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ABSTRACT 
 
We develop a new methodology for the numerical modeling of 
nonlinear free surface waves, caused by an advancing free surface 
disturbance, based on combining Lagrangian and Eulerian, or pseudo-
Lagrangian, methods for the time updating of free surface geometry 
and motion. We solve potential flow equations with a three-
dimensional (3D) higher-order Boundary Element Method (BEM; 
Grilli et al., 2000, 2001; and Sung and Grilli, 2005, for some more 
recent extensions).  
 Specifically, the Lagrangian and Eulerian methods are 
combined in order to exploit their respective advantages. The full 
Lagrangian updating is very accurate for highly nonlinear waves, and 
the Eulerian or pseudo-Lagrangian methods yield smaller 
computational times because they allow using a shorter domain, 
particularly for the forward speed problem of an advancing disturbance 
on or below the free surface. As a validation application, we compute 
3D nonlinear waves caused by a moving pressure patch. Numerical 
results show that the present methodology works quite well and gives 
reasonable wave resistance for numerical examples, as compared with 
theory, and other computations based on full Lagrangian and pseudo-
Lagrangian methods. 
 
KEY WORDS:  Numerical modeling of free surface flows, advancing 
disturbance, combination of Lagrangian and Eulerian description, 
boundary element method (BEM), nonlinear pressure patch problem.  
 
 
INTRODUCTION 
 
Within the realm of linear potential flow theory, an advancing 
disturbance on or below the free surface creates a so-called Kelvin 
wave pattern, that is well described in the classical literature. However, 
free surface waves created by high-speed moving disturbances, such as 
a Surface Effect Ship (SES), may be strongly nonlinear and hence 
greatly differ from the linear wave field. Thus, it is necessary to tackle 
this problem through numerical modeling. 
 The history of wave analysis around moving ships can be 
traced back to Michell, Havelock, Wehausen, and other precursors of 
naval hydrodynamics. Most of these classical works deal with some 

aspects of and definition of “wave resistance,” or the theoretical 
prediction of wave resistance of simple bodies or ship hulls having 
simplified analytic lines (Wehausen, 1973). A review of analytical 
representations of ship waves can be found in Noblesse (2000).  
 When it comes to numerical computations for wave 
resistance, the Boundary Element Method (BEM), also originally 
referred to as “panel method”, has been widely used since the 
pioneering works of Hess and Smith (1964) and Dawson (1977). In the 
present work, we briefly review the state-of-the-art in computational 
methods for ship wave resistance problem and make some 
recommendations for new developments, in light of our past experience 
with three-dimensional (3D) BEM computations of nonlinear free 
surface flows (e.g., Grilli et al., 2000, 2001). Specifically in the present 
work, we confine our focus to the problem of the time updating 
algorithm for the free surface geometry and motion. 
 Although some other methods based on a direct solution of 
Navier-Stokes equations have been recently proposed, mostly to 
address the problem of friction resistance of a ship hull, potential flow 
theory is still the most widely used and accurate formalism for solving 
the ship wave resistance problem. Wave resistance for a constant 
forward speed has usually been formulated as a steady wave flow 
problem in a reference frame moving with the ship. As pointed out in 
Sclavounos et al. (1997), the steady flow not only yields wave 
resistance, but also sinkage and trim, which are significant factors in 
determining power requirements and operating condition of the ship 
hull. Following initially mostly analytical methods, more practical and 
quantitative results were obtained through numerical modeling. By the 
late 1970’s, the so-called Neumann-Kelvin (NK) approach was 
beginning to be used in predicting zero or non-zero forward speed 
problems. In the NK approach, the body boundary condition is applied 
on the mean position of the exact body surface with the linearized free 
surface boundary conditions. As indicated in Beck and Reed (2001), 
the first practical application of NK based on a BEM can be attributed 
to Hess and Smith (1964). [Note that many research papers refer to the 
BEM as a “panel method” because a piecewise constant or linear 
quadrilateral approximation of geometry and field functions have 
initially been more widely used in numerical computations.] 
 A further refinement was to use the exact hull boundary 
condition but still with linearized free surface boundary conditions. 
This approach did not gain popularity, and Dawson (1977) devised the 
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“double-body” or “Dawson’s approach,” by linearizing about the 
double-body flow. An improvement of Dawson’s approach is the weak-
scatter hypothesis of Pawloski (1991). The wave disturbance by the 
ship motion is linearized around the ambient waves with the exact ship 
hull boundary condition. Huang and Sclavounos (1998) utilized this 
approximation for developing the SWAN4 model. 
 By contrast, the Fully Nonlinear Potential Flow (FNPF) 
approach does not require any kind of approximation of the body nor of 
the free-surface boundary conditions. For the steady forward motion, 
initial results of using this approach can be found in Jensen et al. (1989), 
Raven (1998), and Liu et al. (2001). For unsteady ship wave problems, 
a time marching scheme must be used which, as indicated by Beck and 
Reed (2001), gives rise to additional difficulties, particularly in the 
Eulerian-Lagrangian representation. Among these difficulties, the local 
treatment of the breaking waves generated around the ship bow and 
stern particularly for high-speed ships is a very important one. To be 
able to pursue numerical simulations using a FPNF-BEM beyond wave 
breaking, local absorption of wave energy in regions of the free surface 
having nearly breaking waves must be implemented. In this respect, 
some success was reported by Beck (1999) and, more recently, using a 
spilling breaker model, by Muscari and Di Mascio (2004). 
 The long term goal of this work deals is the application of an 
existing 3D-FNPF-BEM model (Grilli and Horrillo, 1997; Grilli et al., 
2000, 2001; Fochesato et al., 2005) to the computations of the wave 
resistance of high speed SES vessels, such as the Harley FastShip, 
which is a new type of SES with catamaran hulls. Extensions of the 
model for solving the present problem were initially proposed by Sung 
and Grilli (2005). In this paper, we introduce a new time updating 
methodology, for the numerical modeling of free surface waves around 
an advancing disturbance, by combining Lagrangian and Eulerian (or 
Pseudo-Lagrangian) descriptions of the free surface. 
 In the following sections, the mathematical and numerical 
formulations of the model are presented, with the emphasis on the 
method of free surface updating. Other aspects of the model are detailed 
in earlier papers. The problem of nonlinear waves caused by a traveling 
pressure patch is solved to validate the proposed combined method of 
free surface updating. 
 
 
FORMULATION 
 
We assume the fluid to be incompressible, inviscid, and the flow to be 
irrotational. We thus define a velocity potential, as the scalar function 

),( txΦ , of spatial variables, ),,( zyxx = ),,( 321 xxx= , and time 
variable t . The velocity potential is related to the fluid velocity vector, 

),,( wvuu =  as,  
Φ∇=u                     (1) 

where ∇  denotes the gradient operator. The continuity equation in the 
fluid domain )(tΩ  becomes a Laplace’s equation for the potential, 

0),(2 =Φ∇ tx                    (2) 

where, 2∇  is the Laplacian operator, which is defined as, ∇⋅∇=∇2 . 
The boundary of the computational domain is composed of the 

free surface, body boundary, and far field (downstream or upstream) 
boundaries. Appropriate boundary conditions must be specified on the 
entire domain boundary. According to the Lagrangian framework, the 
kinematic and dynamic free surface conditions are expressed as, 

Φ∇≡= u
Dt
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respectively, where ),,( ZYXR =  is the free surface position vector, u  
is the Lagrangian velocity of the free surface, g  is the gravitational 
constant, ρ  the density of the fluid, ap  the atmospheric or applied 
pressure on the free surface (e.g., due to the SES air cushions),  
and ∇⋅+∂∂= utDtD //  is the material derivative.  

If one assumes a purely Eulerian representation, the same 
equations are expressed as a function of the free surface elevation: 

),,( tyxz ζ= . By taking the material derivative of the kinematic 
boundary condition, D /Dt ζ (x,y, t)− z[ ]= 0 , we get, 
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where H∇  denotes the horizontal component of the gradient operator. 
The corresponding form for the dynamic boundary condition is, 
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As stated above, the primary goal of the paper is the numerical time 
updating of free surface boundary conditions and geometry; hence, we 
will detail this further in the following sections. 
 The body boundary condition in the potential fluid flow states 
that the normal velocity should be continuous from the fluid to the body, 
as follows. 

nVn ⋅=⋅Φ∇                   (7) 
where, ),,( zyx nnnn =  is the unit normal vector pointing outward from 

the fluid domain, and V  is the velocity vector of the body at the point of 
application. Usually, the velocity vector is given by the specified motion 
of the disturbance, or determined by considering the equations of body 
motion. 

On the sea bottom and other fixed parts of the boundary, a no-
flow boundary condition is prescribed as  

0=⋅Φ∇ n                   (8) 
The boundary conditions specified on the vertical upstream and 

downstream boundaries are very important for obtaining accurate and 
reliable numerical results. For the steady translation of a surface vessel or 
an advancing pressure patch in still water, the far field condition is of the 
form, 

)0,0,0(lim =Φ∇
∞→r

                  (9) 

Where r  denotes the radial distance from the source of the disturbance. 
Due to the truncation of the fluid domain, one has to modify the exact far 
field condition (9) into Eq. (8), i.e., a no-wave condition expressing that 
waves will be essentially traveling downstream. This can be achieved by 
specifying 0=Φ  on the truncated radiation boundary. It is noted that all 
of the above equations are stated in earth-fixed coordinates. In order to 
improve the numerical efficiency, a reference frame moving with the 
disturbance is introduced; this was detailed in Sung and Grilli (2005). 
 
Free Surface Time Update Methods 
 
In problems with zero forward speed, the so-called Lagrangian 
approach of free surface time updating, based on Eqs. (3) and (4),  is 
most often used. An Eulerian description, based on Eqs. (5) and (6), has 
also been used, particularly for nonlinear wave simulations in which 
the wave overturning does not occur. The Lagrangian approach is 
referred to as the material node approach. Its advantage is that the 
formulation is very straightforward, and it provides information on how 
the fluid particles move under wave motion. As indicated in Beck 
(1999), one of the difficult numerical issues with this method is that 
fluid markers tend to accumulate around stagnation points and regions 
of relatively high flow speed, which leads to numerical instability 
problems. One can prevent the failure of the time-marching algorithm 
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by relocating (or regridding) fluid markers from time to time; this 
however, is a difficult task. The Lagrangian approach has been used for 
simulating plunging breakers in deep or shallow water (e.g., 
Dommermuth et al., 1988; Grilli et al., 1997). By contrast, regridding is 
not required with the Eulerian method, but we need to numerically 
evaluate the horizontal gradient of the free surface elevation, to be used 
in Eq. (5), and the method is limited to single-valued free surface 
elevations. 
 For forward speed problems, the Eulerian approach has some 
advantages over the Lagrangian method for time updating. With the 
Lagrangian approach, expressed in earth-fixed coordinates, one should 
generally use a very long computational domain, to get a long enough 
time history or reach steady-state, in time-domain nonlinear 
simulations of wave generation by an advancing disturbance. 
Furthermore, grid resolution must be very dense around the disturbance 
(or ship) to capture the steeper waves around the bow and stern. Such 
calculations may be very time-consuming and inefficient for very large, 
finely discretized, computational domains. A practical solution to this 
problem is to use a coordinate system moving with the disturbance and 
adopt an Eulerian or pseudo-Lagrangian updating. This is discussed 
below. 
 For forward speed problems in a moving reference frame, the 
total velocity potential has usually been expressed as the sum of the 
free-stream velocity potential, which corresponds to the translation of 
the disturbance, and the perturbed potential, after introducing moving 
reference frame. For this problem, Beck (1999) suggested a pseudo-
Lagrangian approach for free surface updating, which allows the 
markers to follow a prescribed path. He thus defined a time derivative 
following the moving nodes as, ∇⋅+∂∂= vtt // δδ  where v  is the 
velocity of the moving node (which is different from that of true fluid 
particles). He finally set )/,0,0( tv ∂∂= ζ , which forces the markers/free 
surface nodes to remain at the same horizontal location in the moving 
reference frame; his final equations reduce to, 
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where )(tU B  is the forward speed (assumed in x-direction). It is noted 
that Eqs. (10) and (11), except for the effect of the translation speed, 
are of the same form as the corresponding equations in Sung et al. 
(2000), which were developed in an Eulerian framework, such as Eqs. 
(5) and (6). In this regard, Beck’s approach can be viewed as an 
Eulerian updating method. Beck (1999) also indicated that another 
appropriate choice of v is one that approximates the true fluid velocity 
reasonably well, but he did not provide any detailed formulation for this 
numerical algorithm. 
 Similarly to the conventional approach, Sung and Grilli 
(2005) proposed a new scheme for free surface updating, in which 
fictitious fluid particles keep the values of their x-coordinates in the 
moving reference frame. 
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where the prime (') denotes the coordinates of the moving reference 
frame, ye and ze  are the unit vector in y- and z-direction, and the 

pseudo-Lagrangian velocity is ),,( zyx WWWW =  with 
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In this updating scheme, the fictitious fluid markers keep their relative 
horizontal position (in x  only) in the reference frame. Sung and Grilli 
showed that the proposed method works quite well and provides 
accurate and efficient results for the nonlinear pressure patch problem. 
 In summary, for updating the free surface in time, there are 
three different approaches, the : material node, Eulerian, and pseudo-
Lagrangian, approaches. In the following section, we present a new 
combined time updating method. 
 
Combined Method of Free Surface Time Updating  
 
To exploit their respective advantages, we combine the Lagrangian and 
Eulerian (or pseudo-Lagrangian) update as follows.  
1) We express our equations in the conventional moving reference frame. 
Thus, the boundary integral equation is solved in the moving reference 
frame using the 3D-BEM. 
2) The wave elevation ),,( tyxEζ  is obtained by using Eqs. (12) and 
(13), assuming the wave profile is not going to overturn or break at the 
next time step.  
3) The wave elevation ),,( tyxLζ  is obtained by using Eqs. (3) and (4), 
after correcting velocities of the fluid markers (see below). The correction 
of the free surface profile should be done after applying Eqs. (3) and (4), 
because underlying coordinates are moving with the disturbance on the 
free surface. 
4) We linearly combine these two free surface profiles using a user-
defined function γ. A possible set of the functions and parameters is given 
as, 

ζ = 1 −γ (x, y, t )[ ]ζ E + γ (x, y, t )ζ L

γ (x, y, t ) =
1 (x, y) ∈ S L

γ ∈ (0,1) (x, y) ∈ S T

0 (x, y) ∈ S E

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

               (15) 

where LS  is the part of the free surface region considered as fully 

Lagrangian, ES  the remaining Eulerian region, and TS  the transition 

from LS  to ES , which should connect LS  and ES  with gradual 

tapering. For example, these three regions ( LS , TS , and ES ) may be of 
elliptical shape for an advancing pressure patch as shown in the next 
section. Given the problem definition for an advancing disturbance and 
the particular grid system, one can usually define an appropriate shape for 
the three zones ( LS , TS , and ES ), for which the numerical solution 
will converge, with respect to their zonal shapes. 

According to the Eqs. (15), the wave height function must be 
single-valued in the transition and Eulerian zones. When the waves are of 
plunger type in a particular area of the Lagrangian zone, there will be no 
numerical instability using this combined method, until complete 
overturning occurs. The Eulerian zone can be replaced by a pseudo-
Lagrangian zone PS , in case one would use instead the pseudo-
Lagrangian updating method in the outer region, such as done in the 
work of Sung and Grilli (2005). 

In this work, as we ultimately aim at predicting wave resistance 
for very fast vessels with air cushions, in which generated waves will 
break, we also need to have an efficient algorithm for absorbing wave 
energy and prevent wave breaking, say, near the ship stern. This aspect is 
tested in our simulations of waves caused by a pressure patch, and we  
combine our wave energy absorption scheme with a pseudo-Lagrangian 
method rather than the Eulerian method. 
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SOLUTION METHODOLOGY 
 
High Order Boundary Element Method 
The governing Eq. (1), with time-dependent nonlinear boundary 
conditions, is solved using the higher order 3D-FNPF-BEM model of 
Grilli et al. (2000, 2001), expressed for a moving disturbance problem. 
These references should be consulted for the numerical details of the 
method. The main aspects of the higher order BEM are given below. 
 Green’s second identity transforms Eq. (1) into the BIE, 

 ∫Γ
Γ⎥

⎦

⎤
⎢
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∂
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∂
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=Φ dxx
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n
xx llll ),()(),()()()(α    (16) 

where )( lxα is the normalized exterior solid angle at point lx . The 
free-space Green’s function is given by, 
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Where lxxrr −==  is the distance from the source point x  to the 

field point lx  (both on the boundary), and n  is the outward unit vector 
normal to the boundary at point x . 
 Eqs. (16,17) are discretized and solved by a BEM, using 
boundary elements based on the  Mid-Inerval-Interpolation method 
(MII) (Grilli and Subramanya, 1996; Grilli et al. 2001), in which bi-
cubic approximations of the free surface geometry and unknowns are 
expressed in 4 by 4 node sliding elements, of which only one 
quadrilateral (usually the central one) is used in the integrations. A 
curvilinear transformation is applied to express equations onto a 
reference element (Fig. 1). The numerical integration for source and 
doublet influence coefficients is carried out following the work of Grilli 
et al. (2001): (1) regular integrals are calculated by a bi-directional 
Gauss-Legendre quadrature method; (2) weakly singular integrals, 
where the denominator of the integrand tends to zero at a specific node 
point on the corresponding element, are handled by using a polar 
coordinate transformation, and then numerical integration; and (3) 
quasi-singular integrals, where the distance becomes very small but 
non-zero, are computed by using an ‘adaptive integration’ scheme, in 
which successive subdivisions of the element are made based on 
distance and solid angle criteria. 

 
Figure 1. Sketch of 16-node cubic 3D-MII element and its 
corresponding reference element 
 
Time Integration 
 
A second order truncated Taylor series expansion is used to update the 
position vector R  and the velocity potential Φ on the free surface as in 
Grilli et al. (2001). The resulting time marching scheme for the free 
surface evolution and the velocity potential is as follows.  
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where tDD /  should be chosen depending upon the type of method 

used for free surface updating (i.e., Lagrangian or one of Eulerian and 
pseudo-Lagrangian method in the present combined method of free 
surface updating). 
 
Higher-Order Spatial Derivatives 
 
One can show that the second-order Lagrangian and pseudo-
Lagrangian time derivatives in Eqs. (3) and (4), (12) and (13), 
respectively, can be expressed as a function of first- and second-order 
spatial derivatives: Φs{ , mΦ , nΦ , ssΦ , smΦ , mmΦ , nsΦ , Φnm}, 
and geometric quantities, where ),,( nms  denotes an orthogonal 
curvilinear coordinate system on the boundary. Tangential derivatives 
are calculated on the boundary in a 55×  sliding element (Grilli et al., 
2001). It is also noted that Fochesato et al. (2005) recently provided 
more detailed and improved formulations of tangential derivatives for 
the model, which are used in the present applications. 
 
 
NUMERICAL RESULTS 
 
We validate the proposed combined updating methodology, by 
computing nonlinear waves and wave resistance caused by a moving 
pressure patch on the free surface. This problem has been studied earlier 
using theoretical or numerical methods, in relation to the design of 
conventional Air-Cushion Vehicles (ACVs) (e.g., Doctors and Sharma, 
1972; Wyatt, 2000; Sung and Grilli, 2005).  
 

 
Figure 2. Definition of each free surface zone, for the combined method 
of free surface updating: Lagrangian ( LS ), transition ( TS ), Eulerian 

( ES ), or Pseudo-Lagrangian ( PS ) zones. 
 
Table 1. Parameters of elliptical shapes for Lagrangian and transition, 
zones, for the present test cases 

                               Case Number 
 

Dimensions 
C1 C2 C3 C4 

Length of major axis of LS ’s ellipse 2.0 3.0 4.5 6.5 

Length of minor axis of LS ’s ellipse 1.0 2.0 3.0 3.0 

Length of minor axis of TS ’s ellipse 2.5 5.0 7.5 9.5 

Length of minor axis of TS ’s ellipse 1.5 3.0 4.5 4.5 

Coordinates of center of ellipses (8,0) (8,0) (8,0) (10,0)
 

Before proceeding to compute numerical results, we further 
detail features of the three zones of free surface time updating used in 
computations, namely, Lagrangian ( LS ), Transition ( TS ), and Eulerian 
zones ( ES ). Figure 2 shows a schematic for the three zones, where 
elliptical shapes have been used for the border of each zone. [Note, in 
principle, any other shape could be used depending upon the problem 
and areas of interest.] We solve four different test cases C1-C4, which 
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differ in the size of each region used for free surface time updating 
(Table 1). Of the four cases, C4 has the largest region where full 
Lagrangian updating is specified and, hence, is defined as our reference 
case. Numerical results are first compared between cases and later with 
earlier results obtained elsewhere. 

As in Doctors and Sharma (1972), we define the theoretical 
shape of the pressure patch as, 

pa = Μ t( ) p0
4

tanhα ′ x − x0 + a( )− tanhα ′ x − x0 − a( )[ ]×

tanh β y − y0 + b( )− tanh β y − y0 − b( )[ ]
 (20) 

in which a time ramp-up function )(tM is used for initializing time-
domain simulations. 

Numerical results are normalized by setting 0.12 =a , 
0.1=g , and 0.1=ρ . The relationship between dimensional and non-

dimensional variables is, 
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where L  is a characteristic length of the problem, )(tU B denotes the 
traveling velocity of the pressure patch, which is specified and 
normalized in this paper as, 
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for mTt ˆˆ ≤ , and maxˆ)ˆ(ˆ
BB UtU =  for later times mTt ˆˆ > . Herein, mT̂  is 

the normalized time constant and gLUU BB /ˆ maxmax =  is the 
normalized maximum velocity at the steady state. A ramp-up function 
such as in Eq. (23) can be used for )(tM . 

Finally, wave resistance to the motion of the disturbance is 
obtained as,  

∫−=
ACS

xw dSpnR                                (24) 

where ACS  denotes the air-cushion surface area. This physical quantity 
is made dimensionless as, Rc = Rw /W( ) ρga / p0( ) , where W  is the 
weight supported by the pressure patch ( W = 4ρgab  for the present test 
problem). 

As detailed above, a combined methodology for the free 
surface updating is developed, by using the conventional Lagrangian 
and pseudo-Lagrangian updating algorithms proposed by Sung and 
Grilli (2005) to solve the problem in a coordinate system traveling at 
the instantaneous velocity of the moving disturbance. Here we model 
surface waves generated by a disturbance accelerating from a state of 
rest to a steady state. No flow boundary conditions are applied on the 
downstream, upstream, and sidewall boundaries of the domain, which 
move at the same speed as the pressure patch. An absorbing pressure is 
specified over narrow strips of the free surface near the upstream 
boundary, in order to prevent the growth of small saw-tooth 
instabilities that could be created due to the enhancement of small 
numerical errors by the relative fluid flow (Sung and Grilli, 2005). Grid 
point clustering is prevented on the free surface by regridding nodes at 
every time step in the simulations. 

Unless otherwise noted, we specify the following parameters 
for the pressure patch problems: L = 2a , 025.0ˆ0 =p , b /a = 0.5 , 

5== aa βα , 1ˆ max −=BU . The computational domain is 18 
dimensionless units long and 10 wide, and there are 81 and 15 node 

points in x  and y  directions, respectively, yielding an initial grid size 

about 0.22 unit in each direction. The water depth is 1ˆ =d  (finite-depth 
case). The time step and the time constant are kept constant at 

05.0ˆ =tδ  and 0.2ˆ =mT , throughout the present simulations.  
 Figure 3 shows time histories of the relative difference 
between wave resistance computed as a function of time for cases C1-
C3 and the reference case C4. Results are normalized by the steady-
state value of the wave resistance for case C4. We see that results 
converge to those of case C4 as the area of the Lagrangian zone ( LS ) 
is increased. Case C4 thus can be regarded as a case with an accurate 
solution in the full Lagrangian zone. In this respect, case C3 could 
probably be used as well, as differences with case C4 are insignificant.  
  

 
Figure 3. Effect of the size of various time-updating zones (Table 1) on 
total wave resistance. Relative difference with case C4 is plotted, by 
normalizing with the steady-state value of cR  for case C4 : (—) case 
C1, (—) case C2, and (—) case C3. 
 
a) 

  
b) 
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c) 

  
d) 

  
 
Figure 4. Free surface evolution of the advancing pressure patch 
problem computed using the combined time updating method, with 
zones of case C4 (Table 1), at t̂ = (a) 4, (b) 8, (c) 12, (d) 16. 
  

Figure 4 shows the time evolution of free surface waves 
around the traveling pressure patch for case C4. Figure 5 compares the 
wave resistance coefficient Rc  computed with the : (i) full Lagrangian, 
(ii) pseudo-Lagrangian, and (iii) the present combined updating method 
(the latter with zones of Case C4). In each case, nonlinear time-domain 
simulations are performed in the same size computational domain, with 
the same grid system. The agreement is quite good after quasi-steady 
state is reached at 13~12ˆ =t . The predicted values of the steady-state 
wave reisistance are : (i) 0.971 (full-Lagrangian updating), (ii) 0.970 
(pseudo-LAgrangian updating), (iii) 0.986 (the present combined 
method). For sake of comparison, linear wave theory yields 1.041 
(Doctors and Sharma, 1972). In the Lagrangian updating, a fixed 
domain is used and, hence, the pressure patch eventually approaches 
the upstream boundary, which forces us to stop computations; also,  the 
downstream vertical surface causes reflection and fluctuations in the 
computed wR  value at larger times. The pseudo-Lagrangian method is 
that used in Sung and Grilli’s (2005) earlier results. Hence, it can be 
concluded that the present numerical approach, with a new combined 
free surface updating methodology, provides accurate and efficient 
results (in the sense that a much shorter domain can be used than with 
the full Lagrangian method, while retaining the advantages of the 
Lagrangian updating near the moving disturbance). 
 In order to check the global accuracy of the present numerical 
method, we compute time histories of total volume, kinetic, potential, 
and total energy. After computations have reached steady-state, the 
maximum relative error on the total volume of the computational 
domain is less than 0.006% (Fig. 6). At the same time, Figure 7 shows 
that the total energy becomes constant after reaching steady state, with 
nearly equal partition of kinetic and potential energy. 

 Figure 8 shows the steady-state free surface wave patterns 
obtained using the conventional full Lagrangian updating method, the 
pseudo-Lagrangian method of Sung and Grilli (2005), and the newly 
proposed combined method. In the first case, significant reflection 
occurs at the downstream boundary and fluctuations can also be seen at 
the upstream free surface boundary. These fluctuations do not occur in 
the pseudo-Lagrangian and the present updating methods. It is also 
noted that, with the full Lagrangian updating method, an open 
boundary condition was specified on the downstream boundary of the 
earth-fixed computation domain, as a pressure sensitive “snake 
absorbing piston wave-maker” (Brandini and Grilli, 2001). 
 Figure 9 shows the variation of the wave resistance 
coefficient computed as a function of the pressure patch speed, by 
using the present combined method with zones of Case 4. The faster 
the pressure patch moves, the earlier the wave resistance coefficient 
reaches steady-state, and the smaller it is. 
 The steady-state values of wave resistance coefficients in 
Figure 9 are compared in Figure 10 with those obtained by other free 
surface updating methods and linear theory (Doctors and Sharma, 
1972). We see that all of the nonlinear methods yield smaller wave 
resistance results than the linear method. Moreover, the present 
combined method of free surface updating gives slightly smaller values 
of wave resistance than other free surface updating methods. 
 

 
Figure 5. Time history of wave resistance coefficient for the traveling 
pressure patch with updating: (—) full Lagrangian, (—) pseudo-
Lagrangian, and (—) combined, with zones of Case C4. 
 

 
 
Figure 6. Mass conservation of computational domain, for traveling 
pressure patch with the present combined update and zones of case C4. 
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Figure 7. Wave energy for traveling pressure patch, with the present 
combined updating methods and zones of case C4 (same case as in Fig. 
6): (—) kinetic energy ( ..EK ), (—) potential energy ( ..EP ), and (—) 
total energy ( ..ET ..EP= ..EK+ ). 
 
(a) 

 
(b) 

 
(c) 

 
Figure 8. Comparison of steady-state free surface profiles (same case as 
in Fig. 5) as a function of updating method: (a) full Lagrangian, (b) 
pseudo-Lagrangian, and (c) combined (zones of Case C4). 

 

 
Figure 9. Variation of wave resistance coefficient as a function of 
pressure patch speed, with the present combined updating method and 
zones of case C4: (—) 00.1ˆ max −=BU , ( — ) 25.1ˆ max −=BU , (—) 

50.1ˆ max −=BU , ( — ) 75.1ˆ max −=BU , and (—) 00.2ˆ max −=BU . 
 

 
 
Figure 10. Comparison of the wave resistance coefficient computed 
with the: ( ) combined updating method with zones of case C4, (∆) 
full Lagrangian updating, (+) pseudo-Lagrangian updating (Sung and 
Grilli, 2005), and (—) linear theory (Doctors and Sharma, 1972). 
 
 It is finally noted that, Parau and Vanden-Broeck (2002) 
developed a steady state solution that also applies to a moving pressure 
patch problem. Here, however, we ultimately aim at simulating the 
surface flow around a fast moving disturbance, where breaking waves 
might occur and have to be resolved in some local areas; hence, we 
needed to develop an unsteady solution in which a time marching 
scheme is used to advance the solution in time. 
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CONCLUSIONS 
 
We developed and validated a new combined methodology for 
updating the free surface in time in a 3D-FNPN-BEM model (Grilli et 
al. 2000, 2001). Numerical results obtained for a traveling pressure 
patch problem show that the new proposed method of the paper is not 
only more advantageous to use for this problem, but also as accurate as 
the conventional full Lagrangian and pseudo-Lagrangian methods used 
earlier by Sung and Grilli (2005). 
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