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ABSTRACT

We report on recent progress and validation of a 3D hybrid model for

naval hydrodynamics problems based on a perturbation method, in which

both velocity and pressure are expressed as the sum of an inviscid flow

with a viscous perturbation. The far- to near-field inviscid flows can be

solved with a Boundary Element Method (BEM), based on fully nonlin-

ear potential flow theory, and the near-field perturbation flow is solved

with a NS model based on a Lattice Boltzmann Method (LBM) with a

Large Eddy Simulation (LES) of the turbulence. We summarize the hy-

brid model formulation and latest developments regarding the LES, and

particularly a new wall model for the viscous/turbulent sub-layer near

solid boundaries, that is generalized for an arbitrary geometry. The lat-

ter are validated by simulating turbulent flows over a flat plate for Re

∈ [3.7× 104;1.2× 106], for which the friction coefficient computed on

the plate agrees well with experiments. We then simulate the flow past a

NACA0012 foil using the hybrid LBM-LES with the wall model, for Re

= 1×106, and show a good agreement of lift and drag forces with exper-

iments. Results obtained with the hybrid LBM model are either nearly

identical or improved relative to those of the standard LBM, but for a

smaller computational domain, demonstrating the benefits of the hybrid

approach.

INTRODUCTION

The simulation of large ship motions and resistance in steep waves is

typically performed using linear or (more rarely) nonlinear potential

flow solvers, usually based on a higher-order Boundary Element Method

(BEM), with semi-empirical corrections introduced to account for vis-

cous/turbulent effects. However in some cases, viscous/turbulent flows

near the ship’s hull, and breaking waves and wakes must be accurately

modeled to capture the salient physics. Navier-Stokes (NS) solvers can

and have been used to model such flows, but they are computationally ex-

pensive and often too numerically dissipative to model wave propagation

over long distances.

Here, we detail the development of a 3D hybrid model, for solving naval

hydrodynamics problems, based on a perturbation method (e.g., Alessan-

drini, 2007; Grilli, 2008; Harris and Grilli, 2012; O’Reilly et al. 2016),

in which both velocity and pressure are expressed as the sum of an in-

viscid (I) and a viscous perturbation (P) component. In this model, the

far- to near-field inviscid flow is solved with a BEM, based on fully non-

linear potential flow (FNPF) theory, also referred to as Numerical Wave

Tank (NWT), and the near-field perturbation flow is solved with a NS

model, here implemented with a Lattice Boltzmann Method (LBM; e.g.,

d’Humieres et al., 2002; Janssen, 2010; Janssen et al., 2010) including

a Large Eddy Simulation of the turbulence (LES; e.g., Krafczyk et al.,

2003). Both the BEM and LBM models have separate representations of

the free surface (using an explicit Eulerian-Lagrangian time updating in

the former and a VOF method in the latter; e.g., O’Reilly et al., 2015).

In the context of the hybrid perturbation method, the LBM is only applied

to the near-field where viscous/turbulent effects matter, and its solution

is forced by results of the NWT applied to the entire domain. Hence

the hybrid approach has an increased computational efficiency relative to

traditional CFD solutions, in which the NS solver is applied to the en-

tire domain. This was already demonstrated by Reliquet et al. (2014)

based on different types of models, which were not as efficient and op-

timized than those proposed here. Indeed, the NWT used here was the

object of numerous developments over the past two decades (see Grilli

et al.’s, 2010 review to date). Its latest version was optimized with a Fast

Multipole Method (FMM), based on the parallel ExaFMM library, and

shown to achieve nearly linear scaling on very large CPU clusters (e.g.,

Harris et al., 2014, Harris et al., 2016, and Mivehchi et al., in this con-

ference). The LBM has proved to be accurate and efficient for simulat-

ing a variety of complex fluid flow and fluid-structure interaction prob-

lems and, when implemented on a massively parallel General Purpose

Graphical Processor Unit (GPGPU) co-processor, it was also shown to

achieve very high efficiency (over 100 million node updates per second

on a single GPGPU of an older 2010-2012 generation than used nowa-

days; e.g., Janssen, 2010; Janssen et al., 2013; Banari et al., 2014). In

this respect, LBM developments in this work are based on the highly ef-

ficient, GPGPU-accelerated, Lattice Boltzmann solver ELBE (Janssen et

al., 2015; www.tuhh.de/elbe), developed at TUHH, which features var-

ious LBM models, an on-device grid generator, higher-order boundary

conditions, and the possibility of specifying overlapping nested grids.

ELBE also includes the initial LBM perturbation model based on Janssen

et al.’s (2010) approach (discussed later). Simple validations of the hy-

brid LBM and LBM-LES approaches, for viscous and turbulent oscilla-

tory boundary layers and turbulent channels, were reported by O’Reilly

et al. (2015), O’Reilly et al. (2016), and Janssen et al. (2017).

In this paper, we focus on the development and validation of the hybrid

NS-LBM solver applied to the perturbation flow and, in this context, on
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the modeling of turbulent flows by a LES with a wall model. The latter

allows for a more accurate representation of boundary layers near solid

boundaries without the need for a refined discretization. The turbulent

wall model formulation in our LBM model is an extension of the method

originally proposed by Malaspinas and Sagaut (2014), in which we more

accurately represent the geometry of wall boundaries of arbitrary shape

and orientation.

We first summarize the principles of the LBM in the context of the Mul-

tiple Relaxation Time (MRT) method. We then detail the formulation of

the perturbation method in the context of turbulent flows and show how

the standard LES equations are modified. We then validate the hybrid

LBM-LES approach by solving turbulent flows past a plane solid bound-

ary, for which we both retrieve the “law of the wall” velocity profile

and accurately compute the experimentally measured drag force. Finally,

the method is validated in a more rigorous test, by computing the drag

and lift coefficients of a submerged hydrofoil at a high Reynolds num-

ber Re = 1× 106. It should be pointed out that this paper extends the

work reported in O’Reilly et al. (2016), particularly regarding improve-

ments of the turbulent wall model formulation when applied to complex

geometries, which are validated with the hydrofoil simulations.

METHODOLOGY

Lattice Boltzmann Method (LBM)

In the LBM, the macroscopic NS equations are modeled by solving an

equivalent mesoscopic problem in which the fluid is represented by par-

ticles interacting over a (typically regular) lattice (or grid), through their

distribution functions (DF) f (t,x,ξ ), representing the normalized proba-

bility to find a particle at location x at time t with velocity ξ ; the macro-

scopic hydrodynamic quantities (e.g., velocity, pressure,...) are defined

as moments of the DFs.

The time evolution of discrete particle DFs is governed by the Boltzmann

advection-collision equation,

D fα

Dt
=

∂ fα(t,x)

∂ t
+eα · ∂ fα(t,x)

∂x
= Ωα +B′

α (1)

in which eα denotes discrete particle velocities, Ωα is a collision opera-

tor describing interactions between particles, and B′
α represents volume

forces such gravity.

When discretizing Eq. (1) it is convenient to scale each parameter

such that the mesh Courant number is unity and the particles move

from lattice node to lattice node, thus eliminating the need for finite

differencing between lattice nodes. We hereafter denote dimensional

quantities by prime variables will while non-prime variables represent

non-dimensional quantities, in which lengths have been divided by a

length scale λ , times by time scale τ , and masses by mass scale ϖ ;

thus the particle propagation speed is c = c′τ/λ = Δx′/Δt ′, and a mesh

Courant number of 1 yields c = 1. In LBM, one also typical assumes,

λ = Δx′, thus Δx = 1 → Δt = 1; finally the nondimensional viscosity

reads, ν = ν ′τ/λ 2. In LBM simulations of flows at specified Mach and

Reynolds numbers (Ma, Re), one thus finds, ν = cs�Ma/Re, to use in

simulations, also given the physical length scale of the flow � and speed

of sound cs = c/
√

3. This dimensional scaling has been applied to all

variables for the remainder of this paper unless denoted with a prime.

Eq. (1) is discretized over a regular lattice, of grid spacing Δx us-

ing n = 19 discrete particle velocities, which point in the directions

of 18 neighboring particles from a given particle location; thus: eα =
{0,0,0};{±c,0,0};{0,±c,0};{0,0,±c};{±c,±c,0};{±c,0,±c};

{0,±c,±c}, for α = 0, ...,18 (standard D3Q19 scheme).

In the standard Single Relaxation Time (SRT) LBM, Eq. (1) is dis-

cretized by finite differences in space and time as,

fα(t +Δt,x+eα Δt)− fα (t,x) =−Δt

τ
{ fα (x, t)− f

eq
α (ρ,u)}+Bα (2)

where f
eq
α (ρ,u) are equilibrium DFs, functions of the macroscopic fluid

density ρ and velocity u, Δt is time step (with c = Δx/Δt), and τ , a

nondimensional relaxation time (SRT). LBM simulations are typically

split up into a collision step, which locally drives the particle DFs to

equilibrium, and a propagation step, during which the evolved DFs are

advected. The macroscopic hydrodynamic quantities are then found as

low-order moments of the DFs, e.g.,

ρ =
n

∑
α=1

fα , ρ u =
n

∑
α=1

eα fα (3)

A Chapman-Enskog expansion is applied to Eq. (2), by first making a

Taylor series expansion of the first term. A scaling analysis is then ap-

plied to the zero-th and first moments of the resulting equation, showing

that the LBM solution satisfies the incompressible NS equations within

O(Δx2) and O(Ma2) errors (see, e.g., Banari et al., 2014) provided the

equilibrium DFs are selected as,

f
eq
α (ρ,u) = wα

(
ρ +ρ0

(
3
(u · eα )

c2
+

9

2

(u · eα )
2

c4
− 3

2

u2

c2

))
(4)

where, ρ0 and ρ represent the average fluid density and a small pertur-

bation from that density, respectively, and wα are lattice dependent di-

rectional weights with, w0 = 1/3, w1...6 = 1/18 and w7...18 = 1/36. The

relaxation time is then found as τ = 3ν/c2 +Δt/2, a function of the fluid

viscosity ν .

The collision step in Eq. (2) is a strictly local operation while the convec-

tive step propagates the particle distribution functions in their discretized

velocity directions eα to neighboring lattice nodes. Unlike standard NS

solvers used in CFD the LBM solution does not require a pressure cor-

rection step since pressure is directly found as p= c2
s ρ . Both this locality

of all numerical operations and the scaling of quantities so that finite dif-

ferencing is not required makes the LBM very well suited to massively

parallel computations on a GPGPU.

In their extension of the SRT-LBM, d’Humieres et al. (2002) showed that

more accurate and stable results can be obtained, particularly for high

Reynolds numbers Re, using the Multiple Relaxation Time (MRT) LBM.

In this method, higher-order moments (i.e., hydrodynamic quantities and

their fluxes) are incorporated into the solution, which have important

physical significance (Lallemand and Lou, 2000) and will be useful to

implement the LES in the LBM to more easily model turbulent flows at

high Re numbers (see below). In the MRT, the collision operator in the

right hand side of Eq. (2) is replaced by (β = 0, ...,18;γ ,δ = 0, ...,15;

repeated indices in equations mean an implicit summation),

Ωα =−M−1
αγ Sγδ (Mβδ fβ −m

eq

δ
) (5)

where Mαγ is the transformation matrix from DFs to moments, with fα =
M−1

αγ mγ and Sγδ is a diagonal collision matrix of relaxation parameters,

weighing different properties of the fluid (see references). On this basis,

equilibrium moments m
eq
γ are derived from the f

eq
α (x, t) as,

m
eq
0 = ρ, m

eq
3 = ρ0ux, m

eq
5 = ρ0uy, m

eq
7 = ρ0uz

m
eq
1 = eeq = ρ0(u

2
x +u2

y +u2
z ), m

eq
9 = 3p

eq
xx = ρ0(2u2

x −u2
y −u2

z )

m
eq
11 = p

eq
zz = ρ0(u

2
y −u2

z ), m
eq
13 = p

eq
xy = ρ0(uxuy)

m
eq
14 = p

eq
yz = ρ0(uyuz), m

eq
15 = p

eq
xz = ρ0(uxuz) (6)
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Equations for the perturbation LBM

Below, we summarize the expressions of the NS perturbation method ap-

plied to derive the hybrid LBM model formulation (Grilli, 2008; Harris

and Grilli, 2012) and develop the corresponding LBM equations with the

MRT. In the NS perturbation approach, both the flow velocity and pres-

sure are expressed as the sum of inviscid and perturbation components,

ui = uI
i +uP

i with p̃ = p̃I + p̃P (7)

where p̃ = p+ ρgz− 2
3 ρk denotes the perturbation dynamic pressure,

with k the turbulent kinetic energy. Superscripts I denote irrotational flow

quantities, with uI
i = ∇iφ

I satisfying Euler equations, and superscripts P

represent perturbation flow quantities that are driven by the inviscid flow

fields. Applying this decomposition to the NS equations and substituting

Euler’s equations, the perturbation NS equations read,

∂uP
i

∂xi
= 0 (8)

∂uP
i

∂ t
+uP

j

∂uP
i

∂x j
= − 1

ρ

∂ p̃P

∂xi
+(ν +νt)

∂ 2uP
i

∂x j ∂x j

−
(

∂uI
i

∂x j
uP

j +uI
j

∂uP
i

∂x j

)
+2

∂νt

∂x j
Si j (9)

where ν and νt are kinematic molecular and turbulent viscosity, respec-

tively, with the latter being expressed through the Smagorinsky method

as,

νt =(CSΔ)2|S|, with Si j = SP
i j+SI

i j =
1

2

(
∂uP

i

∂x j
+

∂uP
j

∂xi
+

∂uI
i

∂x j
+

∂uI
j

∂xi

)

(10)

where CS is the Smagorinsky constant, Δ a grid filtering length scale, and

Si j the rate of strain tensor, defined as the sum of components functions

of the perturbation (SP
i j) and inviscid (SI

i j) velocity.

Janssen et al. (2010) developed a perturbation LBM-LES with MRT

solving Eqs. (7) to (10), in which the “I-P” interactions terms were

treated as volume forces through the Bα terms of Eq. (2). Here, instead,

we solve these equations, assuming the perturbation LBM-LES DFs are

also decomposed as, fα = f I
α + f P

α and introduced in Eq. (2). Subtracting

the LBM equation for the inviscid flow, we find,

f P
α (t +Δt,x + eα Δt))− f P

α (t,x)) =−Δt

τ
{ f P

α (t,x)

− f
eq
α (ρ I +ρP,uI +uP)+ f

eq,I
α (ρ I ,uI)} (11)

where the f
eq,I
α (ρ I ,uI) are expressed with Eq. (4) based on inviscid fields

and satisfy,

n

∑
α=1

f
eq,I
α = 0,

n

∑
α=1

eα i f
eq,I
α = ρ0uI

i ,
n

∑
α=1

eα ieα j f
eq,I
α = pIδi j +ρ0uI

i uI
j

(12)

The perturbation equilibrium DFs are then found as, f
eq,P
α (ρP,uP,uI) =

f
eq
α (ρ I +ρP,uI +uP)− f

eq,I
α (ρ I ,uI) with,

f
eq,P
α = wα

(
ρP +ρ0

(
3

uP · eα

c2
s

+
9

2

(eα ·uP)2 +2(eα ·uP)(eα ·uI)

c4
s

−3

2

(uP)2

c2
s

))
, (13)

which satisfy,

n

∑
α=1

f
eq,P
α = ρP,

n

∑
α=1

eα i f
eq,P
α = ρ0uP

i ,

n

∑
α=1

eα ieα j f
eq,P
α = pPδi j +ρ0uI

i u
P
j +ρ0uP

i uI
j +ρ0uP

i uP
j (14)

A rigorous Chapman-Enskog expansion would show that the perturba-

tion NS Eqs. (7) to (10) are recovered when using these DFs. Note the

interaction terms between the I and P fields in Eqs. (13) and (14), ex-

pressing the inviscid flow forcing on the perturbation fields.

Extending this formulation to the MRT, assuming a collision operator

expressed by Eq. (5), we find the equilibrium moments,

m
eq
1 = eeq = ρ0((u

P
x )

2 +(uP
y )

2 +(uP
z )

2 +2uP
x uI

x +2uP
y uI

y +2uP
z uI

z)

m
eq
9 = 3p

eq
xx = ρ0(2(u

P
x )

2 − (uP
y )

2 − (uP
z )

2 +4uP
x uI

x −2uP
y uI

y −2uP
z uI

z)

m
eq
11 = p

eq
zz = ρ0((u

P
y )

2 − (uP
z )

2 +2uP
y uI

y −2uP
z uI

z)

m
eq
13 = p

eq
xy = ρ0(u

P
x uP

y +uP
x uI

y +uP
y uI

x)

m
eq
14 = p

eq
yz = ρ0(u

P
y uP

z +uP
y uI

z +uP
z uI

y)

m
eq
15 = p

eq
xz = ρ0(u

P
x uP

z +uP
x uI

z +uP
z uI

x)
(15)

Moments that are not listed above are unchanged from the standard MRT

formulation.

LES turbulence modeling with a LBM

Implementing a LES into the LBM requires evaluating the rate of strain

tensor Si j . To do so, Krafczyk et al. (2003) showed that the 2nd-order

moments of the DFs can be expressed as,

Pi j =
n

∑
α=1

eα ieα j fα = c2
s ρδi j +ρ0uiu j − 2c2

s ρ0

s2
Si j (16)

where s2 is a relaxation rate for these moments, and showed that they are

related to 2nd-order moments in the MRT, 3pxx, pzz, pxy, pyz, and pxz.

The 1st and 2nd terms in Eq. (16)’s RHS are functions of flow quantities

obtained through other moments of the DFs. Based on Eq. (16), the rate

of strain tensor can thus be expressed as,

Si j =
s2

2c2
s ρ0

{c2
s ρδi j +ρ0uiu j −Pi j}= s2

2c2
s ρ0

Qi j (17)

where Qi j are the terms in {}. Krafczyk et al. (2003) assumed that the

Qi j’s are functions of the non-equilibrium part of the DFs, f
neq
α = fα −

f
eq
α and provided their expressions as a function of the 2nd-order MRT

moments. Applying Eq. (10), they then calculated the LES turbulent

viscosity as,

νt = (CSΔ)2|S|= s2

2c2
s ρ0

(CsΔ)2|Q|, with |Q|=√
Qi jQi j (18)

with the relaxation rate of the 2nd-order moments defined as,

s2 =
1

τ0 + τt
with τt =

1

2

(√
τ2

0 +18(CsΔ)2|Q|− τ0

)
(19)

where τ0 is the relaxation time based on the molecular viscosity.

When applying the LES to the perturbation LBM, the moments PP
i j are

given by the last Eq. (14), yielding an expression for the perturbation

rate of strain tensor that features nonlinear interaction terms between the

I and P fields,

SP
i j =

s2

2c2
s ρ0

(
c2

s ρPδi j +ρ0uP
i uP

j +ρ0uI
i uP

j +ρ0uP
i uI

j −PP
i j

)
=

s2

2c2
s ρ0

QP
i j
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(20)

The rate of strain tensor for the total flow is finally given by,

Si j =
s2

2c2
s ρ0

QP
i j +SI

i j (21)

Therefore the |Q| term to use in LES Eqs. (18) and (19), in combination

with the MRT LBM Eqs. (11) to (15), is found as follows,

|Q|=√
Ri jRi j with Ri j = QP

i j +
2c2

s ρ0

s2
SI

i j (22)

where the QP
i j terms are computed with Eq. (20).

LBM turbulent wall model

Typical naval hydrodynamics flows are fully turbulent, with Re > 106.

Thus, the turbulent boundary layers (BL) near solid boundaries (e.g., ship

hull) must be properly modeled in the LBM. Since resolving the BL in

the LBM grid would be computationally prohibitive (even with grid re-

finement through nesting such as done in ELBE), besides the LES of the

flow, this requires implementing a turbulent a wall model.

Below, we describe the extension to the perturbation LBM-LES of the

method proposed by Malaspinas and Sagaut (2014), based on a macro-

scopic representation of the flow within the BL (i.e., on the LBM lattice).

A thin layer approximation is introduced, implying that the mean free

flow is locally nearly parallel to the solid boundary (i.e., wall) and statis-

tically stationary; it is also assumed that there is no horizontal pressure

gradient. In such conditions, the mean velocity profile can be found as

a function of the distance to the wall y from the semi-empirical equation

proposed by Musker (1979), on the basis of experimentally validated log-

arithmic “laws of the wall” for the fully turbulent upper BL, the viscous

lower BL, and a transition layer,

ũ(y+) = uτ

((
5.424atan

(
2.0y+−8.15

16.7

)

+ log10

(
(y++10.6)9.6

(y+2 −8.15y+ +86.0)2

)
−3.52

)
(23)

where the friction velocity uτ and non-dimensional distance y+ are de-

fined as,

uτ =
√

τw/ρ and y+ = y
uτ

ν
(24)

where y is aligned with the wall normal. Malaspinas and Sagaut (2014)

also express the turbulent eddy viscosity as

νt = κ(Δx)y

(
1−e

−y+

26.0

)2∣∣∣∣∂ ũ

∂y

∣∣∣∣ (25)

where κ is a constant chosen to be 0.384 based on experimental data and

Δx = 1 is mesh size.

The “law of the wall” Eqs. (23) to (25) will be used to express the bound-

ary condition near a solid boundary in the LBM, where unknown DF’s are

reconstructed on the lattice nodes based on the macroscopic flow quanti-

ties. Let us define x1, x2, and n̂ as the position of the first and second off

wall lattice nodes and the outward normal unit vector at the wall, respec-

tively (Fig. 1). As is standard in most LBM wall boundary models, DF’s

that satisfy eα · n̂< 0 (dashed populations seen in Fig. 1b) are assumed to

be unknown after the propagation step and must be reconstructed. This

is done using the macroscopic flow quantities, ρ1, u1 and ∂u1/∂y, cal-

culated using the “law of the wall”.

(a) (b) (c)

Fig. 1: Sketch of LBM flow reconstruction near a solid boundary (as-

sumed 2D for simplicity): (a) known or computed variables; (b) known

(—–) and missing (- - - -) DF populations; (c) variables in geometric cal-

culations. Lattice points are marked by (•). [(a) and (b) from Malaspinas

and Sagaut (2014)]

The DFs near the wall are thus constructed as,

fα(x1, t) = f
eq
α (ρ1,u1)+ f

neq
α

(
∂ ũ1

∂y

)
(26)

where f
eq
α are specified through Equations (2) and (13) for the standard

LBM or the perturbation LBM methods, respectively. The f
neq
α DFs are

constructed as follows (Malaspinas and Saugat 2014),

f
neq
α

(
∂ ũ1

∂y

)
=−wα ρ0

c2
s λν

3

∑
i=1

3

∑
j=1

{eα ieα j −c2
s Ii j}Si j (27)

where λν is the laminar relaxation time and Ii j is the identity matrix.

To evaluate u1, which depends on the wall shear stress τw, for each

near-wall lattice point, one numerically solves the implicit equation,

u∗2 = ũ(y2,τw) where u∗2 is calculated as the magnitude of the velocity

projected in the tangential direction to the wall u∗2 = |u2 · t̂| (t̂ being the

unit local tangential vector). A Newton iteration scheme is used to find

ũ(y′2,τw), given by Musker’s Eqs. (23) and (24), which iterates over the

τw value until convergence is achieved.

Next ũ1 and ν1 are solved for and u1 is found by projecting ũ1 along the

unit local tangential vector, u1 = (ũ1 · t̂)t̂. The BL turbulent viscosity,

ν1, is used to calculate the relaxation rate of the 2nd-order moments as

s2 = 1/(τ0 + ν1), replacing the LES Eq. (19). Finally, ρ1 is calculated

by reconstructing the flow density based on known DFs only,

ρ1 = (ρα +ρβ ), with ρα =∑
α

fα and ρβ =∑
β

fβ ∗ (28)

Where lattice links along directions α do not intersect the wall, lattice

links along directions β intersect the wall, and directions β ∗ are the op-

posite directions to β . Equation (26) may now be applied to the unknown

DFs.

When using this method for general boundary geometries, a shift in refer-

ence frame is needed, such that the x-axis points towards the local stream-

wise direction and locations x1 and x2 align with the wall normal. Thus,

a wall normal projection is applied to determine location x2,

y∗α =
eα ·−n̂

|eα | (29)

The direction α with the largest y∗α is chosen to find x2 as, x2 = x1 +
eα Δt. Although x1 and x2 will not perfectly align with the wall normal

when the lattice and wall are not coincident, such as in Fig. 1c, a small

loss of accuracy due to geometry is acceptable. The distance, q, between

the first node x1 and the nearest location on the solid boundary (see Fig.

1c) is used in the calculation of y+ (Eq. (24)). The wall normal distances

to x1 and x2 are then defined as q and |(eα · n̂)Δt|+ q, respectively. At
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all x1 locations, the q values are computed using a Newton scheme and

a polynomial fitted to describe the local wall boundary geometry (such

as the NACA0012 profile modeled below); both directions n̂ and t̂ are

also computed using this polynomial at the location coinciding with the

minimized distance q.

In general, as the wall normal distance y decreases, f
eq
α will decrease and

f
neq
α will increase, potentially violating the scaling assumptions made in

the Chapman-Enskog expansion to recover the Navier-Stokes equations.

Therefore, a limitation must be imposed on the wall model as q decreases.

It has been found that, in order to correctly capture the velocity profile

in the turbulent channel simulations described below, distance q must

be greater than 0.2Δx. Additionally, in regions where the y+ value is

less than 5, the viscous sublayer of the turbulent profile is reached and a

standard bounce back condition is suitable. This is particularly important

in regions of flow separation or near stagnation points.

When applying the turbulent wall model to the perturbation LBM, we

reconstruct the total flow, u2, from u2 = uI
2 +uP

2 , and solve the macro-

scopic (Musker) equation to find u1 = uI
1 +uP

1 . The equilibrium DFs in

Eq. (26) are now those of Eq. (13). Furthermore, in Eq. (27) we now

use SP
i j instead of Si j , so that only the perturbation component is applied

back to the DF’s. Finally if, the wall model is not applied, a standard

“bounce forward” scheme is used, satisfying a no-slip condition for the

total velocity, uP =−uI ,

fα ′(x1, t) = fα(x1, t)−2ρ0wα
eα ·−uI

c2
(30)

where direction α ′ is opposite to direction α .

LBM and Hybrid LBM force evaluation

The total force acting on a solid body is computed in the perturbation

LBM as a linear combination of the inviscid and perturbation forces,

F = FI + FP, where the inviscid contribution is evaluated through an

integration over the body boundary ΓB of the known pressure pI . The

perturbation force may be calculated in a manner that is consistent with

typical LBM simulations. In the following results, the stress integration

method has been used to evaluate forces

F =

∫∫
S

{pn̂+ τw}dS (31)

where n̂ is the unit normal vector on the surface. Discretizing the above

equation yields

F = ∑{pn̂+ τw}ΔS (32)

where, ΔS represents a discretized surface area, a function of (Δx)2, and

p = c2
s ρ a function of the first-order moment of the DFs. A common

method for calculating τw in LBM is to use the non-equilibrium compo-

nent of the second-order moment using Eq. (17) where

τi = μ
3

∑
j=1

Si j (33)

This direct evaluation, using the DFs and their moments, eliminates a

loss of accuracy that would otherwise occur from the cancellation of two

close numbers in fα during the calculation of u and subsequent ∂u/∂x

(Mei et al., 2002). However, since a Cartesian grid is used, the stress

vectors acting on the surface of the body have to be extrapolated based

on the information at the nearest fluid lattice nodes, leading to a loss of

accuracy, particularly at high y+ values. Here, we eliminate this error

by applying τw calculated exactly at the wall boundary using the Musker

profile, in Eq. (32). At boundary locations where the turbulent wall

model is not applied, Eq. (33) is used in Eq. (32).

APPLICATIONS

Simulation of turbulent flow over a flat plate

Here, we validate the turbulent wall model in the context of the pertur-

bation LBM by simulating a turbulent flow over a flat plate; results are

compared to those of the standard LBM. A key difference between the

results presented here and those presented previously (O’Reilly et. al

(2016) and Malaspinas and Sagaut’s (2014)) is that a generalized force

evaluation method based on Eq. (32) is used. Similar to Malaspinas and

Sagaut’s (2014) test case, we use a parallelepipedic domain of dimen-

sions, L = 2πM, H = 2M, and W = 2πM (M denoting the half chan-

nel width), with flat plates specified on the lower/upper boundaries at

y = 0 and H, on which the turbulent wall model is applied, and peri-

odic boundary conditions in the 2 horizontal directions at x = 0 and L

(streamwise) and z = 0 and W (cross stream). In this application, the

flow is forced by way of a body force (term Bα in LBM Eq. (2); see,

Cabrit, 2009), F = {u2
τ + um(um − ux)}/M, in which ux is the instan-

taneous space-averaged downstream velocity component. The inviscid

velocity field specified in the perturbation LBM is uniform over the chan-

nel, uI = U , where U is calculated by applying the law of the wall Eq.

(23) at the center of the channel, i.e., ũ(y+) for y = H/2. The Smagorin-

sky constant used in the LES is CS = 0.16 in all simulations, which is

in the middle of the range of recommended values. Each simulation is

run until both a fully turbulent flow is observed and a quasi-steady mean

flow is achieved. We tested flows for 3 values of the Reynolds number,

Reτ = Muτ/ν = 950, 2,000, and 20,000 based on the friction velocity

uτ , or Rem = 2Mum/ν = 37,042, 86,773, and 1.21× 106 based on the

average bulk velocity um in the x direction, obtained from Dean’s (1976)

correlation. Each case was simulated in 4 LBM discretizations, for which

Δx = Δy = Δz = M/N, with N = 10, 20, 30, and 40. The full channel

width is thus discretized with 2N LBM points in the y direction.

Figure 2a shows the velocity profiles computed for Reτ = 2,000 with

the perturbation LBM-LES. In the interest of saving space, results from

only one Reτ are shown and a more complete set of velocity profile re-

sults may be found in O’Reilly et al. (2016). Almost identical results

were obtained using the standard LBM-LES, which further confirms the

relevance and accuracy of the decomposition method. In all cases, the

perturbation LBM-LES results agree well with Musker’s (1979) profile

for the smaller y+ values, which is expected. At higher y+ values, how-

ever, velocities are slightly smaller in the LBM than in the experimental

profile, which is likely the result of having 2 plates in the model, with

a finite separation distance H, rather than a free flow past a single plate,

which is the case of Musker (1979).

Using the law of the wall to specify the boundary condition just above the

solid boundary, we see that the LBM-LES is able to accurately capture

the velocity profile in the intermediate and turbulent BLs, without need

for a fine discretization and in particular for resolving the viscous BL.

For the largest Re, the method is pushed to its limits, with the resolution

being such that y+1 = 333, 500, and 1000 at the first LBM point (x1 in

Fig. 1), for the different N values, which is quite large; the latter is a very

under-resolved test, but one that demonstrates the overall robustness of

the method.

The computed bulk friction coefficient presented in earlier work

(O’Reilly et al (2016) and Malaspinas and Sagaut (2014)) uses Dean’s

(1976) correlation Cf = 2u2
τ/u2

m, which is based on experiments and ap-

plicable only to this test case. Fig. 2b shows a validation of our force

evaluation method, applicable to a generalized geometry, which uses Eq.

(32) to evaluate the drag force. Here, we calculate the friction coeffi-

cient as, Cf = Fd/(
1
2 ρu2

mA), with A being the wetted area of the top and

bottom walls. In the figure, the calculated results are compared to the
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Fig. 2: Simulation of turbulent flow past a flat plate with the perturba-

tion LBM. (a) Mean velocity u+ as a function of distance y+ above the

plate, at Rem =86,773. Numerical results (symbols) are plotted for a

half channel of resolution N = (◦) 10, (�) 20, (�) 30, and N = 40 (	),

compared to Musker’s (1979) velocity profile (—–). For visualization

purposes, results for N = 20, 30, and 40 are shifted by Δu+ = 10, 20,

and 30, respectively. (b) Friction coefficient Cf computed, compared to

Dean’s (1976) correlation for turbulent channels (—–) and the upper and

lower bounds of his measurements (- - -).

measured Dean’s correlation, with the upper and lower bounds of mea-

surements being marked to indicate the experimental variance, within

which any numerical result should be deemed acceptable. Drag coeffi-

cients for Reτ = 950 and 2,000 are within the experimental variance at

all resolutions; for Reτ = 20,000, convergence also occurs with resolu-

tion, but only the highest resolution result falls within the experimental

variance. Finally, there is again negligible differences between Cf values

calculated with the standard LBM or the perturbation LBM models.

Simulation of turbulent flow around a submerged hydrofoil

Here, we test the accuracy and efficiency of the perturbation LBM, as

compared to the standard LBM, with LES and a wall model, and particu-

larly the accuracy of the force computations by Eq. (32). This is done by

simulating turbulent flows around a NACA0012 foil (Fig. 3) as a func-

tion of its angle of attack θ , for a Reynolds number Re = UC/ν = 1×106

(with U the free flow velocity, C the foil chord, and ν = 10−6 the water

kinematic viscosity). We solve this as a 3D problem by placing the foil

in a channel of length L, height H, and width W (Grid 0, Table 1). We

compute both the lift and drag forces on the foil, FL = (1/2)ρU2 CLWC

and FD = (1/2)ρU2 CDWC, respectively, and parameterize them as usual

as a function of a lift and drag coefficient, CL and CD, respectively. While

previous results (O’Reilly et al., 2016) have shown that the force compu-

tation method with Eq. (32) can predict an accurate lift force for a similar

test setup without a wall model, the drag force predicted in earlier work

was not realistic. Predicting lift for this foil, which is dominated by dif-

ferences in pressure distribution, is in fact significantly easier than pre-

dicting drag, which is dominated by both shear and pressure forces and

can be more than an order of magnitude smaller than lift. Results below

will show that the combination of an improved sub-grid turbulence mod-

eling with more accurate shear estimates provided by the turbulent wall

model, yields more accurate drag estimates in the present simulations.

(a)

(b)

Fig. 3: (a) Nested LBM grid boundaries (Table 1). (b) cross-sections of

a: (—–) NACA0012 foil; and (—–) Karman-Trefftz foil used to compute

the potential flow solution.

Grid Number L/C W/C H/C Δx/C N

Grid 0 9.0 6.0 0.2 0.0226 1,068,000

Grid 1 4.0 2.0 0.18 0.0113 1,153,440

Grid 2 2.0 1.5 0.16 0.0056 2,862,240

Grid 3 1.8 1.1 0.14 0.0028 13,045,760

Table 1: Grid parameters of the domain used in the tests of the regular and

hybrid LBM-LES models, for the submerged hydrofoil test case (Figs. 3

and 4). Grid length is L, width W , height H, and hydrofoil chord length

C. Total number of LBM points is N = 18,129,440.

In all cases we use nested LBM grids, increasingly resolved towards the

foil: 4 for the standard LBM and 3 for the perturbation LBM (Table 1 and

Fig. 3a); this domain discretization is near the largest possible, consid-

ering the 5GB of available memory in our current GPGPU. LBM results

indicate that convergence in lift and drag forces was not achieved, which

would require a larger domain. At zero angle of attack the maximum

y+ value found was approximately 50 and all simulations were run us-

ing Ma= 0.01. Boundary conditions were specified as follows, for the

standard or perturbation LBMs, respectively: (i) periodic conditions on

sidewall boundaries (z = 0 and W ); (ii) a specified velocity u = U on

the inlet/outlet (x = 0 and x = L) and upper/bottom boundaries (y = 0

and H); (iii) and a turbulent wall model on the foil boundary Γ. In the

LBM, periodicity is achieved by specifying periodic DFs, and velocity is

prescribed on a boundary by specifying the DFs as fα = f
eq
α (ρ,u).
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The inviscid fields (uI , pI ) are analytically calculated at each LBM node

based on a conformal mapping solution for a Karman-Trefftz foil that

is very similar in shape to the NACA0012 foil (Fig. 3b). In future

more complex cases this solution will be computed with an inviscid

BEM model (see Mivehchi et al. in this conference). Using the dis-

cretizations of Tables 1 and Fig. 3a, the LBM and perturbation LBM

methods need approximately 13 hours and 7 hours, respectively, on an

NVIDIA R© Tesla R© K20 GPGPU to simulate approximately 3 seconds

of steady state, at 0 degrees angle of attack.

Fig. 4a shows the foil lift coefficient CL computed as a function of θ with

various methods, as compared to laboratory experiments in a wind tunnel

by Sheldah and Kilmas (1981) and Gregory and O’Reilly (1973). Note

that the discrepancies observed between different measurements made

for the same angle reflect both experimental uncertainties and Reynolds

number effects. A good agreement is observed for the potential flow

solution at low angles of attack θ ≤ 8 deg.; this is expected in this high

Re number regime. However at larger angles of attack, flow separation

starts occurring with increased viscous/turbulent effects and the inviscid

solution overpredicts lift and misses stall. The LBM solution with the

wall model predicts CL well from 0 deg. to 8 deg., but then slightly under

predicts lift at 12 deg. At higher angles of attack, the turbulent wall model

delays flow separation and stall along the low pressure side of the foil

and increases lift relative to the LBM solution without a wall model (see

O’Reilly et al. 2016). Consistent with earlier results by O’Reilly et al.

(2016), the perturbation LBM solution is close to experimental results,

even when applied to the reduced size domain. At 12 deg, the hybrid

LBM solution overpredicts lift because of reduced flow separation on the

low pressure side of the foil resulting from the inviscid forcing. However

an unsteady lift force was observed, indicating vortex shedding and the

onset of stall.

Fig. 4b similarly shows the foil drag coefficient CD computed as a func-

tion of θ with various methods, as compared to laboratory experiments.

The potential flow solution (not shown) predicts zero drag because of

d’Alembert paradox. The LBM and perturbation LBM results predict a

drag coefficient at 0 deg incidence, up to twice that measured in the ref-

erence solutions (Sheldah and Kilmas, 1981 and Gregory and O’Reilly,

1973, in which the boundary layer development was allowed to transition

naturally from laminar to turbulent). However, the laminar to turbulent

transition is not modeled in our results and the boundary layer is assumed

to be fully turbulent downstream of 10% of the chord. As expected,

our results better agree with drag measurements where turbulence was

tripped at the same location on the foil (Gregory and O’Reilly, 1973).

Furthermore, Gregory and O’Reilly (1973) show that as the Reynolds

number decreases, CD increases and our results follow this trend. For the

LBM solution without inviscid forcing, as the angle of attack increases,

the pressure drag also increases at a rate that is too large as compared to

experiments; our results show that the addition of a wall model reduces

this error. Additional errors in drag are likely because the outer domain

boundaries may still be too close to the foil. Furthermore the wall model

could be improved by using a boundary layer equation that considers an

adverse pressure gradient when flow separation occurs. Consistent with

previous results (O’Reilly et al 2016), the perturbation LBM results for

CD are closer to the experimental measurements than the LBM results,

particularly as the angle of attack increases. The CD for the LBM and

hybrid LBM solutions at 12 deg (not shown) are 0.245 and 0.189, re-

spectively.

These results for both CL and CD confirm the advantages of the hybrid

LBM method, with the inviscid flow forcing the viscous solution and

allowing for both a more accurate computation of the total flow and a
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Fig. 4: (a) Lift and (b) drag coefficient of a NACA0012 foil, as a function

of its angle of attack, in wind tunnel experiments (lines) and computa-

tions for Re = UC/ν = 1× 106 (U is flow velocity, C is chord length,

and ν the fluid kinematic velocity) with a: (•) potential flow method;

(•) LBM; (•) perturbation LBM. Experimental results are from: Shel-

dah and Kilmas (1981) for Re = 1× 106 (—–); Gregory and O’Reilly

(1973) at Re=0.88× 106 for natural boundary layer transition tests (...)

and Re=1.44×106 for tripped turbulent boundary layer tests (- - -).

reduced computational time.

CONCLUSIONS

We presented the formulation and simulation results for a new hybrid

model combining potential flow and NS-LBM-LES solvers, that is aimed

at solving naval hydrodynamics problems. In this paper, only simple

applications were presented for a submerged foil and a turbulent chan-

nel, that demonstrated both the relevance and accuracy of the hybrid ap-

proach. In particular, we showed a close agreement between results of

the standard and perturbation LBM-LES models, and between both of

these and experimental data. However, for the perturbation approach,

this could be achieved more efficiently in a reduced size domain.

While the inviscid rate of strain tensor was zero by construction in the

turbulent channel simulations, it was present and provided a significant

contribution to shear near the solid boundary in the turbulent hydrofoil

simulations. Follow-up work, that will be presented at the conference,

will include a more comprehensive validation of the hydrofoil case by

increasing the grid resolution near to the foil and by further reducing the

domain size using the hybrid method. Furthermore the limits of the hy-

brid LBM-LES formulation will be tested through a hydrofoil simulation
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using a potential flow solution with zero circulation, thus zero lift. In

this case the perturbation solution is a more substantial component of the

total flow and must provide the entire lift force. Additionally, in future

work, we will model more complex geometries for both submerged and

surface piercing bodies.

The main advantage of the perturbation LBM is its ability to use a smaller

domain to solve the NS equations relative to standard solvers, hence al-

lowing for both higher resolution and efficiency. Although illustrated

for the submerged hydrofoil case, the hybrid approach was not strictly

necessary owing to the simple flow and geometry. However, once we

consider surface piercing advancing bodies, which will cause the genera-

tion of surface gravity waves, and whose far-field can be well represented

by an inviscid model, the benefits of the hybrid modeling approach will

become much more significant; this was illustrated in preliminary work

using ELBE, reported in O’Reilly et al. (2015).

Such cases will also be the object of future work, with the ultimate

goal being to model seakeeping problems for multiple degree-of-freedom

floating bodies advancing in strongly nonlinear irregular wave fields.

One main challenge to address in such problems will be to extend the per-

turbation LBM method to include fully non-linear free surface boundary

conditions, in which “I-P” interaction terms will appear.
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