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ABSTRACT

A new Lattice Boltzmann method (LBM) is developed
to efficiently simulate multiphase flows with high density ra-
tios, in order to study complex air-sea interaction problems,
such as wind wave breaking and related sea-spray genera-
tion. In this method, which builds and improves on the
method proposed earlier by [1], the motion of (diffusive) in-
terfaces between fluids is modeled by solving the convective
Cahn-Hilliard equation with the LBM. As in the latter work,
we eliminate instabilities resulting from high density ratios
by solving an additional Poisson equation for the fluid pres-
sure. The resulting numerical scheme is computationally
demanding since this equation must be solved over the en-
tire computational domain, which motivates implementing
the method on the massively parallel environment offered by
General Purpose Graphical Processing Units (GPGPU), via
the nVIDIA CUDA framework. In this paper, we present
the equations and numerical methods for the method and
the initial validation of the resulting multiphase-LBM for
standard benchmark problems such as Poiseuille flow, a
rising bubble, and Rayleigh-Taylor instability for two-fluid
systems. A good agreement with the reference solutions is
achieved in all cases. Finally, the method is applied to sim-
ulating an ocean breaking wave in a space periodic domain.
In all the presented applications, it is observed that the
GPGPU implementation leads to speed-ups of about two
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orders of magnitude in comparison to a single-core CPU
implementation. Although the method is only currently
implemented in a two-dimensional (2D) framework, its ex-
tension to three-dimensions (3D) should be straightforward,
but the need for the efficient GPGPU implementation will
become even more drastic in 3D.

1 INTRODUCTION

The numerical simulation of multiphase and multi-
component fluid flows is a challenging task in Compu-
tational Fluid Dynamics (CFD), both for conventional
macroscopic and mesoscopic methods, such as the Lattice-
Boltzmann Method (LBM). In classical CFD methods, mul-
tiphase flows are simulated by coupling a Navier-Stokes
(NS) equation solver to an interface advection or advection-
diffusion equation (e.g., [2]). The former equation is used
in combination with a sharp interface model, whereas the
latter is mostly used with a diffusive interface model. The
interface itself is typically represented by a tracking method
(such as the widely used Volume Of Fluid (VOF) method),
or an interface capturing method. Most of the interface
tracking methods assume a sharp interface, i.e., they con-
sider the phase transition to be clearly defined and thus the
interface between two fluids to be infinitely thin. By con-
trast, the interface capturing methods allow for both sharp
or diffusive interface representations, depending on the type
of equations solved. An additional challenge, when using
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a sharp interface method, is the accurate computation of
the interface curvature and related surface tension forces.
This has encouraged many researchers to use diffusive in-
terface methods, in which interface forces can be modeled
as a smoothed continuum by distributing them over thin
but numerically resolvable layers [3]. Such models have
recently attracted much interest, owing to their computa-
tional advantages [4,5]. Because of these various options,
when developing and implementing a specific free surface
or multiphase CFD model, one has to make a priori de-
cisions regarding using: (i) a sharp or diffusive interface
method; (ii) an advection or advection-diffusion equation;
and (iii) a tracking or capturing method. For instance, in
the two-phase model detailed below, we decided to model
the interface motion with Cahn-Hilliard (CH) interface cap-
turing advection-diffusion equation [6], using a scalar order
parameter &, (o =1,2) to identify each phase. The inter-
face between the two phases is then defined as a smooth
transition from one to the other value of ®,.

Recently, the LBM has matured into a powerful alterna-
tive to classical NS solvers, both for simulating single phase,
and multiphase/multi-component flows [7,8,9]. The LBM
is based on the Boltzmann equation, which governs the dy-
namics of molecular probability distribution functions, from
a microscopic scale point of view. The LBM then discretizes
the Boltzmann equation on an equidistant lattice, yielding a
numerical method for computing macroscopic distribution
functions on the lattice. The macroscopic hydrodynamic
quantities, such as pressure and velocity, are obtained as
low-order moments of these distribution functions. The
resulting formulation can be shown to converge towards
the solution of the classical governing macroscopic equa-
tions [10], such as NS. LBM, however, has several solver-
specific advantages, such as a relatively easier implementa-
tion, a straightforward treatment of boundary conditions,
and data and operator locality, which both yield signifi-
cantly more efficient parallel implementations than for the
more traditional solvers. In this respect, LBM has been
shown to take full advantage of the recent advances in Gen-
eral Purpose Graphical Processing Units (GPGPU) [11].

While there have been numerous applications of clas-
sical CFD solvers to multiphase flows, whose exhaustive
review is outside the scope of this paper, over the past two
decades, several noteworthy methods have been developed
for simulating multiphase flows in the context of the LBM.
These are: [12] color method, the [8] model (SC), the free
energy method of [7], and the method of [9].

All of the above methods solved multiphase flows using
various approaches but, in all of these, the maximum fluid
density ratio achievable in computations was limited by the
occurrence of instabilities for high ratio values (typically
larger than 10-20). Overcoming this limitation is one of

the most challenging current issues in the LBM modeling of
mulltiphase flows and the subject of active research. This
is also the rationale for developing the method presented
in this paper, as we aim at modeling complex flows at an
air-water interface, whose density ratio is about 1,000.

To this effect, we recently developed a new LBM, based
on improving the approach proposed by [1]. As in the latter
work, we eliminate instabilities resulting from high density
ratios by solving an additional Poisson equation for the fluid
pressure. In our model, however, new equilibrium functions
are introduced to retrieve NS equations, with the molecular
viscosity being related to the LBM relaxation time simi-
lar to classical LBMs. The new corresponding NS equa-
tion, however, does not have the undesired terms, which
appear in Inamuro et al’s model and contribute to trig-
gering instabilities for very high density ratios. The loca-
tion of diffuse interfaces between two fluids is now tracked
more accurately, by solving Cahn-Hilliard equation with the
LBM using the new equilibrium functions. Details of the
surface tension and body forces, and a detailed derivation
of the equations can be found in previously published pa-
pers [1,13].

The resulting numerical scheme is computationally de-
manding, as the Poisson equation must be (iteratively)
solved over the entire computational domain. This is ef-
ficiently done by implementing the model on a latest gener-
ation GPGPU environment, via the nVIDIA CUDA frame-
work. Such GPGPU boards (e.g., nVIDIA Tesla C2070)
provide up to 448 cores, 6 GB of main memory, and a dou-
ble precision computing capability. It has been shown in
various publications [14,11,15] that LBM methods are es-
pecially well suited for such a GPGPU implementation. For
all benchmark problems presented later in this paper, the
GPU implementation will lead to speed-ups of about two
orders of magnitude in comparison to a single-core CPU
implementation.

The paper is organized as follows. First we briefly ex-
plain the diffusive interface model on the basis of the free
energy concept. Then our new model for simulating mul-
tiphase flows with very high density ratio is introduced.
Finally, the method is validated by comparing numerical
results to reference solutions for two-fluid Poiseuille flows, a
rising bubble, and the Rayleigh-Taylor instability. Finally,
we solve a case of ocean wave braking in a space-periodic
domain.

2 Free energy

As mentioned in the introduction, numerical schemes
based on a sharp interface representation lead to addi-
tional problems in their numerical implementation, com-
pared to diffusive interface models. In particular, sharp
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interface models usually require a moving numerical grid,
whereas diffusive interface models naturally accommodate
fixed grids (such as in the LBM). They also face difficulties
for accurately computing the interface curvature and the re-
lated surface tension forces. This often leads to the appear-
ance of “parasitic currents” in the numerical solution along
the interface. These problems are eliminated when using
a diffuse-interface representation, based on the continuous
variation of an order parameter (such as fluid density or a
function of density), in a way that is physically consistent
with microscopic theories of interface processes. Three main
types of diffuse-interface models have thus been proposed in
the literature: (i) tracking force models [4]; (ii) continuum
surface force models [5]; and (iii) phase-field models [3].

In the current work, we use the latter approach, in
which the total free energy F of a two-fluid system is spec-
ified to be minimum for the equilibrium interface profile
¢(¢). Here, ¢ denotes a continuously varying order pa-
rameter (with values ¢1 and ¢ referring to fluid 1 and
2 on either side of the interface, respectively; and ¢9 > ¢1,
¢ € [p1,02]), and ( is a coordinate normal to the interface.
Following [3], the motion of the diffusive interface is mod-
eled, as a function of the order parameter, with the extended
Cahn-Hilliard (CH) equation [6], which includes convection
terms,

0
20 4V (9u) = MV, M)

where the left hand side represents the interface advection,
and the right hand side represents the interface diffusion,
expressed as a function of a mobility coefficient M and the
chemical potential pg,

s = BY — k2 (2)
with the bulk free-energy density ¥(¢) = (¢ —¢2)?(d—¢1)2.

The coefficients k and (8 are related to the surface tension
coefficient 012 and interface thickness W as,

4 k
T 01— \/; ®)
o12 = (O1—¢2)” ¢2) V 2k (4)

A more detailed derivation of the model can be found in [16].

3 Lattice Boltzmann Model
Two-dimensional multiphase (2D) flows are simulated
by solving two sets of equations: (i) the NS equations, which

provide the flow fields, based on the conservation of mass
and momentum; (ii) the extended Cahn-Hilliard Eq. (1),
which describes the interface motion. We solve these equa-
tions using a new Lattice Boltzmann method (LBM), based
on two sets of Lattice Boltzmann particle distribution func-
tions, one for each equation (i) and (ii), for which we find
mesoscopic equilibrium distribution functions, which repro-
duce the desired macroscopic equations. To discretize the
LBM equations, we use the D2Q9 set of particle veloci-
ties [17], which introduces 9 discrete particle velocities in
directions e;, with,

€p = O;
e;=c(cos((t—1)m/4),sin((i—1)w/4)), i=1,3,5,7
e; =V2c(cos((i—1)m/4),sin((i —1)7/4)), i=2,4,6,8

(5)

where ¢ = Az /At is the propagation speed on the lattice,
taken as ¢ =1 in this work, with grid spacing Az and time
step At. The speed of sound in the D2Q9 lattice is ¢s =
¢/v/3 [17], and the weighting factors w; are given as,

4 1 1
—,w = —. W = —
9’ 1,3,5,7 9’ 2,4,6,8 36

(6)

wo =

3.1 LBM of Navier-Stokes equations

A set of particle distribution functions g; (,t) is spec-
ified for calculating the flow velocities and pressure, whose
time evolution is computed as (assuming a single relaxation
time (SRT) formulation, [18])(i =0,...,8),

At
gil@ el t+Ar) = gi(w.1) — —(gi(2.1) — " (@.1))
g

1
73w,-Atemagfﬁscaa < )+3wzemB At

(7)

with particle velocities e; at point & and the time ¢, re-
laxation time 74, that relates to fluid viscosity as 7, =

v/c2 + %At, viscous stress tensor afi%‘”c = (guTg + g%),
gravitational body force By, density p, and velocity u. We
denote by ggeQ), the equilibrium state of particle distribu-

tion functions,

eq — w; {1+ Eiala + (eiaua)2 _ w

kG
Z gt e g [ T Gesciacis

S S

k 2
vig; Vel (8)
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where implicit summations are performed on repeated in-
dices o and S (but not on 7). The last two terms in the
above equation express the surface tension forces, where v;
is defined as,

and

9% 09 906 09,

Gap(@) = 20rq Oxg 4 0x, Ox,

Note that, compared to the classical LBM models, the
fluid density p no longer appears in the equilibrium distribu-
tion functions g;“”’. This eliminates potential instabilities
caused by high density differences across interfaces and is
equivalent to removing the hydrodynamic pressure gradient
from the field. As a result, the velocity resulting from this
set of equations is not divergence-free and thus has to be
corrected. The predicted velocity u* is computed as the
first order moment of g;’s as,

b
’U,* :Zgiem (1].)
=0

and is corrected by Awu, to satisfy the complete momen-
tum equation. Following [1], we state,

\Y
Au~—At~L 1 u=utAu (12)
p
Thus, for the corrected velocity field to satisfy continuity
equation V.u = 0, u* must satisfy the following Poisson
equation,

AtVp

V' =V.(
P

) (13)

Note, in practice, the collision time 7,4 can be considered as
an elementary time of collision, so that At can be replaced
by 74 in Eq. (13) (see [19]). The Poisson equation (13) can
be discretized by various methods. Here, we also solve it in
the LBM framework, which yields the following evolution
equation for a new set of particle distribution functions h;
(1=0,...,8),

A e
ho( + e ALt AL) = hi(z 4 1) — 20 (hy — WD)+ wi(V.a0%)
Th
(14)

New equilibrium distribution functions are defined as well,
as,

hi® = wip" (z,1), (15)

where n denotes the n-th iteration in the Poisson equation
solution. The relaxation time 73, is related to that of the
NS LBM ansatz,

Ty 1
==+ -At, 16
Th Zp 2 (16)

and the pressure is calculated as the zero-th order moment
of the particle distribution functions,

P = h (17)

This scheme is iteratively run at a given time ¢ until the
pressure field converges.

Hence, in this new method, the two previously derived
LBM schemes solve: (i) the (pressureless) NS equations for
high density ratios, with surface tension forces included in
the equilibrium distribution functions; and (ii) a Poisson
equation for the correction of velocity fields to account for
pressure gradients. By contrast with sharp interface meth-
ods, the calculation of interface curvature is not necessary
and only the gradients of the phase field parameter ¢ have
to be calculated. Applying the Chapman-Enskog expan-
sion [10] to Eq. 7 with the equilibrium distribution function
in Eq. 8, these schemes can be shown to converge to the NS
equation [16],

_k, (00 06 09 99
01(ta) + 9 (uaup) = ;8[3 (azkaggk P Dag 6x5>

+ 05 [v (Oaug+0pua)| +Ba  (18)

3.2 Lattice Boltzmann scheme for solving Cahn-
Hilliard equation
The diffusive interface motion is modeled by the con-
vective Cahn-Hiliard equation,

3t (6) + 0a (dua) = MV 1y (19)

To solve this equation, we introduce a third probability dis-
tribution function, f;(x,t), whose evolution is again gov-
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erned by a standard LBM scheme,

At
fil+eilt,t+ Al = fil@,t) = —(filz,0) = ;" (@,1))
f
(20)
with corresponding equilibrium distribution functions fi(eq) ,
Cialq (eiaua)

f?q:Hi¢+viFu¢+¢wi : —@ )
¢ c2 2ct 2c2

S (21)
where I is used to control the monility, w; and v; according
to (6) and (9),

H() =1 and H172’“.78 =0 (22)
The order parameter ¢ is computed from the first moment
of distribution function,

¢=§:ﬁ (23)

It can be shown that, with this definition of fi(eq), the
scheme solves the diffusive Cahn-Hilliard equation, for a
relaxation time 7y = SAt+ 4% [16].

Once the order parameter is computed, the space distri-
bution of fluid properties (density p, kinematic viscosity v
and dynamic viscosity p) can be calculated. These proper-
ties are assumed to vary smoothly along the phase interface
as a function of the order parameter ¢,

_0—d2

p(¢) po— (p1—p2)+p2 (24)

v(g) = Ziﬁi (1 — o) + 12 (25)

w(p) = jl__f; (1 — pi2) + oz (26)
4 Validation

In this section, the new LBM multiphase method is
validated by comparing the numerical results to analyti-
cal and experimental reference solutions, for three different
test cases: a two-fliuid Poiseuille flows, rising bubbles, and
the Rayleigh-Taylor instability. The initial analysis of the
multiphase- LBM results shows a good agreement with ref-
erence solutions for all three test cases. Finally, the method
is applied to simulating a breaking ocean wave, in order
to demonstrate the applicability of the method to air-sea
interaction problems.

X2 ———__ Fluid1

h Fluid 2

L |

FIGURE 1: A schematic velocity profile of a two-fluid
Poiseuille flow between infinite plates

4.1 Two-component Poiseuille flow

The two-fluid Poiseuille flow between two infinite plates
is a good test case for validating the method for high viscos-
ity and density ratios. Two immiscible fluids are accelerated
by a body force in a rectangular channel and slowed down
by viscous drag along the plate surface Fig. 1. At the phase
interface, the continuity of fluid velocity and stresses has to
be satisfied. Since the interface is planar, its curvature and
surface tensions forces are zero. The analytical solution of
the Navier-Stokes equations for the velocities u; and ug in
fluid 1 and fluid 2, respectively, is given by,

_gh?(p1+p2) w2gh(mp2—p2p1) gpi13

" 27

T2 (i + ) 241 (1 + p2) 24 @7

u2:gh2 (p1+p2)7xggh(/ilp2_/12!71)7gp2x% (28)
2 (p1 4 p2) 22 (p1 + p2) 2 pg

with fluid densities p;, dynamic viscosities u;, gravity g and
channel height 2h. The simulations were started from a
state of rest, with zero flow velocities in the whole compu-
tational domain. A periodic boundary condition in the flow
direction and no-slip boundary conditions at the plate sur-
faces were used. The interface thickness is set to W =4 lat-
tice units. The Reynolds number is Re = 100, based on half
of the channel width, the viscosity of the first fluid phase,
and the maximum velocity in the channel. The LB Mach
number is fixed to Ma = 0.01, and 7 is set to 1; p1/p2 =100
and the viscosity ratio is v1 /v = 0.1. The simulations were
stopped as soon as a steady state was reached. To check
the accuracy of the numerical scheme, the following relative
L2-norm error is used,

th [u(22) —u1,2 (22)]° dos

L? =
s uf 5 (w2) dzg

(29)
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where u; 2 denotes the analytical solution in fluid 1 or 2,
respectively, depending on the value of 5.
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FIGURE 2: Non-dimensional velocity profiles (ug = u/tmaq)
for different grid resolutions (Re = 100, pi1/p2 = 100,
1/1/1/2 = 01)

=

Fig. 2 shows steady-state velocity profiles computed for
different two grid sizes, as compared to the analytical solu-
tion. In previous studies of two-phase Poiseuille flows with
LBM multiphase models [20, 21], local oscillations of the
fluid velocity near the phase interface were observed, even
for low density ratios. Our new LBM multiphase method
does not show these oscillations, and accurately reproduces
the slope discontinuity in velocity profile. Fig. 3 shows the
L? errors for different grid configurations; first-order con-
vergence can clearly be observed with decreasing grid size.

4.2 Rising bubble

The transient behavior of bubbles under the influence
of gravity has always been a major and demanding test
case for validating numerical schemes for two-phase flows.
Although the simulation setup in terms of grid initializa-
tion and boundary conditions is straightforward, the flow
structure simultaneously illustrates the significant effects of

10

ERROR (L2 Norm)

10°
Number of lattice nodes

FIGURE 3: L?-norm error plotted versus grid resolution, in
steady-state two-fluid Poiseuille flow

viscosity, buoyancy, and surface tension forces. Several ex-
perimental studies on the rising and deformation of single
bubbles in a quiescent liquid have been reported in the lit-
erature [22,23]. The bubble shapes vary greatly in different
flow regimes, as a function of several non-dimensional pa-
rameters. Typically the Bond number, the Reynolds num-
ber, and the Morton number are used to describe the test
case. These are defined as,

ApD?
Bo =922 (30)
g
4
gHi P2
Mo = ZHL (1 £2 31
p poCiey) (31)
D
Re = Ut (32)
vy

where D is the bubble diameter, Ap = p1 — p2 the density
difference between the two fluids, p; the density of the heav-
ier fluid, po the density of the lighter fluid, g the gravita-
tional acceleration, Uy the terminal velocity of the bubble,
and v; and p; are kinematic and dynamic viscosity, respec-
tively, of the heavier fluid.

A sphere with a diameter of D = 60 lattice nodes is
placed in a computational domain of 256 x 1024 lattice
nodes. Periodic boundary conditions are used on the lat-
eral sides of the domain, a bounce-back scheme boundary
condition is applied as on the top and bottom of the do-
main. The remaining flow parameters are set to p; = 6000
and p1/p2 = 1000, p1/p2 = 1000, 75 =1, ¢1 =0.4, ¢2 =0.1.
We run the simulation for three different test cases (a) -
(c), with different Moand Bo; the specific simulation pa-
rameters are given in Table 1. Fig. 4 shows the computed
terminal shape of the bubble and velocity fields, compared
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TABLE 1: Simulation parameters for the rising bubble test
case

Case V1 k B g Bo Mo

(a) 2x1073 0.266 1.481
(b) 2x107% 0.266 1.481
() 1x1072 0.210 1.171

1.85x 107 0.1 1073
1.85x1072 10 107!
146 x10~% 100 103

G
SCSNRNNN

P
N

(c)
FIGURE 4: Terminal shape and velocity vectors for a bubble
rising under buoyancy; comparison of present LBM (red)
and [24] (black) results, for three cases: (a) Bo=0.1, Mo =
0.001; (b) Bo =10, Mo =0.1; (¢) Bo =100, Mo = 1000.

to the numerical results of [24], who used a NS-VOF Level
set method.

Fig. 5 shows the time evolution of the bubble shape
during rising, for a density ratio of 1000. Here, the domain
size is 128 x 512 lattice nodes, and the dimensionless pa-
rameters are set to Bo =100 and Mo = 0.001. During the

) t =10,000 ) t =20,000 ) t = 40,000

FIGURE 5: Time evolution (at selected time steps) of ris-
ing bubble shape during the bubble acceleration phase, for
p1/p2 =1,000, Bo =100, and Mo = 0.001.

early stages of the simulation, buoyancy forces are domi-
nant. Hence, the bubble is accelerated and starts rising,
causing its shape to change. Eventually, the terminal shape
of the bubble is formed, when buoyancy , surface tension
and viscous forces are balanced.

4.3 Rayleigh-Taylor instability

The classic Rayleigh-Taylor instability is used to
demonstrate the accuracy of our current model to solve
more complicated flows. Here, two immiscible fluids of dif-
ferent densities are placed in a channel, the heavier fluid on
top, the lighter one on the bottom. Under the influence of
gravity, the heavier fluid will gradually sink into the lighter
fluid, which is displaced upwards. The dimensionless num-
bers that are important in this test case are the Atwood
number and the Reynolds number, which are defined as:

A=PLZP2 g Re= YVIW (33)
p1+p2 v

where W is the width of the channel, and p; and po are
densities of heavy and light fluids, respectively. We set-
up this simulation following [9] and use no-slip boundary
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conditions at the top and bottom boundaries, and periodic
boundary conditions at the lateral sides; gravity is chosen
to satisfy /Wg = 0.04. The kinematic viscosity for both
fluids is the same, and the Atwood and Reynolds numbers
are 0.5 and 256, respectively (with accordingly p1/p2 = 3).
The simulation is carried out on a grid of 256 x 1024 lattice
nodes. Fig. 6 compares the results of our present method
to the numerical results of [9] for three selected time steps;
a very good agreement can be seen between both methods.

(a) ' =0.0 (b) ' =3.0

(c)t' =4.5

FIGURE 6: Rayleigh-Taylor instability problem for p;/ps =
3, A=0.5, Re =256. Time evolution of the two-fluid in-
terface for three dimensionless times t' =¢/+/W/g; leftward
panels: results of [9]; rightward panels: present results.

4.4 Breaking wave

Previous work [25,26] showed that a periodic sinusoidal
wave of large amplitude, with the initial velocities being cal-
culated from linear theory, is not stable and rapidly breaks,
since the initial velocity field is not in equilibrium with the
initial wave profile. To limit computational time, as in ear-
lier work, the simulation is assumed to be periodic in the
flow direction. This characteristic makes such periodic si-
nusoidal waves a convenient and efficient way of studying
wave breaking [2].

The initial wave velocity and interface shape, obtained
from linear theory are,

H
n= Ecos(k‘x) (34)
_ H coshk(h+2)
4 7 sinh(kh)
_ H sinhk(h+2)
= 27 sinh(kh)

cos(kx)

sin(kx)

where o is the wave angular frequency and other wave
parameters are shown in Fig. 7.

Water

FIGURE 7: Definition sketch for initial interface profile of
large amplitude sinusoidal wave.

Fig. 8 shows the time evolution of a high amplitude
sinusoidal wave with H/L =0.13 in depth h/L = 0.25. We
see that the wave it is not stable and rapidly breaks, after
traveling one wavelength from initialization.

(a) ' =0.0 (b) ' =0.33
(c) t' =1.33 (d) t' =1.66
(e) t' =2.0 (f) ' =2.33
(g) t' =2.66 (h) t' =3.0

FIGURE 8: Space-periodic wave breaking (Fig. 7). Time
evolution of an overturning breaking wave with H/L = 0.13
and h/L =0.25 (dimensionless time ¢ =t/\/L/g)
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The number of grid nodes used in this simulation is

512 x 256. The nodes update per second (NUPS) for this
case is 5 x 10°, which is two orders of magnitude faster com-
pare to a single-core CPU implementation.
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