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DEVELOPPEMENT D’UN MODÈLE HYBRIDE LBM-POTENTIEL

POUR L’HYDRODYNAMIQUE NAVALE

C.M. O’REILLY1,2, S.T. GRILLI1, J.C. HARRIS3, A. MIVEHCHI1,
C.F. JANSSEN4, J.M. DAHL1

1 Dept. of Ocean Engineering, University of Rhode Island, Narragansett, RI 02882, USA
2 Navatek Ltd., South Kingstown, RI 02879, USA
3 LHSV, Ecole des Ponts, CEREMA, EDF R&D, Université Paris-Est, Chatou, France
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Summary

We report on the validation of a 3D hybrid model for naval hydrodynamics based on a
perturbation method, where velocity and pressure are the sum of an inviscid flow with a
viscous perturbation. The far- to near-field inviscid flows can be solved with a BEM, based
on potential flow theory and the near-field perturbation flow is solved with a NS model
based on a Lattice Boltzmann Method (LBM). We give the model formulation and latest
developments in LES turbulence modeling, including a wall model. We validate these by
simulating flows over a flat plate for Re ∈ [3.7× 104; 1.2× 106], for which the plate friction
coefficient agrees well with experiments. We also simulate the flow past a foil for Re = 3×106

and show good agreement of lift forces with experiments. Results obtained with the hybrid
model are nearly identical to those of the LBM alone, but with a smaller computational
domain, demonstrating the benefits of this approach.

Résumé

Nous présentons un modèle hybride pour l’hydrodynamique navale, basé sur une méthode
de perturbation décomposant la vitesse et la pression en la somme d’un écoulement non-
visqueux et d’une perturbation visqueuse. Les équations des champs lointain à proche sont
résolues par une méthode potentielle BEM et celles des écoulements en champ proche par un
modèle NS basé sur la méthode “Lattice Boltzmann” (LBM). Nous résumons la formulation
du modèle et ses derniers développements en modélisation LES de la turbulence avec un
“wall model” (couche limite visqueuse-turbulente). Ceux-ci sont validés pour l’écoulements
au dessus d’une plaque pour Re ∈ [3.7 × 104; 1.2 × 106] ; le coefficient de frottement sur la
plaque est en bon accord avec l’expérience. Nous simulons l’écoulement autour d’un hydrofoil
pour Re = 3× 106 et montrons un bon accord avec l’expérience. Les résultats obtenus avec
le modèle hybride sont très proches de ceux du modèle LBM seul, mais pour un domaine de
calcul plus petit, ce qui montre l’avantage de cette approche.



I – Introduction

The simulation of large ship motions and resistance in steep waves is typically perfor-
med using linear or nonlinear potential flow solvers, usually based on a higher-order Boun-
dary Element Method (BEM), with semi-empirical corrections introduced to account for
viscous/turbulent effects. However in some cases, viscous/turbulent flows near the ship’s
hull and breaking waves and wakes must be accurately modeled to capture the salient phy-
sics. Navier-Stokes (NS) solvers can and have been used to model such flows, but they are
computationally expensive and often too numerically dissipative to model wave propagation
over long distances.

Here, we detail the development of a 3D hybrid model, for solving naval hydrodynamics
problems, based on a perturbation method (e.g., Alessandrini, 2007 ; Grilli, 2008 ; Harris and
Grilli, 2012), in which both velocity and pressure are expressed as the sum of an inviscid (I)
and a viscous perturbation (P) component. In this model, the far- to near-field inviscid flow
is solved with a BEM, based on fully nonlinear potential flow (FNPF) theory, also referred
to as Numerical Wave Tank (NWT), and the near-field perturbation flow is solved with a
NS model, here implemented with a Lattice Boltzmann Method (LBM ; e.g., d’Humieres
et al., 2002 ; Janssen, 2010 ; Janssen et al., 2010) including a Large Eddy Simulation of the
turbulence (LES ; e.g., Krafczyk et al., 2003). Both the BEM and LBM models have separate
representations of the free surface (using an explicit Eulerian-Lagrangian time updating in
the former and a VOF method in the latter ; e.g., O’Reilly et al., 2015).

In the context of the hybrid perturbation method, the LBM is only applied to the near-
field where viscous/turbulent effects matter, and its solution is forced by results of the NWT
applied to the entire domain. Hence the hybrid approach increases computational efficiency
relative to traditional CFD solutions, in which the NS solver is applied to the entire domain.
This was already demonstrated by Reliquet et al. (2014) based on different types of models,
which were less efficient and optimized than those proposed here. Indeed, the NWT used
here was the object of numerous developments over the past two decades (see Grilli et al.’s,
2010 review to date). Its latest version was optimized with a Fast Multipole Method (FMM),
based on the parallel ExaFMM library, and shown to achieve nearly linear scaling on large
CPU clusters (e.g., Harris et al., 2014 and Harris et al., in this conference). The LBM
has proved to be accurate and efficient for simulating a variety of complex fluid flow and
fluid-structure interaction problems and, when implemented on a massively parallel General
Purpose Graphical Processor Unit (GPGPU) co-processor, it was also shown to achieve very
high efficiency (over 100 million node updates per second on a single GPGPU ; e.g., Janssen,
2010 ; Janssen et al., 2013 ; Banari et al., 2014). In this respect, LBM developments in this
work are based on the highly efficient, GPGPU-accelerated, Lattice Boltzmann solver ELBE
(Janssen et al., 2015 ; www.tuhh.de/elbe), developed at TUHH, which features various LBM
models, an on-device grid generator, higher-order boundary conditions, and the possibility of
specifying overlapping nested grids. ELBE also includes the initial LBM perturbation model
based on Janssen et al.’s (2010) approach (discussed later). Simple validations of the hybrid
LBM and LBM-LES approaches, for viscous and turbulent oscillatory boundary layers, were
reported by O’Reilly et al. (2015) and Janssen et al. (2016).

In this paper, we focus on the development and validation of the hybrid NS-LBM solver
applied to the perturbation flow and, in this context, the modeling of turbulent flows by a
LES, and by an accurate representation of boundary layers near solid boundaries without the
need for a refined discretization. We first summarize the principles of the LBM, in particular
when using the more accurate Multiple Relaxation Time (MRT) method. We then detail the
formulation of the perturbation method in the context of turbulent flows and show how the



standard LES equations are modified. The hybrid LBM-LES approach is then validated by
solving turbulent flows past a solid boundary and retrieving the “law of the wall”. Finally,
the method is validated by computing the drag and lift coefficients of a hydrofoil at high
Reynolds number.

II – Methodology

II – 1 Lattice Boltzmann Method (LBM)

In the LBM, the macroscopic NS equations are modeled by solving an equivalent me-
soscopic problem in which the fluid is represented by particles interacting over a (typically
regular) lattice (or grid), through their distribution functions (DF) f(t,x, ξ), representing
the normalized probability to find a particle at location x at time t with velocity ξ ; the
macroscopic hydrodynamic quantities (e.g., velocity, pressure,...) are defined as moments of
the DFs.

The time evolution of discrete particle DFs is governed by the Boltzmann advection-
collision equation,

Dfα
Dt

=
∂fα(t,x)

∂t
+ eα · ∂fα(t,x)

∂x
= Ωα +Bα (1)

in which eα denotes discrete particle velocities, Ωα is a collision operator describing inter-
actions between particles, and Bα represents volume forces such gravity. Eq. (1) is discre-
tized over a regular lattice, of grid spacing ∆x using n = 19 discrete particle velocities,
which point in the directions of 18 neighboring particles from a given particle location ;
thus : eα = {0, 0, 0}; {±c, 0, 0}; {0,±c, 0}; {0, 0,±c}; {±c,±c, 0}; {±c, 0,±c}; {0,±c,±c}, for
α = 0, ..., 18 (standard D3Q19 scheme). The constant velocity c =

√
3cs is related to the

speed of sound cs.
In the standard single relaxation time (SRT) LBM, Eq. (1) is discretized by finite diffe-

rences in space and time as,

fα(t +∆t,x+ eα∆t)− fα(t,x) = −1

τ
{fα(x, t)− f eq

α (ρ,u)}+B′
α (2)

where f eq
α (ρ,u) are equilibrium DFs, functions of the macroscopic fluid density ρ and velocity

u, ∆t is time step (with c = ∆x/∆t), and τ = 3ν/c2 + ∆t/2, a nondimensional relaxation
time (SRT) expressed as a function of fluid viscosity ν. LBM simulations are typically split
up into a local collision step, which locally drives the particle DFs to equilibrium, and a
propagation step, during which the evolved DFs are advected. The hydrodynamic quantities
are found as low order moments of the DFs,

ρ =

n
∑

α=1

fα, ρu =

n
∑

α=1

eαfα (3)

Applying a Chapman-Enskog expansion to Eq. (2) (see, e.g., Banari et al., 2014) yields,

f eq
α (ρ,u) = wα

(

ρ+ ρo

(

3
(u · eα)

c2
+

9

2

(u · eα)2
c4

− 3

2

u2

c2

))

(4)

for the LBM solution to satisfy the incompressible NS equations up to O(∆x2) and O(Ma2)
errors, with Ma the Mach number ; ρo and ρ represent the average fluid density and a small
perturbation from that density, respectively, and wα are lattice dependent directional weights
with, w0 = 1/3, w1...6 = 1/18 and w7...18 = 1/36.



The collision step in Eq. (2) is a strictly local operation between neighboring lattice
nodes while the convective step simply propagates the particle distribution functions in
their discretized velocity directions eα. Unlike standard NS solvers used in CFD the LBM
solution does not require a pressure correction step as pressure is simply given by p = c2sρ.
This locality of all LBM numerical operations makes it very well suited to massively parallel
computations on a GPGPU.

d’Humieres et al. (2002) showed that more accurate and stable results can be obtained,
particularly for high Reynolds numbers Re, using the multiple relaxation time (MRT) LBM.
This method incorporates higher-order moments (i.e., hydrodynamic quantities and their
fluxes) into the solution, which have important physical significance (Lallemand and Lou
2000) and will be useful to implement the LES in the LBM for turbulent flows (see below).
In the MRT, the collision operator in the right hand side of Eq. (2) is replaced by (β =
0, ..., 18; γ, δ = 0, ..., 15 ; repeated indices in equations mean an implicit summation),

Ωα = −M−1
αγ Sγδ(Mβδfβ −meq

δ ) (5)

where Mαγ is the transformation matrix from DFs to moments, with fα = M−1
αγ mγ and Sγδ

is a diagonal collision matrix of relaxation parameters, weighing different properties of the
fluid (see references). Equilibrium moments meq

γ are derived from the f eq
α (x, t) as,

meq
0 = ρ, meq

3 = ρux, meq
5 = ρuy, meq

7 = ρuz

meq
1 = eeq = ρ0(u

2
x + u2

y + u2
z), meq

9 = 3peqxx = ρ0(2u
2
x − u2

y − u2
z)

meq
11 = peqzz = ρ0(u

2

y − u2

z), meq
13 = peqxy = ρ0(uxuy)

meq
14 = peqyz = ρ0(uyuz), meq

15 = peqxz = ρ0(uxuz) (6)

In the following, prime variables will denote non-dimensional variables where lengths
have been divided by a length scale λ, times by time scale τ , and mass by mass scale ̟ ;
thus, c′ = cτ/λ = ∆x′/∆t′. The numerical solution in LBM models is typically stable for
a mesh Courant number of 1, yielding, c′ = 1 ; one also typical assumes, λ = ∆x, thus
∆x′ = 1 → ∆t′ = 1 ; finally the nondimensional viscosity reads, ν ′ = ντ/λ2. In LBM
simulations of flows at specified Mach and Reynolds numbers (Ma, Re), one thus finds,
ν ′ = c′sℓ

′Ma/Re, to use in simulations, also given the physical length scale of the flow ℓ.

II – 2 Equations for the perturbation LBM

Here, we first recap the expressions of the NS perturbation method (Grilli, 2008 ; Har-
ris and Grilli, 2012) and develop the corresponding LBM equations with MRT. In the NS
perturbation approach, both the flow velocity and pressure are expressed as,

ui = uI
i + uP

i with p̃ = p̃I + p̃P (7)

where p̃ = p+ ρgx3 − 2

3
ρk denotes the perturbation dynamic pressure, with k the turbulent

kinetic energy. Recall that superscripts I denote irrotational flow quantities, with uI
i = ∇iφ

I

satisfying Euler equations, and superscripts P represents perturbation flow quantities that
are driven by the inviscid flow fields. After applying this decomposition and substituting
Euler’s equations, the perturbation NS equations read,

∂uP
i

∂xi

= 0 (8)

∂uP
i

∂t
+ uP

j

∂uP
i

∂xj

= −1

ρ

∂p̃P

∂xi

+ (ν + νt)
∂2uP

i

∂xj ∂xj

−
(

∂uI
i

∂xj

uP
j + uI

j

∂uP
i

∂xj

)

+ 2
∂νt
∂xj

Sij (9)



where ν and νt are kinematic molecular and turbulent viscosity, respectively, with the latter
being expressed through the Smagorinsky method as,

νt = (CS∆)2|S|, with Sij = SP
ij + SI

ij =
1

2

(

∂uP
i

∂xj

+
∂uP

j

∂xi

+
∂uI

i

∂xj

+
∂uI

j

∂xi

)

(10)

where CS is the Smagorinsky constant, ∆ a grid filtering length scale, and Sij the rate of
strain tensor is the sum of components functions of the perturbation (SP

ij ) and inviscid (SI
ij)

velocity.
Janssen et al. (2010) developed a perturbation LBM-LES with MRT solving Eqs. (7) to

(10), in which the “I-P” interactions terms were treated as volume forces through the B′
α

terms of Eq. (2). Here, instead, we solve these equations, assuming the perturbation LBM-
LES DFs are decomposed as, fα = f I

α+fP
α and introduced in Eq. (2). Substracting from the

latter the LBM equation for the inviscid flow, we find,

fP
α (t+∆t,x+eα∆t))−fP

α (t,x)) = −1

τ
{fP

α (t,x)−f eq
α (ρI+ρP ,uI+uP )+f eq,I

α (ρI ,uI)} (11)

where the f eq,I
α (ρI ,uI) are expressed with Eq. (4) based on inviscid fields and satisfy,

n
∑

α=1

f eq,I
α = 0,

n
∑

α=1

eαif
eq,I
α = ρou

I
i ,

n
∑

α=1

eαieαjf
eq,I
α = pIδij + ρou

I
iu

I
j (12)

The perturbation equilibrium DFs are then found as, f eq,P
α (ρP ,uP ,uI) = f eq

α (ρI + ρP ,uI +
uP )− f eq,I

α (ρI ,uI),

f eq,P
α = wα

(

ρP + ρo

(

3
uP · eα

c2s
+

9

2

(eα · uP )2 + 2(eα · uP )(eα · uI)

c4s
− 3

2

(uP )2

c2s

))

, (13)

which satisfy,

n
∑

α=1

f eq,P
α = ρP ,

n
∑

α=1

eαif
eq,P
α = ρou

P
i ,

n
∑

α=1

eαieαjf
eq,P
α = pP δij + ρou

I
iu

P
j + ρou

P
i u

I
j + ρou

P
i u

P
j

(14)
A rigorous Chapman-Enskog expansion would show that the perturbation NS Eqs. (7) to
(10) are recovered when using these DFs. Note the interaction terms between the I and P
fields in Eqs. (13) and (14) expressing the inviscid flow forcing on the perturbation fields.

Extending this formulation to the MRT, assuming a collision operator expressed by Eq.
(5), we find the equilibrium moments,

meq
1 = eeq = ρ0((u

P
x )

2 + (uP
y )

2 + (uP
z )

2 + 2uP
x u

I
x + 2uP

y u
I
y + 2uP

z u
I
z)

meq
9 = 3peqxx = ρ0(2(u

P
x )

2 − (uP
y )

2 − (uP
z )

2 + 4uP
x u

I
x − 2uP

y u
I
y − 2uP

z u
I
z)

meq
11 = peqzz = ρ0((u

P
y )

2 − (uP
z )

2 + 2uP
y u

I
y − 2uP

z u
I
z), meq

13 = peqxy = ρ0(u
P
x u

P
y + uP

x u
I
y + uP

y u
I
x)

meq
14 = peqyz = ρ0(u

P
y u

P
z + uP

y u
I
z + uP

z u
I
y), meq

15 = peqxz = ρ0(u
P
x u

P
z + uP

x u
I
z + uP

z u
I
x)

(15)

Moments that are not listed above are unchanged from the standard MRT formulation.



II – 3 LES turbulence modeling with a LBM

Krafczyk et al. (2003) expressed the 2nd-order moments of the DFs as,

Pij =

n
∑

α=1

eαieαjfα = c2sρoδij + ρouiuj −
2c2s ρ

s2
Sij (16)

where s2 is a relaxation rate for these moments, and showed that they are related to 2nd-
order moments in the MRT, 3pxx, pzz, pxy, pyz, and pxz. The 1st and 2nd terms in Eq. (16)’s
RHS are functions of flow quantities obtained through other moments of the DFs. Based on
Eq. (16), the rate of strain tensor can be expressed as,

Sij =
s2
2c2sρ

{c2sρ δij + ρuiuj − Pij} =
s2
2c2sρ

Qij (17)

where Qij are the terms in {}. Krafczyk et al. (2003) assumed that the Qij ’s are functions
of the non-equilibrium part of the DFs, fneq

α = fα − f eq
α and provided their expressions as a

function of the 2nd-order MRT moments. Similar to LES Eq. (10), they then calculated the
turbulent viscosity as,

νt = (CS∆)2|S| = s2
2c2sρ

(Cs∆)2|Q|, with |Q| =
√

QijQij (18)

and expressed the relaxation rate of the 2nd-order moments as,

s2 =
1

τ0 + τt
with τt =

1

2

(

√

τ 20 + 18(Cs∆)2|Q| − τ0

)

(19)

where τ0 is the relaxation time based on the molecular viscosity.
When applying the LES to the perturbation LBM, the moments P P

ij are given by the
last Eq. (14), yielding an expression for the perturbation rate of strain tensor that features
nonlinear interaction terms between the I and P fields,

SP
ij =

s2
2c2sρ

(

c2sρδij + ρou
P
i u

P
j + ρou

I
iu

P
j + ρou

P
i u

I
j − P P

ij

)

=
s2
2c2sρ

QP
ij (20)

The rate of strain tensor for the total flow is thus given by,

Sij =
s2
2c2sρ

QP
ij + SI

ij (21)

Therefore the |Q| term to use in LES Eqs. (18) and (19) in combination with the MRT LBM
Eqs. (11) to (15), is modified as follows,

|Q| =
√

RijRij with Rij = QP
ij +

2c2sρo
s2

SI
ij (22)

where the QP
ij terms are computed with Eq. (20).

II – 4 LBM turbulent wall model

Typical naval hydrodynamics flows are fully turbulent, with Re > 106. Thus, the turbu-
lent boundary layers (BL) near solid boundaries (e.g., ship hull) must be properly modeled
in the LBM. Since resolving the BL in the LBM grid would be computationally prohibitive



(a) (b) (c)

Figure 1 – Sketch of LBM flow reconstruction near a solid boundary (assumed 2D for simpli-
city) : (a) known or computed variables ; (b) known (—–) and missing (- - - -) DF populations ;
(c) variables in geometric calculations. Lattice points are marked by (•). [(a) and (b) from
Malaspinas and Sagaut (2014)]

(even with grid refinement through nesting such as done in ELBE), besides the LES of the
flow, this requires using a proper wall model. Below, we describe the extension to the per-
turbation LBM-LES of the method proposed by Malaspinas and Sagaut (2014), based on a
macroscopic representation of the flow within the BL (i.e., on the LBM lattice). A thin layer
approximation is introduced, implying that the mean free flow is locally nearly parallel to
the solid boundary (i.e., wall) and statistically stationary ; it is also assumed that there is no
horizontal pressure gradient. In such conditions, the mean velocity profile can be found as a
function of the distance to the wall y from the semi-empirical equation proposed by Musker
(1979), on the basis of experimentally validated logarithmic “laws of the wall” for the fully
turbulent upper BL, the viscous lower BL, and a transition layer based on experimental
measurements,

ũ(y+) = uτ

((

5.424 atan

(

2.0 y+ − 8.15

16.7

)

+ log10

(

(y+ + 10.6)9.6

(y+2 − 8.15 y+ + 86.0)2

)

− 3.52

)

(23)

where the friction velocity uτ and non-dimensional distance y+ are defined as

uτ =
√

τw/ρ with y+ = y
uτ

ν
(24)

Malaspinas and Sagaut (2014) also express the turbulent eddy viscosity as

µt = κy+
(

1− e
−y+

26.0

)2∣
∣

∣

∣

∂ũ

∂y

∣

∣

∣

∣

(25)

and κ is a constant chosen to be 0.384 based on experimental data.
The “law of the wall” Eqs. (23) to (25) will be used to express the boundary condition at

a solid boundary in the LBM, where unknown DF’s are reconstructed on the lattice nodes
based on the macroscopic flow quantities, assuming ∆x ≫ δBL, with δBL the thickness of
the viscous and transition sublayers in the BL. Let us define x1, x2, and n̂ as the position
of the first and second off wall lattice nodes and the outward normal unit vector at the
wall, respectively (Fig. 1). As is standard in most LBM wall boundary models, DF’s that
satisfy eα · n̂ < 0 (dashed populations seen in Fig. 1b) are assumed to be unknown after the
collision and propagation steps. To find the flow at x1 (labeled ρbc and ubc), these DFs are
reconstructed using the velocity gradient at point 1 from the “law of the wall” combined
with flow quantities calculated in the LBM at location x2. Thus, the DFs near the wall are
constructed as,

fα(x1, t) = f eq
α (ρbc,ubc) + fneq

α

(

∂ũbc

∂y

)

(26)



where f eq
α is specified through Equations (2) and (13) for the standard LBM or the pertur-

bation LBM methods, respectively.
Details of determining flow quantities ubc and ρbc at location x1 near the wall are discussed

below. The fneq
α DFs are constructed as follows (Malaspinas and Saugat 2014),

fneq
α

(

∂ũbc

∂y

)

= −wαρ

c2sλν

3
∑

i=1

3
∑

j=1

{eαieαj − c2sIij}Sij (27)

where λν is the laminar relaxation time and Iij is the identity matrix. While only validated in
the present applications for a flat solid boundary (wall), this method is intended to be used
for general boundary geometries, for which a shift in reference frame is needed, such that
the x-axis always points towards the local streamwise direction. Here, the prime variables
represent quantities shifted to a wall-normal reference frame (Fig. 1c), where location x2 is
found by projecting n̂ along each lattice velocity at x1 ; we select the direction α with the
largest y′α value and find, x2 = x1+ eα∆t. The streamwise basis vector ex′ is then computed
by assuming that x2 lies within the BL. Thus,

y′α =
eα · −n̂

|eα|
, with ex′ =

u2 − (u2 · n̂)n̂)
|u2 − (u2 · n̂)n̂)|

(28)

In many LBM solid boundary schemes, the distance between the wall and the nearest lattice
point is assumed to be ∆x/2. Here, a new scheme based on Merkle et al. (2016) is used to
more accurately estimate this distance (see Fig. 1c). The calculation of y′α and wall dependent
quantities may then be more accurately performed within the wall model.

Specifically, to evaluate u′
bc, which depends on the wall shear stress τw, for each near-wall

lattice point, one numerically solves the implicit equation, u′
2 = ũ(y′2, τw) where u′

2 = u2 · e′x
and ũ(y′2, τw) is given by Musker’s Eqs. (23) and (24). A Newton scheme is used to this
effect, which iterates over the τw value until convergence. Next ubc and µbc are solved for
and Eq. (25) is used to specify the relaxation at boundary nodes, together with Eq. (19) and
replacing the turbulent shear stress τt calculated with the LES by the newly calculated value
τw. Finally, ρbc is calculated using the method originally proposed by Zou and He (1997),
which reconstructs the flow density based on known DFs only,

ρbc =
1

1 + ũbc · n̂
(2ρ+ + ρ0), with ρ0 =

∑

α∈α|eα·n̂=0

fα and ρ+ =
∑

α∈α|eα·n̂>0

fα (29)

Equation (26) may now be applied to the unknown DFs (such as at point 2).
When applying this turbulent wall model to the perturbation LBM, we reconstruct the

total flows, u2 and u′
2 in Eq. (28) from u2 = uI

2 + uP
2 , and solve the macroscopic (Musker)

equation to find ubc = uI
1 + uP

1 . The equilibrium DFs in Eq. (26) are now those of Eq. (13).
Finally, in Eq. (27) we now use SP

ij instead of Sij, so that only the perturbation component
is applied back to the DF’s.

II – 5 Hybrid-LBM force evaluation

The total force acting on a solid body is computed in the perturbation LBM as a li-
near combination of the inviscid and perturbation forces, F = FI + FP , where the inviscid
contribution is evaluated through an integration over the body boundary ΓB of the known
pressure pI . The perturbation force is evaluated through the momentum exchange method
as,

FP =
∑

α∈ΓB

Fα = − V

∆t
eα{fα(t+∆t,x)− fα′(t,x)} (30)



(a) (b)

Figure 2 – Hybrid LBM-LES of flow past a NACA0012 hydrofoil of chord C : (a) nested
LBM grid boundaries for large domain (Table 1). (b) cross-sections of a : (—–) NACA0012
foil ; and (—–) Karman-Trefftz foil used to compute the potential flow solution.

for all links α (with corresponding inverse direction α′) that intersect the solid boundary,
where V represents the grid cell volume. This equation expresses a difference in particle
momentum before and after impacting the boundary and is a well established and accurate
method for computing forces in the LBM, when the solid body is much larger than the grid
spacing.

III – Applications

III – 1 Simulation of turbulent flow around a submerged hydrofoil

Here, we test the accuracy and efficiency of the perturbation LBM as compared to the
standard LBM, both with LES but without a wall model, and particularly the accuracy of
the force computations by the momentum exchange method. This is done by computing the
turbulent flow around a NACA0012 foil (Fig. 2) as a function of its angle of attack θ, for
a Reynolds number Re = UC/ν = 3 × 106 (with U the free flow velocity, C the foil chord,
and ν = 10−6 the water kinematic viscosity). We solve this as a 3D problem by placing the
foil in a channel of length L, height H , and width W (Grid 0, Table 1). Because there is
no wall model, we only consider results for the lift force on the foil, FL = (1/2)ρCLWC,
which is caused mainly by differences in pressure distribution rather than by shear at the
solid boundary. It is anticipated that the addition of a turbulent wall model to this test case
will further improve results.

In all cases we use nested LBM grids, increasingly resolved towards the foil : 3 for the
standard LBM (Table 1 and Fig. 2a) and 2 for the perturbation LBM (Table 2 and Fig.
3a). Boundary conditions are specified as follows, for the standard or perturbation LBMs,
respectively : (i) periodic conditions on sidewall boundaries (z = 0 and W ) ; (ii) a specified
velocity u = Uex or a gradient free condition, on the inlet (x = 0) and upper/bottom
boundaries (y = 0 and H) ; (iii) a specified velocity u = 0 or uP = −uI , on the foil
boundary ΓB ; and (iv) a gradient free condition on the outlet boundary (x = L ; i.e., no
change in u downstream). In the LBM, periodicity is achieved by specifying periodic DFs,
velocity is prescribed on a boundary by specifying the DFs, and a gradient free condition
reads, ∂DFs/∂ñ = 0 (i.e., ∇fα · ñ = 0 or ∇fP

α · ñ = 0). More specifically, in the perturbation
LBM, condition (iii) on the foil boundary is implemented via a standard “bounce forward”



Grid Number L/C W/C H/C ∆x/C N
Grid 0 4.0 2.0 0.2 0.0182 293,040
Grid 1 2.5 1.5 0.15 0.0913 556,416
Grid 2 1.5 0.5 0.5 0.0045 892,416

Table 1 – Grid parameters of the large domain used in the initial tests of the regular and
hybrid LBM-LES models, for the submerged hydrofoil test case (Figs. 3 and 5). Grid length
is L, width W , height H , and hydrofoil chord length C. Total number of LBM points is
N = 1, 741, 872.

Grid Number L/C W/C H/C ∆x/C N
Grid 0 2.9 1.2 0.2 0.0081 1,404,000
Grid 1 2.0 0.8 0.15 0.0040 3,984,000

Table 2 – Grid parameters of small domain used in convergence tests of the perturbation
LBM-LES model for the submerged hydrofoil test case (Figs. 4 and 5). Grid length is L, width
W , height H , and hydrofoil chord length C. Total number of LBM points is N = 5, 388, 000.

scheme applied to the DFs after the collision and propagation steps,

fα′(x1, t) = fα(x1, t)− 2ρ0wα

eα · −uI

c2
(31)

where direction α′ is opposite to direction α ; Eq. (31) is applied to all boundary nodes that
satisfy the condition eα′ · ñ < 0.

The inviscid fields (uI , pI) are analytically calculated at each LBM node based on a
conformal mapping solution for a Karman-Trefftz foil that is very similar in shape to the
NACA0012 foil (Fig. 2b). In future more complex cases this solution will be computed with an
inviscid BEM model (see Harris et al. in this conference). Using the discretizations of Tables 1
and 2, both the LBM and perturbation LBM methods need approximately 10 minutes on the
GPGPU to simulate four seconds of steady state, for a given angle of attack. An example of
flow velocity obtained for a stalling case with the perturbation LBM is shown in Fig. 3b. For
both LBM methods, convergence of the lift coefficient CL was assessed for incidence angles
θ = 0 to 10 deg. Fig. 4 shows the CL values computed as a function of θ with various methods,
as compared to laboratory experiments in a wind tunnel (Abbot and Doenhoff 1959). A good

(a) (b)

Figure 3 – Perturbation LBM-LES of flow past a NACA0012 hydrofoil of chord C : (a) nested
LBM grid boundaries for small domain (Table 2) ; (b) normalized perturbation velocity
magnitude |u|/U for a stalling foil at θ = 14 deg. The black box represents the outer extent
of the domain used in the hybrid LBM convergence tests.



Figure 4 – Lift coefficient CL of a NACA0012 foil as a function of its angle of attack θ for Re
= UC/ν = 3×106 (U is flow velocity, C is chord length, and ν the fluid kinematic velocity),
in (—–) wind tunnel experiments (Abbot and Doenhoff, 1959) and computations with a : (•)
Potential flow method ; (✷) LBM ; (•) perturbation LBM (larger original domain ; Fig. 2) ;
(•) perturbation LBM (reduced domain size ; Fig. 3). The brackets at high θ values reflect
oscillations in the computed lift force due to stalling.

agreement is observed for the potential flow solution at low angles of attack θ ≤ 12 deg. ;
this is expected in this high Re number regime. However at larger angles of attack, flow
separation starts occurring with increased viscous/turbulent effects and the inviscid solution
overpredicts lift and misses stall. The standard LBM solution does not predict CL very well,
likely because the grid is too coarse in this large domain and numerical dissipation is caused
by the foil boundary condition. The y+ values are on the order of 100 at the first fluid
cells nearest the foil boundary, which leads to underpredicting flow momentum near the
foil, causing early separation and reduced lift. Future work will involve adding the turbulent
wall model detailed above to the LBM, for solid boundaries of arbitrary geometry, and it is
anticipated that this will produce a significant improvement in lift and stall prediction, as
well as provide an accurate drag estimate. The perturbation LBM predicts CL much better,
even when applied to the larger and coarser original domain (with N ≃ 1.7×106), but more
so when applied to the smaller higher resolution domain (with N ≃ 5.4×106). This confirms
the advantage of forcing the LBM with the inviscid flow, which allows for a more accurate
computation of the total flow with the LBM. For this test case, at low angles of attack, there
should be a very small lift force provided by the perturbation flow but this requires using
a sufficiently refined LBM discretization to be captured. Stall is observed to start occurring
for θ ≥ 12 degrees, leading to increased oscillations in the computed lift force, as θ increases ;
this is consistent with the physics of the problem as vortex shedding starts occurring (Fig.
3b). Complete stall occurs at approximately 16 degrees, when large oscillations in lift force
are observed and the average CL value starts decreasing (denoted by the brackets in Fig, 4).
The earlier stall observed in the perturbation LBM results is likely caused by inaccuracies
near the foil boundaries present in the LBM from the lack of a wall model ; this will be
addressed in future work.

By nature, the perturbation LBM domain should only extend away from the foil in the
region where viscous effects are important. Hence, for many test cases (such as streamlined
bodies), the perturbation LBM domain can be much smaller than the domain required to
accurately compute the inviscid flow, allowing for a significant increase in computational
efficiency. This was confirmed when using the reduced domain of Figure 3a (Table 2), which
led to much more accurate CL values. The extent of the different domains were chosen
through a visual inspection of stalling in standard LBM results. Furthermore the overall
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Figure 5 – Simulation of turbulent flow past a flat plate with the perturbation LBM. (a-c)
Mean velocity u+ as a function of distance y+ above the plate, at Rem = (a) 37,042, (b)
86,773, and (c) 1.21 × 106. Numerical results (symbols) are plotted for a half channel of
resolution N = (◦) 10, (✷) 20, and (△) 30, compared to Musker’s (1979) velocity profile
(—–). For visualization purposes, for N = 20 and 30, the latter are shifted by ∆u+ = 10
and 20, respectively. (d) Bulk friction coefficient Cf computed as a function of the mean
Reynolds number Rem (besides earlier values, one additional result is shown at N = 40 (⋄)
for Rem = 86, 773), compared to Dean’s (1976) correlation for turbulent channels (—–).

discretization of the reduced domain was increased, with the intent to improve convergence.

III – 2 Simulation of turbulent flow over a flat plate

Here, we validate the turbulent wall model in the context of the perturbation LBM by
simulating a turbulent flow over a flat plate ; results are compared to those of the standard
LBM. Similar to Malaspinas and Sagaut’s (2014) test case, we use a parallelepipedic domain
of dimensions, L = 2πM , H = 2M , and W = 2πM (M denoting the half channel width),
with flat plates specified on the lower/upper boundaries at y = 0 and H , on which the tur-
bulent wall model is applied, and periodic boundary conditions in the 2 horizontal directions
at x = 0 and L (streamwise) and z = 0 and W (cross stream).

In this application, the flow is forced by way of a body force (term B′
α in LBM Eq. (2) ; see,

Cabrit, 2009), F = {u2
τ + um(um−ux)}/M , in which ux is the instantaneous space-averaged

downstream velocity component. The inviscid velocity field specified in the perturbation
LBM is uniform over the channel, uI = Uex, where U is calculated by applying the law of
the wall Eq. (23) at the center of the channel, i.e., ũ(y+) for y = H/2. The Smagorinsky
constant used in the LES is set to CS = 0.16 in all simulations, which is in the middle of
the range of recommended values. Each simulation is run until both a fully turbulent flow is
observed and a quasi-steady mean flow is achieved.

We tested flows for 3 values of the Reynolds number, Reτ = Muτ/ν = 950, 2,000, and



20,000 based on the friction velocity uτ , or Rem = 2Mum/ν = 37, 042, 86,773, and 1.21×106

based on the average bulk velocity um in the x direction, obtained from Dean’s (1976)
correlation. Each case was simulated in 3 LBM discretizations, for which ∆x = ∆y = ∆z =
M/N , with N = 10, 20, and 30 ; in the middle Re case, we also tested N = 40. The full
channel width is thus discretized with 2N LBM points in the y direction.

Figures 5a,b,c show the velocity profiles computed for each simulated Re value with the
perturbation LBM-LES ; almost identical results were obtained using the standard LBM-
LES, which further confirms the relevance and accuracy of the decomposition method. In all
cases, results agree well with Musker’s (1979) profile for the smaller y+ values. At higher y+

values, however, velocities are slightly underperdicted in the LBM, which is likely the result
of having 2 plates in the model, with a finite separation distance H , rather than a free flow
past a single plate, which is the case of Musker (1979). Using the law of the wall to specify
the boundary condition just above the solid boundary, we see that the LBM-LES is able to
accurately capture the velocity profile in the intermediate and turbulent BLs, without need
for a fine discretization and in particular for resolving the viscous BL. For the largest Re,
the method is pushed to its limits, with the resolution being such that y+1 = 333, 500, and
1000 at the first LBM point (x1 in Fig. 1), for the different N values, which is quite large ;
the latter is a very under-resolved test, but one that demonstrates the overall robustness of
the method.

As the LBM grid resolution increases, for all Reτ or Rem values, velocity profiles agree
better with Musker’s profile and, hence, one would expect that the shear stress and friction
coefficient computed on the plate would also become more accurate. This is verified in
Fig. 5d which compares, for the 3 Re values, the computed bulk friction coefficient Cf =
2u2

τ/u
2
m, to Dean’s (1976) correlation, which is based on experiments. For the lowest Re

value, Rem = 37, 042, convergence to the reference solution with increasing N is achieved,
indicating that the BL is adequately resolved for N = 20 or 30, for which the first lattice
point (x1) corresponds to y+1 = 24 or 16 in Fig. 5a. A convergence trend is also seen for
the higher Re values, but convergence is not achieved ; for Rem = 86, 773, the simulation
was run for an additional finer resolution with N = 40, corresponding to y+1 = 25, for which
convergence to the reference solution was nearly achieved. Results thus indicate that y+1 ≃ 25
is the coarser discretization to achieve accurate shear and drag computations in the LBM.
Finally, there is again negligible differences between Cf values calculated with the standard
LBM or the perturbation LBM.

IV – Conclusions

We presented a new hybrid model combining potential flow and NS-LBM-LES solvers,
for naval hydrodynamics problems. Simple applications for a submerged foil and a turbulent
channel demonstrated both the relevance and accuracy of the hybrid approach, as well as
a close agreement between results of the standard and perturbation LBM-LES models. It
should be pointed out, however, that the inviscid rate of strain tensor was zero in the tur-
bulent channel, but present for the turbulent hydrofoil simulations ; hence a more rigorous
validation will be done in future work. Additionally, future work will consider drag compu-
tation using the wall model for more complex geometries such as the hydrofoil. Drag on such
bodies is much smaller than lift and hence its accurate computation is more challenging,
particularly for high Re values.

The main advantage of the perturbation LBM, its ability to use a smaller domain to
solve the NS equations relative to standard solvers, hence allowing both higher resolution
and efficiency, has not yet been fully explored and will also be the object of future work in



which the far-field inviscid flow is more complex (e.g., irregular wave field). Finally, earlier
work by O’Reilly et al. (2015) has illustrated the standard LBM model’s (ELBE) ability to
also simulate free surface flows and free surface piercing bodies. We intend to extend the
perturbation LBM method to simulating such problems, using fully non-linear free surface
boundary conditions in which “I-P” interaction terms will appear.
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