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Abstract. A numerical investigation of nonlinear interaction mecha-
nisms producing large wave energy concentrations, which lead to episodic
transient waves, is performed using both a Higher Order Spectral (HOS)
model and a three-dimensional (3D) fully nonlinear Numerical Wave
Tank (NWT). Self-focusing of wave energy is achieved through mod-
ulating a periodic wave train along two orthogonal directions. Nonlinear
unsteady 3D wave groups are obtained, which show a curved wavefront
structure, with focusing of wave energy in both the directional and the
frequency domains. Breaking would ultimately occur in such groups.
This, however, cannot be described by the HOS model but, based on
the HOS solution, both breaking and non-breaking freak waves may be
simulated in the NWT, and their shape and kinematics can be studied.

1 Introduction

A number of attempts have been reported in the literature to produce freak waves
by nonlinear self-modulation of a two-dimensional slowly modulating wave train.
Both solutions based on the (weakly) nonlinear Schr�odinger equation (NLS), or
its modi�cations [4], and numerical models solving fully nonlinear free surface

ows, have been proposed [5,17]. Freak waves have been observed to be essen-
tially three-dimensional (3D) phenomena. McLean [8] theoretically predicted a
type of wave instability (called type II), which is predominantly 3D, in con-
trast with the 2D instability (type I; i.e., the side-band instability) identi�ed
by Benjamin and Feir (BF) [7], which leads to the formation of wave groups
in quasi-2D swells, through a self-focusing mechanism. Su et al. [10] experimen-
tally con�rmed this prediction by showing how a steep 2D wave train can evolve
into 3D spilling breakers. Hence, 3D modulational instabilities cannot be ne-
glected when describing the steepest ocean waves. Two-dimensional nonlinear
wave instabilities have been simulated in a few numerical studies, by slow self-
modulations of a 2D periodic wave train (Dysthe and Trulsen [4]; Henderson et

al., [5]). In such studies, an initially periodic wave train of moderate steepness



is perturbed by a small periodic perturbation. After a large time of propagation
(typically over 100 wave periods), it is observed that a large steep wave, i.e., a
freak wave, may emerge from the initial wave train, and break or recede and
periodically reappear. In these studies, 3D e�ects were not usually addressed
because, either it was not possible to generalize the method of solution to 3D, or
the computational e�ort in a 3D model was too high. Nevertheless directional ef-
fects are of prime importance. Breaking may occur, when waves reach a su�cient
size, at some stage of the modulation. Nepf et al. [14], for instance, experimen-
tally showed that curved wave fronts lead to 3D breaking in ocean waves, and
that the shape and kinematics of 3D breaking waves greatly di�er from those
of two-dimensional (2D) breakers (see also She et al. [15]; and Johannessen and
Swan [19]). The degree of angular spreading is found to have large e�ects on
wave breaking characteristics and kinematics, and non directional wave theories
are demonstrated to be insu�cient to describe the kinematics of 3D waves.

Since many extreme (freak) waves are expected (and have been observed)
to be 3D, modulational instabilities occurring in three dimensions cannot be
neglected when describing the steepest waves.

2 Three-dimensional modulations

The computationally e�cient Higher Order Spectral (HOS) method [17, 18] is
used in the present computations, assuming doubly periodic boundary condi-
tions in the computational domain. Extreme waves are produced through the
evolution of 3D wavetrains subjected to both longitudinal and lateral modula-
tions. Modulations of this type are characterized by the initial steepness of the
wave train (ak), and by two characteristic wavelengths, for the longitudinal and
transverse modulations, respectively.

A transverse modulation is superimposed to the longitudinal one. For the
free surface elevation, this leads to expressions of the form,
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where a is the wave amplitude, k the wavenumber, ! the circular frequency of
the initial 2D wave train (which, here, for sake of illustration, is simply sinu-
soidal), and �x and �y are the longitudinal and transverse wavelengths of the
perturbations, respectively (in terms of the longitudinal wavelength � = 2�=k
of the initial 2D wavetrain; dashes indicate nondimensional variables).

A systematic study of such kinds of modulations, would require, for each wave
steepness, the evaluation of the in
uence of both the longitudinal and the trans-
verse wavelengths, on the evolution of initially slowly modulated wavetrains.

The evolution of a modulated wavetrain having ak = 0:14, �x = 5 and
�y = 10 (hence with a lateral modulational wavelength that is two times the
longitudinal one) is described in Figs. 1-4. The initial regime shown in Fig.
1 is composed of nearly uniform Stokes waves. At these early stages of the
evolution, waves are essentially 2D while, at later stages, the growth of transverse
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Fig. 1. Initial condition for a 3D wave train modulated in both the longitudinal and
the transverse direction

perturbations causes a 3D structure to develop. At �nal stages of evolution, both
a longitudinal and a transverse growth of modulations are observed. Fig. 2, for
instance, shows the evolution of the wavetrain at time t=T = 90. This evolution
results from the combination of two e�ects :

1. In the longitudinal direction a BF-like mechanism causes the wave group to
shorten ahead and to lengthen behind, with a wave energy concentration in
the middle of the wave envelope.

2. In the lateral direction the growth of transverse perturbations a�ects the
highest wave and its �rst predecessor. Lateral features in the form of standing
waves across the (periodic) wavetank appear.

The combination of these two e�ects gives rise to a fully three-dimensional
structure of the wave group. Fig. 3 shows the evolution after just one more wave
period, hence at time t=T = 91; we see that a large crest elevation is produced.
This clari�es the evolution as a truly directional self-focusing process. The 3D
structure of this doubly modulated wave is more evident in planview (Fig. 4),
where an identical wave�eld has been placed at one of the lateral sides (this is
possible because of the lateral periodicity assumed for the computational do-
main). The appearance of curved wave fronts is an important feature of such 3D
waves. These wave groups, as shown in Figs. 2-4, are also characterized by skewed
wave patterns that qualitatively agree with Su's experiments. In particular :

1. The system of oblique wave groups, which is seen to radiate symmetrically
from the primary wave direction, seems similar to that observed in the exper-
iments. The angle, locally measured in these oblique wave fronts, approaches
the 30o value which was found experimentally.

2. A shifting of the lateral wave forms between two consecutive rows.
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Fig. 2. Evolution of the wave train in Fig. 1 after t=T = 90

Our interpretation of these observations is that the BF-like mechanism pro-
duces a short wave group of increasing height and steepness, and it is within
such a group that the lateral instability manifests itself, if the modulational
wavelength in the lateral direction is long enough. For instance, the evolution of
a modulated wavetrain having the same initial steepness ak = 0:14 and �x = 5
�y = 4 (so that the lateral modulational wavelength is only 0.8 times the lon-
gitudinal one) is shown in Fig. 5. In this case, only the longitudinal modulation
grows according to a classical BF modulational mechanism. More details can be
found in [3].

The growth of perturbations leads, for the steepest initial waves, to a rapid
development of high wavenumber instabilities. A few time steps later, the model
fails to converge. Using the HOS method, it is not possible to conclude whether
this would be a case leading to wave breaking, but the range of wave steepness
over which such numerical instabilities occur is consistent with typical values of
steepness, relative to the occurrence of spilling breakers observed in laboratory
experiments (ak > 0:25).

To be able to follow the evolution of this system further in time, after numer-
ical breaking occurs, an ideal �lter, removing all high frequency components and
producing a loss of energy, has been applied. In this case, the loss of one or two
wave crests may occur after the wavetrain has reached the maximum stage of
modulations. This e�ect is the equivalent of the downshifting observed in phys-
ical experiments. A similar tendency to lateral energy transfer is also reported
by Trulsen and Dysthe [11], who suggested that the full explanation of this
downshift probably involves the combined e�ects of 3D nonlinear modulations,
dissipation, and wave breaking.
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Fig. 3. Evolution of the wave train in Fig. 1 after t=T = 91

3 Three-dimensional breaking waves

The modulation growth observed in 3D modulations should be limited by wave
breaking, which cannot be modeled using a method describing the free surface
as single-valued, such as the HOS method. Breaking will not happen uniformly
along a wave crest, and a 3D self-focused breaking wave is expected to appear at
some stage of the modulation. A 3D fully nonlinear potential 
ow model, with
an Eulerian-Lagrangian 
ow representation, recently developed by Grilli et al.
[16], has been extended to represent 3D directional and wave focusing, including
the additional possibility of frequency focusing such as studied in earlier 2D non-
linear models. To do so a \snake" wavemaker similar to those used in laboratory
facilities is modeled at one extremity of a 3D Numerical Wave Tank (NWT),
while a snake absorbing piston is modeled at the other extremity of the NWT to
minimize the e�ect of wave re
ection. Details can be found in [2]. In directional
focusing, waves are focused in front of the wavemaker. For instance Fig. 5 shows
an example of directional wave focusing where waves are focused at a distance
xf = 2� in front of the wavemaker. In Fig. 6 a case with more intense directional
energy focusing is shown, producing a giant steep wave a short distance away
from the wavemaker, whose crest is starting to break by spilling breaking.

Very large, possibly breaking (i.e., overturning), 3D transient waves could be
modeled in this 3D-BEM model, by using the HOS method to compute the �rst
stages of growth of wave modulations (the longer ones, on the order of 100 wave
periods) as initial condition for the model. In this case the initial wave elevation
and velocity potential are speci�ed at time t on the free surface, based on the
HOS solution. This will be the object of further studies.
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Fig. 4. Planview of the situation depicted in Fig. 3 clearly showing the appearance of
curved wave fronts.

4 Conclusions

Three-dimensional self-focusing of wave energy is achieved through modulat-
ing a periodic wave train along two orthogonal directions. Both the well known
Benjamin-Feir instability (essentially 2D) and 3D instability mechanisms are
found to be important for describing the evolution of nonlinear waves. Non-
linear wave interactions produce an instability which transforms an initially
two-dimensional wavetrain into a three-dimensional unsteady wave pattern, with
short-crestedness in the lateral direction. When the transverse modulation wave-
length is su�ciently large, one can observe the growth of the lateral modulation
through the absorption of part of the longitudinal wave energy. The model not
only predicts the initial stages of instability, but also the evolution of unsteady
modulations of 3D �nite amplitudewaves in a fully nonlinear sense. Three dimen-
sional e�ects lead to the natural formation of locally curved wave fronts which
spread energy from the primary (longitudinal) motion to the secondary (trans-
verse) one. This curved structure of 3D wave groups produces a self-focusing
mechanism in both the directional and the frequency domain. Ultimately, this
would lead to wave breaking, which cannot be described by the HOS model.
However this 3D self-focusing case can be studied in the NWT, which has the
capability of modeling both breaking and non-breaking freak waves. Such as
study would be very di�cult to achieve in a laboratory tank, due to the long
distances of propagation required for both the 2D and 3D instabilities to grow.
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