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ABSTRACT

Floating offshore structures, which are subject to wave-induced motions,
are used in a wide range of ocean engineering applications, from vessels
of various sizes, to oil and gas platforms (TLPs, simply tethered, ... ), and
more recently, floating offshore wind turbine (FOWT) design concepts.
To optimize a variety of design and operational factors, it is important to
minimize these wave-induced motions, which in some cases may require
using semi- or fully-active methods that may use phase-resolved infor-
mation about incoming waves. In the latter case, a mass or water ballast
can be actuated or moved by a pump to counteract effects of the wave-
induced forces and moments on the float, on the basis of some control
law. Here we present the development and experimental validation of a
control system based on real-time simulations of the wave-induced mo-
tions of a floating object, with its active control method, using a complete
physics-based model, referred to as a digital twin (DT). For demonstra-
tion and validation, the system is applied to a barge-like float, for which
a 1:19.22 scale model is tested in a laboratory wave tank (30 m long, 3.6
m wide and 1.8 m deep) in our facilities, while being placed transverse
to the tank axis, in regular or irregular waves. The float is equipped with
a nonlinear model predictive controller based on a mass moving horizon-
tally on a slider in the barge’s beam direction to control its rolling motion,
actuated by a linear motor. The controller is actuated based on the DT
modeling of float heave and roll including the effect of the moving mass,
informed by the assimilation of past float motions and, optionally, us-
ing phase-resolved wave data at the float (either measured or predicted
based on a separate model) incorporating disturbance previewing in the
controller. In the experiments, the complete system is implemented and
run in realtime on a desktop computer. Results will be presented and
discussed, showing a significant reduction in float motions when the ac-
tive control method is used. Considerations for using a similar concept
to control FOWT motions will be presented as well as the potential for
using open source software (OpenFAST) as a real time DT.

KEYWORDS: Hydrodynamics modeling; dynamic positioning; con-
trol; model predictive control; model test.

INTRODUCTION

The development of Floating Offshore Wind Turbine (FOWT) infrastruc-
ture along both the U.S. East and West coasts has recently accelerated,
with the award of many lease areas for large scale farm implementations.
While the wide continental shelf along much of the U.S. East Coast has
supported the development of fixed structure wind turbines, deeper wa-
ters in the Gulf of Maine and along the U.S. Pacific Coast are more suit-
able to floating systems, which can be more economically deployed and
take advantage of the vast offshore wind energy resource in these regions.
The operations of wind turbines are highly sensitive to their orientation
with respect to wind direction, hence FOWTs, which are subject to wave-
induced motions, offer significant operational challenges since dynamic
motions of the float can introduce changes to orientation of turbine blades
with respect to the wind direction, imbalance of loads on the generator,
and added fatigue damage to the structures, amongst others.

The real time control and minimization of the motions of a large, an-
chored, FOWT subject to dynamic environmental forces in irregular sea
state and wind conditions is a complex multi-faceted problem that has
only been partially researched (Martin, Kimball, Viselli, and Goupee
(2013); Viselli, Dagher, and Goupee (2015); Viselli, Dagher, Goupee,
and Allen (2015); Viselli, Forristall, Pearce, and Dagher (2015)). While
many studies of active control of wind loading effects have been done for
onshore and offshore wind turbines focusing on turbine control (Raach,
Schlipf, Sandner, Matha, and Cheng (2014)), less work has been devoted
to controlling wave-induced motions. Strategies for controlling float
motions may involve passive techniques, such as tuned mass dampers
(TMDs), which may use optimized spring-mass systems to mitigate float
vibrations (Verma, Nartu, and Subbulakshmi (2022)), however passive
techniques may not be sufficient for suppressing motions in a broad-band
irregular wave environment.

Alternately, active control techniques may be used, which besides as-
similating past float motions, for more accuracy, require predicting in the
short term, both the wave loading on the FOWT and the float response
to it (e.g., Ma, Sclavounos, Cross-Whiter, and Arora (2018)). Based on
such predictions, the dynamic motions of the FOWT may then be actively
controlled, for instance, by moving water or solid ballast within the float.



For instance, Wakui, Nagamura, and Yokoyama (2021) present a model
predictive controller for a FOWT that uses wind speed and wave height
as inputs. To predict the latter, they use a linear time-invariant identified
model.

In this study, given a wave remote sensing method (here assumed
Lidar-like; e.g., Nouguier, Grilli, and Guérin (2014)) that can acquire
dense spatio-temporal data sets of wave surface elevations at a short dis-
tance from the float (e.g., 100-200 m in the incident wave direction),
we apply a local wave reconstruction and prediction (WRP) algorithm,
based on deterministic phase-resolved wave models, that can accurately
predict future wave elevations at the float in an irregular sea state. Pre-
vious work has demonstrated the efficiency of using Lagrangian, rather
than Eulerian, wave models to do so, and the importance of including
nonlinear amplitude dispersion effects in the models to accurately predict
wave phases at the float (Desmars, Bonnefoy, Grilli, Ducrozet, Perignon,
Guérin, and Ferrant (2020)). While active control of a floating system
can be implemented over different time scales (e.g., long time scales on
the order of changes to the local wave spectrum vs. short time scales on
the order of individual wave characteristics), the present study focuses
on control strategies at relatively short time scales (e.g., near-term of or-
der 10-15 s at full scale), utilizing measurement and prediction of local,
near-field wave conditions for implementation in a control system. Based
on earlier work (Desmars, Bonnefoy, Grilli, Ducrozet, Perignon, Guérin,
and Ferrant (2020)), the WRP algorithm used in the control system uses
the nonlinear Lagrangian “Choppy” wave model, with improved nonlin-
ear dispersion properties, and its implementation and validation for real
time predictions at the float are detailed in the complementary paper by
Albertson, Gharankhanlou, Steele, Grilli, Dahl, Grilli, Hashemi, Alka-
rem, and Huguenard (2023), also presented in this program.

In addition to the WRP algorithm, the control system is informed by
simulations with a digital twin (DT) model of the wave-induced float
motions. Based on earlier work by Grilli, Dahl, Grilli, and Steele (2018)
and Grilli, Grilli, Bastien, Sepe Jr., and Spaulding (2011), the DT model
solves for the real time heave, roll, and pitch motions of the float, given
wave excitation and other loads affecting the float dynamics (e.g., for
a FOWT this would be wind loads). Following the approach proposed
by Babarit and Clément (2006), and applied by Grilli, Dahl, Grilli, and
Steele (2018) and Grilli, Grilli, Bastien, Sepe Jr., and Spaulding (2011),
we use the Prony approximation method to transform the computation of
the “memory term” convolution integrals, that are part of the equations
governing the wave-induced float motions in the time domain, into ad-
ditional ordinary differential equations (ODEs) that become part of the
solution of a larger system of ODEs. While similarly accurate, this ap-
proach was shown to be more efficient than solving integro-differential
equations, which is important for the real time implementation of the DT
model.

In this study, for the first time, we demonstrate the addition of wave
motions in the control of a float in real-time towards the application of in-
cluding wave motion predictions in actively controlled FOWT. The focus
on wave motions enables control not only on blade motions, but also on
overall float motions, which allows insight and control based on instrin-
sic aspects of FOWT operation such as fatigue life and effects of float
motions on energy production.

FLOAT SYSTEM

The real time active control system, with DT-WRP models, is imple-
mented and validated based on laboratory experiments performed in the
University of Rhode Island wave tank (30 m long, 3.6 m wide and 1.6
m deep), with a float system representing the 1:19.22 scale model of a
barge-like tug boat. Fig. 1 shows the side and front view of the lab scale
float system, with length L = 1.37 m, maximum draft D = 0.1262 m,
operating draft d = 0.0385 m, and beam width B = 0.38 m. The float is
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(b) Front view.

Fig. 1: Views of the float system, and its main dimensions, as deployed
and tested in heave and roll in laboratory experiments. The 5 vertical
T’s marked in (b) denote locations of wave gauges where incident wave
elevations 1)(x,) are measured, which are used in the WRP algorithm.
The black squares are masses located on a slider actuated by a motor,
with rack and pinion, for the real time control of the float rolling motions.

Fig. 2: A view of the entire experimental configuration. Wave gauges
placed in the bottom right measure wave elevations and feed them into
the NI DAQ. The float can be seen mounted to the carriage in the top left.

constrained to move in only heave and roll, referred to as the directions
3 and 4, respectively, as is standard in floating body dynamics. Unidirec-
tional periodic or irregular waves are propagating towards the float, i.e,
at an incidence angle of 90° from the longitudinal axis of the float (beam
seas). The heave position and roll angle are measured by two onboard
string potentiometers attached to the tank tow carriage. Wave gauges are
placed upstream of the float to predict and supply the WRP model with
incoming wave information. Fig. 2 shows the wave tank with the float
placed in it, the tow carriage above it and the wave gauges upstream of
it. Lastly, a horizontal rack and pinion slider system is mounted on top of
the float hull of rack length L,,. and masses at either end m,,; to exert
roll restoring moments as dictated by the control system (Fig. 1b). Fig. 3
shows a close-up of the moving ballast mechanism mounted to the deck
of the model float. The moving ballast control is meant to provide a proof
of concept control system, simulating the effect of a moving fluid ballast
system.

DIGITAL TWIN MODEL

The DT is comprised of a nonlinear model for predicting the motions of
the float system based on incident wave characteristics at the float, as well
as an extended Kalman filter to estimate the float system states £ that are



Fig. 3: Close-up of close-up of the moving ballast mechanism mounted to
the deck of the model float. The aluminum frame houses the motor and
rack pinion interface, while the square masses can be seen protruding
past the edge of the barge on either side. The attachment to the wave
tank carriage is made via the aluminum plate at the top of the image.

not directly measured. These models are shown within the orange box in
the control system block diagram of Fig. 4.

Equations of Motion
To develop the nonlinear floating body dynamics model and identify the
states for the float system, we express the float equations of motion for

heave and roll, respectively, as (i, j = 3,4),
0 ¢ dr+FH () +FP () = FE+FF
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where ;(¢) is the instantaneous ship displacement in meters for heave
and radians for roll, M;; and A;j(e0) are the ship mass or inertia and
added mass or inertia values at infinite frequency. The convolution in-
tegral represents the motion memory terms, which are a function of the
impulse response functions (IRFs) K;;(¢). F(¢;,n) is the total hydro-
static restoring force or moment, which is a nonlinear function of the

(Mij+Aij(e

float displacements and instantaneous surface elevation n(r). FP(&;)
is a nonlinear viscous damping force or moment as a function of the
float velocities. Fl-E is the instantaneous excitation force from incident
waves. Fl-c is the instantaneous control force exerted on the float system
by the control system. The equations of motion in Eq. 1 are based on
standard linearized seakeeping equations of motion such as presented in
Lewis (1989), with modifications including the convolution terms, which
capture wave memory effects on float motions in irregular seas, and the
addition of a nonlinear component to the hydrostatic restoring force in
heave, a nonlinear viscous damping terms in both heave and roll, and the
controller forcing.

Note, as there is no significant dynamic coupling between the heave
and roll motions for the considered float model, the hydrodynamic coef-
ficients A;; and Bjj, and the resulting IRFs (see below) are equal to zero
for (i # j). Considering symmetries in geometry and mass distribution,
the mass and inertia matrix M;; = O for (i # j).

Approximating the Memory Term
Based on Cummins’ (1962) work on linear seakeeping theory, the IRFs
are defined for each degree of freedom based on the linear added mass

Aji(®) and damping B;;(®) coefficients, dependent on the incident wave
angular frequency ®, according to two possible forms as,

Ki(t) = -2 /W(Aii(w)_Aii(”))wsm(wt)dw ®)

2 [

The IRFs are computed by numerical integration, using the frequency-
dependent hydrodynamic added mass and radiative damping coefficients
pre-calculated in AQWA. Analytical computations are made for the high-
frequency tail of the integrals in Eq. (2) and (3), beyond some high-
frequency cut-off.

As indicated, the Prony approximation method is used to transform the
computation of the memory term convolution integral into the computa-
tion of the solution of a system of coupled ordinary differential equations
(ODEs). Thus, we pose,

— Bi(+»)) cos(ar) do. )
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where P is the order of the Prony approximation, and f8, ; and S, ;; are
complex Prony coefficients, which are computed as least square fit to the
results of Eq. (2) or Eq. (3). Then, using Eq. (4), the memory terms in
Egs. (1) are approximated as,

/Kzzt_ Ct dT %ZBPU/ p,,tr)c( dT—g{Zﬁp,up,m
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where we define the unknown complex functions 1, ;;(¢) as

.
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0

Then taking the time derivative of the unknown complex function I, ;;(¢),
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and applying the Leibnitz theorem, we write P additional complex ODEs:

Ipii = Sp,iilp.ii + G, (3)

for each degree of freedom (i = j = 3,4), i.e., 2P additional equations
with as many new unknown complex functions I, ;;(z), to be found from
the simultaneous solution of the ODEs coupled with Egs. (1).

Hydrostatic Restoring Term
The hydrostatic force F3H and moment F4H ,

Fi' = C33(&) G+ Caasin Gy,
Ff' = Cy383+ Cagsin ©)

restore the heave and roll motion of the float, respectively, where
C33(&) &3 is the restoring force in heave caused by displacement in heave
and is nonlinear due to the significant change of float length at the wa-
terline depending on the relative heave motion & = {3 — 1 to the instan-
taneous surface elevation 1. Czgsin{y is the restoring force in heave
caused by displacement in roll while C43, is the restoring moment in
roll caused by displacement in heave. Cyq sin {4 is the restoring moment
in roll caused by displacement in roll. Cz4, Cy43, and Cy4 are coefficients
previously obtained through hydrodynamic simulations of the hull form
in AQWA. The nonlinear coefficient C33(&) is calculated as

C33(8) =pgBLw(E), (10



where p is the water density, g is the gravitational constant, and the length
of the float at the waterline L, (&) is a nonlinear function:

1.1722+5.893& —d <& <0.0395—d
Ly(&) =4 1.1866+2.979& 0.0395—d < £ <0.0789—d (11)
1.3195 0.0789—-d <& <D—d,

Viscous Damping Term
The nonlinear viscous damping force and moment,

FP = bp3 G314

B, B,
F = bpazs Gl 5 Gl (12)

for heave and roll, respectively, are included in Egs. (1) to simulate the
effects of vortex shedding and skin friction resulting from large ampli-
tude float motions in heave and roll. These are standard empirical expres-
sions, proportional to the square of the motion velocity and coefficients,
bpi = (1/2)p Cp;SHi, with Sy; a relevant wetted surface area or static
moment, and Cp; a drag coefficient. We define Syy3 = 2d(B+ L) in heave
and Spy4 = LdB in roll. Coefficients Cp; are calibrated by comparing
model results to scale model testing.

Excitation Term

The excitation force or moment Fl-E for irregular waves can be expressed
as a linear superposition over the number of frequency components Ng,
that have significant energy in the incident wave, with incident wave am-
plitude a, and phase ¢, components:

No
FiE (l) = Z an R; y cos (wnt + Qi+ (Pn) s (13)

n=1

where R; ,(®,) and @; ,(®,) are the interpolated amplitude and phase,
respectively, of the excitation force or moment in heave and roll for each
individual wave component of unit amplitude, previously computed in
AQWA, for discrete regular waveforms.

Controller Forcing Term
The control moment exerted in the roll direction F4C is a quasi-static mo-
ment based on the position /(¢) of the control rack as a function of time,

F4C = (2l 7Lrack)mendga (14)

where / = 0 when the rack is positioned with its leftmost end mass nearly
above the origin (Fig. 1b), and / = L, when the rack is positioned with
its rightmost end mass positioned nearly above the origin (the case of
I = L,4c1/2 is when the control rack is centered above the origin). The
horizontally sliding control rack and pinion is modeled as exerting no
quasi-static heave forces on the float. Additionally, dynamic effects from
the moving masses are neglected.

Complete System of Seakeeping-control ODEs

To compute the float displacements in heave and roll as a function of time
Gi(1), the system of 2 second-order ODEs (Eq. (1)), which can be written
as 4 first-order ODEs and with the memory terms approximated by Eq.
(5), is solved simultaneously with 2P real first-order ODEs (Eq. (8))
for each P complex Prony function I, ;;. For P = 4 and two degrees of
freedom in heave and roll, this yields a system of 20 first-order nonlinear
ODEs to be solved at each time step of the model solution. The ODE
system in total, for float displacements in heave and roll as a function of
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Fig. 4: Nonlinear model predictive controller (MPC) block diagram.
Components within the orange box include the digital twin (DT) model
of the lab scale float, with wave prediction using the WRP model. Com-
ponents in the green box are the nonlinear model predictive control sys-
tem.

time §;(¢) (i =3,4), using velocities V;(¢) as auxiliary variables, and with
p=1,...P, reads:

G =V
. 1 P " £
V3 = _ﬁs{m Y Bp3alps3+F(&i,n) +bpsVa|Va| — F (l)}
p=1
. 1 P o BZ
Vo = ——RY Bpaalpas+Fy (5)+bpa—ValVyl
" = 4
~FE0-FE0)
Ipii = Spiilpii+Vi (15)

where the total mass or inertia terms are defined as,

M3 = (M33+A33(0)); My = (Mys+Aga(e)). (16)

Eq. (15) can now be used as a full nonlinear DT model predicting the
wave-induced motions of the float for given incident waves (i.e., here,
such as predicted at the float using he WRP algorithm). Lastly, for the
model to be compatible with an extended Kalman filter, in order to esti-
mate the float system states that are not directly measured, we recognize

Eq. 15 to be in the form of a nonlinear system of equations X = f(x)
with the state vector x of the float system identified as, with a total of 20
states,

x = [§is VisR(Ipii): S (1 i) 17

CONTROL SYSTEM

The control system is run in a closed-loop manner, incorporating real-
time sensor measurements of heave and roll displacements and wave
characteristics predictions with previewing. The control system is a non-
linear model predictive controller (MPC), representing an optimization
problem with information from a DT model of the float system, which
chooses a control action (subject to constraints) that minimizes a speci-
fied cost function. Here, the MPC is nonlinear, because the DT model it
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obtains information from is a nonlinear model (Egs. (15)). We also em-
ploy disturbance previewing in the control system, in which measured
disturbances are predicted for future times over a prediction horizon £,,.
The controller is implemented in MATLAB, with objects and functions
from the Model Predictive Control Toolbox and Control System Toolbox.

Figure 5 shows the block diagram of the overall control system. Inci-
dent waves that have not arrived yet at the float are measured upstream
of the float (here using wave gauges), and the wave reconstruction pre-
viewer (WRP) model predicts the wave elevation and spectral compo-
nents that will reach the float by the time the wave content has propa-
gated to the float (see Albertson, Gharankhanlou, Steele, Grilli, Dahl,
Grilli, Hashemi, Alkarem, and Huguenard (2023)). Since these predic-
tions are made before the wave content has reached the float, we have
near-term predictions of the future wave elevation and wave components
at the float, i.e. previewing. The previewed spectral components, which
are direct components of the WRP wave model representations (see, Al-
bertson, Gharankhanlou, Steele, Grilli, Dahl, Grilli, Hashemi, Alkarem,
and Huguenard (2023)) are used to estimate future excitation forces as
well using Eq. (13). The predicted preview of the wave elevation and
excitation forces in heave and roll are used as input to the DT model
of the float, within the nonlinear MPC. Meanwhile, the incident wave
eventually reaches the float system, which reacts with motions in heave
and roll (the only unconstrained degrees of freedom allowed here). The
heave and roll angle displacements are measured by the onboard string
potentiometers, which provide feedback input to the MPC. The output
reference, in this case a constant value of zero roll angle, as well as the
previous control action, are also input to the controller, which incorpo-
rates all its inputs to send a control action command to the lab scale float,
which actuates the mass/rack/slider system accordingly, thus completing
the feedback with previewing loop.

Optimization Control Law

The nonlinear MPC in the control system is comprised of the nonlinear
DT model of the float system and an extended Kalman filter to estimate
the unmeasured float system states (the digital twin) as well as an opti-
mization calculation that minimizes motions in roll, as shown inside the
green box in Fig. 4.

The optimization problem is expressed as a quadratic problem, whose
solution is the control decision that minimize the cost function subject to
constraints, in this case the control rack position /(¢). The cost function
J(zx) is comprised of three cost function components,

J(zk) = Jg, (z) +JIar(ze) +Je(2), (18)

where J¢, (z;) is the roll angle tracking cost function component, Ja;(zx)
is the control rack position rate tracking cost function component, and
Je(zx) is the constraint softening cost function component. The optimiza-
tion problem decision is, z/ = [1(k|k)T1(k+ 1|k)T...1(k+h, — 1|k)T &,
where control rack positions /(k+i|k) over the prediction horizon h, with
i=0...h, — 1 as well as the slack variable & at each control interval k
are freely optimized as optimization variables (we set the control horizon
equal to the prediction horizon).
The roll angle reference tracking cost function component reads,

]@ %) Z C4ref Cal k+l|k)) (19)

where we desire a constant reference roll angle, {4 oy = 0, and G4 (k+i|k)
is the predicted roll angle at the ith prediction horizon step.
The control rack position rate tracking cost function component reads,

hy—1

I (z) Z (A (I(k+ilk) — I(k+i—1]k))}?, (20)
i=0

where the control rack position rate weight is set small at wiAZ =0.02, to
slightly smooth out controller action rates of change, which in general
needs to be considered on controller hardware.

The constraint softening cost function component reads,

Je(zx) = pe€t, Q1)

with constraint violation penalty weight pe = 103. As a note, a larger
pe value relaxes the constraints on roll angle tracking and control rack
position rate tracking.

Nonlinear Model Predictive Controller Settings

A nonlinear model predictive controller object is implemented in MAT-
LAB with 20 states according to Eq. 17, 2 measured outputs of heave
and roll, 3 measured disturbances of excitation force in heave, excita-
tion force in roll, and wave elevation, and an internal model of the float
according to Eq. 15. The control horizon is set equal to the prediction
horizon, which we will vary in the results. Lastly, hard constraints are set
on the control rack position according to its physical limits of a minimum
of 0 and a maximum of L, ;.

Measured Disturbances

The measured disturbances are specified as inputs that will perturb the
float system. For our digital twin, we have specified the heave excitation
force, the roll excitation force, and the wave elevation as the measured
disturbances into the system. The measured disturbances are also pre-
viewed for future values, as inputs to the optimization calculation over
the prediction horizon. The previewed heave and roll excitation forces
act as a force input to the digital twin, whereas the previewed wave ele-
vations act to update the future nonlinear C33 restoring coefficients within
the digital twin model.

To preview both the excitation forces and the wave elevation, we need
to predict and propagate wave characteristics upstream of the float to fu-
ture instances in time. This is achieved through a Wave Reconstruction
and Prediction (WRP) algorithm, where upstream spatio-temporal mea-
surements of waves are used to reconstruct wave characteristics some



Heave Excitation Force Disturbance

= 4\ AW\/\W\\WVA |

Roll Excitation Force Disturbance

T

Wave Elevation Disturbance

0.02 \ \ /’\ NN r(\ =
[ \ \/l \) \ \/ |\
TSV VR VR VIY ‘ SV IE ERYS
0 5 10 15 20
01 Roll Angle 57
— AN N 29
£ X At 00 8
7 Y 29
0.1 - L I | | 57
0 5 10 15 20 25 30
04 Controller Position
) ’V h,=0
= hy=1
: 0.2F hp -3
h,=8
oL I [ I LAl P IR | WV il
0 5 10 15 20 25 30

Time [s]

Fig. 6: Float and predicted heave excitation force, roll excitation force,
wave elevation, roll angle with varying prediction horizons £, and cor-
responding control rack positioning / for periodic incident waves of wave
height H = 0.05 m and period T = 1.5 s.

distance away from the float, then propagated to the location of the float
for input to the DT model. The method for implementing this algorithm
follows that of Desmars, Bonnefoy, Grilli, Ducrozet, Perignon, Guérin,
and Ferrant (2020) and is described in detail in the complementary pa-
per by Albertson, Gharankhanlou, Steele, Grilli, Dahl, Grilli, Hashemi,
Alkarem, and Huguenard (2023).

SIMULATION RESULTS

The closed-loop simulation of the float system, DT, measured distur-
bance previewing, nonlinear model predictive controller, and sensor
feedback is implemented in MATLAB, according to the block diagram
in Fig 5. First, float parameters such as overall dimensions, mass and
inertia, constant restoring coefficients, and Prony coefficients are loaded
into the DT.

Incident wave and prediction data is also loaded. To evaluate the con-
trolled using simulated data, we use a Numerical Wave Tank (NWT)
model from Nimmala, Yim, and Grilli (2013) to generate four sets of
incident wave elevations, all with wave height or significant wave height
input of 0.05 m, with two sets of irregular JONSWAP spectrum wave
cases with peak periods Tpeqr = 1.0,1.5 s and two periodic cases with
periods 7 =1.0,1.5 s. The NWT is used to model nonlinear wave propa-
gation, in this case in a flat-bottomed wave tank. Water depth was 1.4 m.
Using the linear wave reconstruction modeling technique from Albert-
son, Gharankhanlou, Steele, Grilli, Dahl, Grilli, Hashemi, Alkarem, and
Huguenard (2023), 3 virtual upstream measurements of wave elevations
at locations 4.29 m, 3.85 m, 3.45m upstream of the float location are used
to predict the wave elevation and its spectral components at the float loca-
tion at later instances in time. The wave reconstruction previewer updates
its predictions every 1 second.

From the simulated NWT data, we then have both a prediction of wave
elevation (which includes a series breakdown of wave elevation and fre-
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Fig. 7: Float and predicted heave excitation force, roll excitation force,
wave elevation, roll angle with varying prediction horizons %, and cor-
responding control rack positioning / for irregular incident waves of sig-
nificant wave height Hy; = 0.05 m and peak period Tp.qr = 1.5 s.

quency components) and a true measured wave elevation (directly from
the NWT) as input to the control model.

The extended Kalman filter (part of the digital twin) is initialized in
order to estimate states from the nonlinear model (Eq. 15). The float
motion is also simulated using the same nonlinear model Eq. 15.

The time-domain simulation is performed in which the predictions
of the wave characteristics are updated, the measured disturbances are
all previewed into the digital twin, the optimization problem solves for
the optimal control adjustment, the optimal control adjustment is imple-
mented on the float system, the extended Kalman filter predicts the es-
timated states of the float, the output sensor measurements of heave and
roll displacements are taken, the output measurements are fed into the
extended Kalman filter to correct its state estimates, and the process is
repeated each time step. The controller sampling time (the time interval
which elapses before the next controller loop process happens) is 0.05
seconds over a simulation duration of 30 seconds.

For each NWT data set, the closed-loop simulation is repeated for
varying prediction horizons (time widths of future wave predictions). For
each set of waves, we simulate a case with no control action whatsoever
as a base case, one case with control but no previewing of measured dis-
turbances, one case with a prediction horizon of 0.1 of one T4 or T
cycle (3 steps for T, Tpeqr = 1.5 s, 2 steps for T, Tjeqr = 1.0 ), and one
case with a prediction horizon of 0.25 of one Ty,.q or T cycle (8 steps
for T, Tpeqr = 1.5's, 5 steps for T', Tpeqr = 1.0 5).

Figs. 6 - 9 show the simulation results for the periodic incident waves
and irregular incident waves, respectively. The top three plots show, in
order, the measured disturbance of the heave excitation force, the roll ex-
citation force, and the wave elevation. Both the disturbance encountered
at the float (solid line) and the predicted disturbance at the float (dashed
line) are shown for each measured disturbance. The bottom two plots
show the roll angle and controller position for the four control cases. The
base case with no control is labeled as having prediction horizon A, = 0
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Fig. 8: Float and predicted heave excitation force, roll excitation force,
wave elevation, roll angle with varying prediction horizons £, and cor-
responding control rack positioning / for periodic incident waves of wave
height H = 0.05 m and period T =1 s.

(blue), the case with no previewing (current information only) is labeled
with i, = 1 (green), the case with previewing over the 0.1 cycle of T),eq
1slabeledw1thh,,—3forT eak—lSsorh,,—ZforT peak = 1.0's
(orange), and the case with previewing over 0.25 cycle of T,y is la-
beled with hp =8 for T, Tp,qr = 1.5 s or hy =5 for T, Tpeqr = 1.0 s
(yellow). For the roll angle, both the float roll angle (solid) and the ex-
tended Kalman filter state estimate (dashed) of the roll angle are shown,
for each case of prediction horizon. The controller position / is shown on
the bottom plot for each prediction horizon case.

The measured disturbance plots in Figs. 6 - 9 show that the prediction
matches the actual disturbance at the float well, capturing the frequency
content, phasing, and magnitude of the signals.

In the base cases with no control (7, = 0, the maximum magnitude of
roll angle in the periodic cases is about 3° and about 6° in the irregular
cases. In both the periodic and irregular cases with no previewing (h, =
1), the controller position oscillates at a faster rate than 1/7p,4 (same as
1/T) and the resulting roll angle is the same or larger as compared to the
respective base cases. In the case of h, =3 for T', Tpeqr = 1.5 sand hp =2
for T, Tpear = 1.0 s, the controller position oscillates with period T in the
periodic cases and oscillates much less rapidly in the irregular incident
wave cases. For periodic and irregular incident waves, the roll angle is
greatly reduced, to less than 1° in the cases for T, Tpq = 1.5 s, and less
than about 2.5° for T, T},cqx = 1.0 s, indicating significant improvement
in desired roll positioning. Lastly, for the larger prediction horizons of
hy =8 for T, Tpeqx = 1.5 s and hy, =5 for T, T, = 1.0 s, the control
action and the resulting roll angle look very similar to their corresponding
results ath, =3 for T, Tpeqp = 1.5 s and hy =2 for T', Tpeqr = 1.0 s, where
it is difficult to distinguish between these two cases as they lie nearly on
top of one another. Thus, we see that for periodic and irregular incident
waves, the digital twin and control system greatly reduce the float roll
angle compared with float motions under no control, with previewing
and a small prediction horizon.
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Fig. 9: Float and predicted heave excitation force, roll excitation force,
wave elevation, roll angle with varying prediction horizons /, and cor-
responding control rack positioning / for irregular incident waves of sig-
nificant wave height Hy; = 0.05 m and peak period Tp,eq = 1 s.

The consequence of the float control working well even under a small
prediction horizon that is only 1/10 of the peak period has positive prac-
tical implications for implementing this real time algorithm on a physical
system. For example, forward looking LIDAR systems making measure-
ments of the free surface will have a limited upstream range similar to the
scaled distances evaluated in Albertson, Gharankhanlou, Steele, Grilli,
Dahl, Grilli, Hashemi, Alkarem, and Huguenard (2023). However, with
the control system working well over short prediction horizons, range
limitations of the measurement system will have less effect on perfor-
mance of the control algorithm.

EXPERIMENTAL VALIDATION

While the control algorithm has been demonstrated using simulated wave
data and the digital twin of the model float system, real measurements
and unmodeled differences between the digital twin and the physical sys-
tem will introduce error into the control method. To demonstrate the
control method applied to a physical system, we have planned a series
of physical experiments using the model described earlier. The physical
experiments will be conducted in the wave tank at URI.

For validation experiments, the model barge is oriented in the wave
tank in order to experience beam seas as done previously in numerical
experiments. The model is mounted to a heave staff allowing freedom to
respond in heave. The heave staff connects to the model through roller
bearings that also allow rotational motion of the model in roll. The heave
staff rides on air bearings, allowing for extremely low frictional resis-
tance of the experimental setup in heave. The roller bearings used for
roll motion also have extremely low friction to limit the need for adjust-
ment to the DT when comparing with model tests.

The moving ballast control system is shown attached to the existing
model scale barge in Fig. 3. A single motor drives a rack and pinion
holding the two moving masses. The smart servo motor uses position



commands as a direct input to drive the motor, hence the control devel-
oped previously for the DT can be used directly as input to control the
physical position of the masses. The system is housed by an aluminum
frame which serves to fix the mechanism to the barge.

The barge is designed to operate with a particular design draft. All pre-
viously calculations of hydrodynamic coefficients used for the DT model
of the barge, assume that it operates with the design draft. While the
static weight of the moving ballast system was designed to be as light as
possible, the added weight to the model is more than the required ballast
to reach the desired design draft, hence there is an increased draft for the
model, which would result in a change to the hydrodynamic coefficients
built into the DT. In order to maintain design draft for experiments, a
constant force spring was added to the experimental fixture to offset the
additional ballast weight. This has the effect of pulling the float out of
the water to maintain design draft and keep the hydrodynamic coeffi-
cients the same. While this solution does not affect how the magnitude
and distribution of mass contributes to the inertia, the inertia of the barge
can easily be altered in the DT to match the inertia of the physical model.

The URI wave tank is capable of generating both periodic and irregular
wave series with periods ranging from 0.5 s to 2 s and up to 15 cm am-
plitude. Wave gauges measure the wave elevation at particular points in
space to be implemented for wave forecasting with the algorithm. Results
from experimental validation will be presented during the presentation of
this paper at the conference.

CONCLUSIONS

An algorithm is developed and demonstrated for controlling the roll mo-
tion of a floating platform, with applications directed for floating off-
shore wind turbine systems. The control method combines a digital twin
model of the float system with a model predictive controller that incorpo-
rates future predictions of the wave elevation at the location of the float
from distant measurements of the nearby wave elevation in both periodic
and irregular sea states. The control algorithm is demonstrated using
simulated wave data in a numerical wave tank demonstrating significant
reduction in roll motions of the float when using future phase-resolved
information about the incoming waves. Future experiments are planned
to demonstrate the control method running in real time on a physical
model undergoing similar wave forcing in a wave tank.

While the particular control method used to demonstrate this control
algorithm involves a moving ballast system, this is implemented simply
as a proof of concept demonstration of the real time algorithm. Future
work will involve investigation of optimal methods of control, which may
involve more complex moving ballast control, added mass control, and
evaluation of energy cost in control methods. In addition, by implement-
ing a DT model of the float system, more complex DT models can be
investigated that incorporate other physical attributes of the floating off-
shore wind system, including power production, structural loading, and
moorings. A more complex DT will enable other optimization points for
the control system, such as minimization of fatigue damage or maximiza-
tion of power output.
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