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Abstract: We present an accurate three-dimensional (3D) Numerical Wave
Tank (NWT) solving the full equations in the potential 
ow formulation. The
NWT is able to simulate wave propagation up to overturning over an arbitrary
bottom topography. The model is based on a high-order 3D Boundary Element
Method (BEM) with the Mixed Eulerian-Lagrangian (MEL) approach. The spa-
tial discretization is third-order and ensures continuity of the inter-element slopes.
Waves can be generated in the tank by wavemakers or they can be directly spec-
i�ed on the free surface. A node regridding can be applied at any time step over
selected areas of the free surface. Results are presented for the computation of
overturning waves over a ridge and their kinematics.

INTRODUCTION
Many numerical wave models solving Fully Nonlinear Potential Flow (FNPF)

equations have been developed, mostly in two dimensions (2D), which have been
shown to accurately simulate wave overturning in deep and intermediate water
(Dommermuth et al. 1988) as well as wave shoaling and breaking over slopes
(Grilli et al. 1997). In most recent 2D models, incident waves can be generated
at one extremity and re
ected, absorbed or radiated at the other extremity (Grilli
and Horrillo 1997). In three dimensions (3D), only a few attempts have been re-
ported of solving FNPF problems, for arbitrary transient nonlinear waves in a
general propagation model, with the possibility of modeling overturning waves.
Xu and Yue (1992) and Xue et al. (2001) calculated 3D overturning waves in a
doubly periodic computational domain with in�nite depth (i.e. only the free sur-
face was discretized). In their case, progressive Stokes waves were led to breaking
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FIG. 1. Sketch of the computational domain for the 3D BEM.

by specifying an asymmetric surface pressure. Sawtooth instabilities eventually
developed near the wave crests and were eliminated by smoothing. Broeze (1993)
developed a numerical model similarly to Xu and Yue's but for non-periodic
domains and �nite depth. He was able to produce the initial stages of wave over-
turning over a bottom shoal. Numerical instabilities were also experienced which
limited the computations.

In the present study, we propose a new 3D nonlinear surface wave model (Fig.
1), solving FNPF equations based on a high-order 3D Boundary Element Method
(BEM) and a mixed Eulerian-Lagrangian time updating of the free surface �f .
The methods used for both spatial and temporal discretizations are direct 3D
extensions of those in Grilli and Subramanya (1996). The model is applicable
to nonlinear wave transformations up to overturning and breaking from deep
to shallow water of arbitrary bottom topography �b. This, in fact, constitutes
a Numerical Wave Tank (NWT), where arbitrary waves can be generated by
wavemakers on �r1 or they can be directly speci�ed on the free surface. If needed,
absorbing boundary conditions can be simulated on lateral boundaries �r2 (Grilli
and Horrillo 1997). In addition, techniques are developed for regridding nodes at
any time step, over selected areas of the free surface.

MATHEMATICAL FORMULATION
Equations for the FNPF formulation with a free surface are summarized below.

The 
uid velocity is expressed as u = r� = (u; v; w), with �(x; t) the velocity
potential.

Continuity equation in the 
uid domain 
(t), with boundary �(t), is Laplace's
equation for the velocity potential,

r2� = 0 : (1)
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The 3D free space Green's function for Eq. (1) is de�ned as

G(x;xl) =
1

4�r
and

@G

@n
(x;xl) = �

1

4�

r � n

r3
; (2)

with r = jrj = jx�xlj the distance from the source point x to the �eld point xl

(both on boundary �) and n the outward unit normal vector at x on �.
Green's second identity transforms Eq. (1) into the Boundary Integral Equa-

tion (BIE)

�(xl)�(xl) =
Z
�

�
@�

@n
(x)G � �(x)

@G

@n

�
d� ; (3)

where �(xl) = �l=(4�) with �l the exterior solid angle at point xl.
The boundary is divided into various sections, with di�erent boundary condi-

tions (Fig. 1). On the free surface �f (t), � satis�es the nonlinear kinematic and
dynamic boundary conditions

DR

D t
= u =r� ; (4)

D�

D t
= �gz +

1

2
r� �r��

pa
�
; (5)

respectively, with R the position vector of a 
uid particle on the free surface, g
the acceleration due to gravity, pa the atmospheric pressure, � the 
uid density
and D=Dt the Lagrangian time derivative.

Various methods can be used in the NWT for wave generation. When waves
are generated by a wavemaker at the \open sea" boundary �r1(t), motion and
velocity [xp(t);up(t)] are speci�ed over the wavemaker as

x = xp and
@�

@n
= up � n ; (6)

where overlines denote speci�ed values.
Along the bottom �b and other �xed parts of the boundary referred to as �r2,

a no-
ow condition is prescribed as

@�

@n
= 0 : (7)

The solution within the domain can be easily evaluated from the boundary
values. For instance, the internal velocity and local acceleration are given by

r�(xl) =
Z
�

�
@�

@n
(x)Q� �(x)

@Q

@n

�
d� ; (8)

r
@�

@t
(xl) =

Z
�

�
@2�

@t@n
(x)Q�

@�

@t
(x)

@Q

@n

�
d� ;
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respectively, where

Q(x;xl) =
1

4� r3
r and

@Q

@n
(x;xl) =

1

4� r3
fn� 3 (er � n)erg ;

with er = r=r.
Note, results presented here only have no-
ow conditions on lateral boundaries

�r1 and �r2. For the use of a \snake" 
ap wavemaker and an absorbing piston at
extremities of the tank, the reader can refer to Brandini and Grilli (2001).

TIME INTEGRATION
Following the method implemented in Grilli and Subramanya's 2D model

(1996), second-order explicit Taylor series expansions are used to express both
the new position R(t+ �t) and the potential �(R(t+ �t)) on the free surface,
in the MEL formulation, as

R(t+�t) = R+�t
DR

D t
+
(�t)2

2

D2R

Dt2
+O[(�t)3] ; (9)

�(R(t+�t)) = �+�t
D �

D t
+
(�t)2

2

D2�

Dt2
+O[(�t)3] ; (10)

where all terms in the right-hand sides are calculated at time t.
Coe�cients in these Taylor series are expressed as functions of the potential,

its partial time derivative, as well as the normal and tangential derivatives of
both of these along the free surface. Thus, the �rst-order coe�cients are given
by Eqs. (4) and (5), which requires calculating (�, @�

@n
) on the free surface. The

second-order coe�cients are obtained from the Lagrangian time derivative of Eqs.
(4) and (5), which requires also calculating (@�

@t
, @2�

@t@n
) at time t.

As in Grilli and Svendsen (1990), the time step �t in Eqs. (9) and (10) is
adapted at each time as a function of the minimum distance between two nodes
on the free surface and a constant mesh Courant number Co ' 0:45.

The advantages of this time stepping scheme are of being explicit and using
spatial derivatives of the �eld variables along the free surface in the calculation of
values at (t+�t). This provides for a better stability of the computed solution and
makes it possible to use larger time steps, for a similar accuracy, than in Runge-
Kutta or predictor-corrector methods, which only use point to point updating
based on time derivatives and thus are more subject to sawtooth instabilities.
Hence, this also makes the overall solution more e�cient for a speci�ed numerical
accuracy of the results.

BOUNDARY DISCRETIZATION AND REGRIDDING
The BIEs for � and @�

@t
are solved by a BEM. The boundary is discretized

into collocation nodes and M� high-order elements are used to interpolate in
between m of these nodes. Within each element, the boundary geometry and the
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�eld variables (denoted by u = � or @�

@t
, and q = @�

@n
or @2�

@t@n
, for simplicity) are

discretized using polynomial shape functions Nj(�; �) as

x(�; �) = Nj(�; �)x
k
j

u(�; �) = Nj(�; �)u
k
j , q(�; �) = Nj(�; �) q

k
j

where j = 1; : : : ;m denotes the nodes within each element k = 1; : : : ;M�. The
summation convention is applied to repeated subscripts.

Isoparametric elements can provide a high-order approximation within their
area of de�nition but only o�er C0 continuity of the geometry and �eld variables
at nodes in between elements. Based on the experience in modeling overturning
waves in 2D NWTs, for producing stable accurate results one needs to de�ne
elements which are both higher-order within their area of de�nition and at least
locally C2 continuous in between elements. Here, the elements are de�ned using
an extension of the so-called Middle-Interval-Interpolation (MII) method intro-
duced by Grilli and Subramanya (1996). The boundary elements are 4-node
quadrilaterals with cubic shape functions de�ned using both these and additional
neighboring nodes in each direction for a total of m = 16 nodes.

The discretized boundary integrals are calculated for each collocation node
by numerical integration. When the collocation node does not belong to the
integrated element, a standard Gauss-Legendre quadrature method is used. When
it belongs to the element, the distance r in the Green's function and in its normal
gradient becomes zero at one of the nodes of the element (Eq. (2)). It can be
shown that the integrals including G are weakly singular whereas the integrals
including @G

@n
are non-singular. For the former integrals, a method of \singularity

extraction", well-suited to MII elements, is applied based on polar coordinate and
other transformations.

The linear algebraic system resulting from the discretization of Eq. (3) for
� (and @�

@t
) is in general dense and non-symmetric. Since the number of nodes

N� can be very large in 3D, the solution by a direct method of order O(N3

�
) is

prohibitive. As in Xu and Yue (1992) and Xue et al. (2001), a preconditioned
GMRES (Generalized Minimal Residual) algorithm is used to iteratively solve
the linear system.

Two types of regridding methods for the free surface are included in the model.
When the free surface is still single-valued, a 2D horizontal regridding to a �ner
resolution can be performed in selected areas of the free surface. It consists in a
reinterpolation of nodes for equally spaced MII elements in the x and y directions.
In addition, we developed a local regridding technique similar to that in Grilli and
Subramanya (1996) which redistributes the nodes in regions of 
ow convergence
like in the breaker jet. When the distance between 2 nodes on grid lines along
the direction of wave propagation becomes too small in comparison with the
distance between neighboring nodes, the nodes are locally regridded to make these
distances equal. The purpose is to limit the occurrence of quasi-singular integrals
in the BIEs, resulting from the node convergence. Note, for regridding, the same
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FIG. 2. Wave pro�les over a sloping ridge, at t' = (a) 8.577 and (b) 8.997.

interpolation functions as in the BEM are used to recalculate the solution at the
new nodes, without modifying the solution obtained at the old nodes.

The reader can refer to Grilli et al. (2001) for more details on the model
(description, validation, etc.).

RESULTS: SOLITARY WAVE SHOALING AND BREAKING OVER A
SLOPING RIDGE

A domain of depth ho and width 8ho in the y direction is considered, with a
sloping ridge at its x extremity. The ridge starts at x0 = 5:225 and has a 1:15 slope
in the middle (y0 = 0), tapered in the y direction by specifying a depth variation
in the form of a sech2 modulation. The ridge is truncated at x0 = 19 where the
minimumdepth is h0 = 0:082 in the middle part (y0 = 0) and the maximumdepth
h0 = 0:614 on the sides (y0 = �4). [Dashes indicate non-dimensional variables

based on the long wave theory, i.e. lengths are divided by ho and times by
q
ho=g.]

The initial condition is an exact FNPF solitary wave of height H 0

o = 0:6, with its
crest located at x0 = 5:7 for t0 = 0. Such a wave is obtained using the numerical
method proposed by Tanaka (1986).

The initial BEM discretizations on the bottom and the free surface have 50
by 20 quadrilateral elements in the x and y directions, respectively (�x0

o = 0:38
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FIG. 3. Vertical cross-sections at (a) y' = 0 and (b) y' = � 4. Surface
velocity �eld at t' = 8.259 (. . . .) and t' = 8.997 ({ {).

and �y0

o = 0:40). The total number of nodes and of quadrilateral MII elements
are N� = 2862 and M� = 2560, respectively. The initial time step is set to
�t0o = 0:171 (Co = 0:45). Maximum numerical errors of 1 % on wave mass and
energy conservation are considered acceptable in this application. Computations
are �rst performed in the initial discretization up to reaching these maximum
errors. The 2D regridding of part of the NWT to a �ner discretization is then
speci�ed at an earlier time t0 = 5:769 for which errors are very small (0.012 % and
0.032 % for wave mass and energy respectively). At this stage, the wave crest is
located at x0 = 13:2 with H 0 = 0:64. The regridded discretization is increased
to 60 by 40 quadrilateral elements on the free surface and bottom boundaries
for x0 = 8:075 to 19 (�x0

o = 0:182, �y0

o = 0:20, N� = 6022, M� = 5600) and
computations are pursued, up to t0 = 8:577.

Fig. 2(a) shows the wave computed at this time. Errors on wave mass and
energy are still small (0.026 % and 0.054 % respectively) but the time step has
considerably reduced, to �t0 = 0:0016. Wave overturning has already started in
the middle of the NWT and has not yet reached the sidewalls. However, compu-
tations cannot be pursued much beyond this stage due to the node convergence
at the wave crest. This problem is overcome by using the local adaptive regrid-
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FIG. 4. Vertical cross-sections at y' = 0. Internal velocity �eld at t' = (a)
8.259 and 8.997.

ding technique for nodes in the breaker jet. As a result, the solution in Fig. 2(b)
exhibits a well developed plunging jet at t0 = 8:997. One clearly sees that the
overturning process tends to propagate laterally to the sidewalls. Grilli et al.
(2001) evaluated the lateral mean speed of propagation of wave overturning.

Fig. 3 depicts the velocity �eld (u0; w0) in vertical sections in the middle of
the NWT (y0 = 0) and at the sidewalls (y0 = �4) for 
uid particles on the free
surface. The results are qualitatively in good agreement with those obtained by
New et al. (1985) for overturning waves in 2D. In Fig. 4, we show the internal
velocity �eld (u0; w0) for (y0 = 0) at t0 = 8:259 and t0 = 8:997. This was computed
by using Eq. (8). For comparison, the celerity of a linear wave in shallow water

c0 =
q
g0h0

o is given on the �gures. Finally, the horizontal internal velocity �eld

(u0; v0) is shown in Fig. 5, at depth h0 = �0:2 for t0 = 7:911 and t0 = 8:997.
Curves represent the bottom cross-sections. Focusing of the 
ow by the ridge can
be seen on the �gures, illustrating 3D breaking e�ects.

CONCLUSIONS
A 3D computation of wave shoaling and overturning over an arbitrary bottom

topography was presented. Our results show a better stability and numerical
accuracy than in previous attempts reported in the literature for calculating such
strongly nonlinear 3D surface waves. Regridding techniques are developed to
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FIG. 5. Horizontal cross-sections at h' = -0.2. Internal velocity �eld at (a)
the breaking point t' = 7.911 and (b) t' = 8.997.

describe the solution far beyond the breaking point. To our knowledge, this was
never attempted before in a general 3D-NWT. The model can be applied to a
wide range of problems such as the modeling of freak waves (Brandini and Grilli
2001) and the modeling of wave impact against structures (Guyenne et al. 2000).
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