRBEM scheme, since the perturbation expansion
assumed for ¢ requires the assumption oy < 1.

Results of both the MC and the DRBEM methods for
the mean potential yield the linear variation my =
(x1 + 1)/2 expected for the deterministic homogeneous
problem (i.e. Y = constant), irrespective of the values
of oy and b. Hence, no graphical representation of m
is shown. Figure 6 presents results for the potential stan-
dard deviation o, obtained with the DRBEM approach
and Fig. 7 gives the same results obtained with a MC
approach, for a large number of realizations ensuring
satisfactory convergence of the results. As the value of
b is reduced, an increasing number of KL terms is
used in the DRBEM method. The same number of
KL terms is used for the representation of Y in
corresponding MC simulations.

Fig. 10. DRBEM results for o4, case 2: (2) b = 0-1, 15 x I5KL
terms; (b) b =102, 9x9 KL terms; (c) b=10, 6 x6 KL
terms.
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Fig. 12. Comparison between o, calculated by DRBEM (con-
tinuous lines) and MC (dotted lines) on line x, = x;, for cases
of Figs 10 and 11.

In the DRBEM results presented in Fig. 6, the finer
spatial discretization, with a 0-1 x 0-1 grid (i.e. Ny =
441 nodes and N = 81 nodes), is used for sake of
accuracy of the spatial representation, but rather iden-
tical results can be obtained, particularly for the larger
values of b, with a much coarser spatial discretization
(down to Ng =121 nodes and Np = 41 nodes), and
thus a much reduced computational effort.

A quick visual comparison of the DRBEM and MC
results in Figs 6 and 7 shows the good agreement
between both approaches and Fig. 8 confirms these
observations, showing the variation of o, obtained
along the x;-axis with both methods. For both schemes,
the head standard deviation o, tends to decrease with
the correlation length b, and for small 5, a boundary
layer profile is observed, that is, a constant value is
reached inside (), with a fast variation near the bound-
ary I'y.

Overall, for the three b values, the DRBEM method
yields results of o, within 15% of those obtained
with the MC simulations. Results with the DRBEM
method, however, are obtained with a much smaller
computational effort than required with the MC simula-
tions (CPU times are 10-100 times less depending on
discretizations). Besides, MC results do not offer the
same degree of smoothness as DRBEM results.

4.5 Test problem 2

In this second example, the geometry and modeling of ¥
are kept identical to those of case 1. Boundary con-
ditions, however, are changed, as shown in Fig. 9, to

Fig. 11. MC results for o, case 2. Same cases as in Fig. 10 with

number of realizations: (a) 5000; (b) 3000; (c) 2000, and spatial

step size A; = A,: (a) 0-02 (100 x 100 nodal points), (b) 0-025
(80 x 80 nodal points), (c) 0-04 (50 x 50 nodal points).
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q=0
Fig. 13. Sketch of computational domain and boundary
conditions for case 3 (r = 0-2). The log-transmissivity is con-
ditioned at the points: 0(0,0), 4(—1,1), B},5), C(-1,-1),
D(3,—1), where Y is assigned the values 0, 0-5, =1, 1 and 0,
respectively. The KL representation of Y is done by solving
eqn (21) with L =10 x 10 unconditional KL functions to
assure proper convergence of the expansion. The conditioning

is based on the covariance kernel (12), with oy =1 and
b =b, =0-2.

the following,

=0, on {x=-1,-1<x<—-1+7r}
U{XZI—I,—I SX] S »—1+r}

dp=1, on {x;=1-1<x<1-r}
U{X2=1,-—1 le Sl——r}

%%zO, elsewhere (65)

We fix r = 0-1, oy = 1, and, successively, b=by = b, =
0-1, 02 and 1. We proceed as in case ! and similar
results are shown for o, in Figs 10, 11 and 12 (which
here compares o, along the diagonal, x; = x;). Results
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Fig. 14. Mean field m, on line x;'= x, with conditioning
(continuous line) and without conditioning (dotted line).
Results of DRBEM and MC are in quantitative agreement.
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Fig. 15. DRBEM results for case 3 corresponding to the geo-
metry of Fig. 13 with r = 0-2: (a) mean field m,, (b) standard
deviation o.

for the mean field m, (not shown here) agree very well
between the two numerical schemes, and are found inde-
pendent of the values of 4 and oy. DRBEM and MC
results for the standard deviation o, are again quite
similar, both qualitatively and quantitatively.

Again, in both the DRBEM and MC results, the stan-
dard deviation o, tends to decrease and homogenize as
b — 0. Overall, for the three b values, the DRBEM
method yields results of o, within 15-20% of those
obtained with the MC simulations.

4.6 Test problem 3

In this last example, the boundary conditions are taken
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Fig. 16. MC results, case 3 with parameters of Fig. 13 with
5000 realizations and grid size A; = A, = 0-0125 (80 x 80
nodal points): (a) mean field m,, (b) standard deviation o.

as in case 2, but the modeling of Y is modified by con-
ditioning its value at five locations: 0(0,0), A(—1,1),
B(3.,1), C(-4,-1), and D(},—1) (see Fig. 13 for the
values of Y adopted at these points). The following
parameter values are selected: oy =1, b=0-2, and
r=02.

Conditional eigenfunctions and eigenvalues of the KL
expansion are obtained as described in Section 4.2. In
this situation, the mean m$ of log-transmissivity is no
longer constant. According to first-order perturbation,
the mean field m, = ¢, is obtained as if the medium
was characterized by a log-transmissivity equal to the
conditional mean m$. Hence, even with only five
points, there is a marked difference in the mean response

between conditional and corresponding unconditional
cases. This is shown in Fig. 14.

Figures 15 and 16 show that, again, both DRBEM
and MC results for o4 agree quite well. The expected
reduction in the standard deviation 04 due to condition-
ing is felt over most of the domain but is small in abso-
lute value, about 10%, due to the small number of
conditioning points used in this example.

Despite the small reduction in o,, however, the stan-
dard deviation of the specific discharge vector q =
—7TV¢ would be significantly affected by the condition-
ing, due to the logarithmic transformation, ¥ =InT.
This, in turn, would also significantly affect predictions
of solute transport that could be done based on calcu-
lated flows. We intend in the future to illustrate these
aspects of the problem using more realistic test cases
of conditional modeling.

5 CONCLUDING REMARKS

A DRBEM numerical method for calculating ground-
water flows in random porous media, based on a KL per-
turbation expansion assuming small oy, was presented
and validated, using three test cases, by comparing results
with Monte-Carlo simulations. In the test cases, a large
value oy =1 is used which may stretch the validity of
the perturbation scheme. Overall results from both meth-
ods are found realistic but DRBEM results overestimate
MC results by 15-20%. This could be due to the large
finite value of oy. DRBEM results, however, are much
more computationally efficient than MC results.
More specifically:

1. Numerical results were presented for both mean
and standard deviations, but other hydraulic head
statistics may be computed from the expansion

N

P(x,w) = ¢o(x) + oy Z§k(w)¢1,k(x) (66)

k=1
This expression may prove useful in future work,
to predict statistical results pertaining to solute
transport.

2. Test cases were limited to a simple square geo-
metry, with a covariance function that admits
closed-form KL expansion eigenvalues and eigen-
functions. However, the numerical scheme can be
casily extended to more general geometry and
transmissivity covariance function.

3. In light of expansion (66), the response is Gaussian,
a result which tends to be supported by field
measurements of hydraulic heads. Non-Gaussian
deviations can be accounted for in a second-order
perturbation scheme, albeit at a much higher com-
putational cost. But note that second-order terms
will only contribute to larger errors of the head
standard deviation o,.
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4. A more appropriate asymptotic analysis of the
flow equation (6) should be conducted, not in the
limit ¢y — 0 but rather in the limit 7y /L — 0, keep-
ing oy of order 1. Indeed, our perturbation scheme is
strictly valid for oy < 1 and, moreover, in the limit
Iy/L — 0, KL expansions become divergent.
Asymptotic results in the limit /y/L — 0 can be
obtained by the method of homogenization, which
attempts to derive an homogenized equation for
the mean fields, with effective parameters (here, effec-
tive hydraulic transmissivity), for statistically homo-
geneous ergodic media. But no information is
usually obtained for the statistics of the random fluc-
tuations, which has been our goal in the present
work. It would thus be beneficial to derive a truly
stochastic homogenization, yielding more informa-
tion than effective properties and mean flows.
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