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ABSTRACT  
This paper presents an accurate and efficient three-
dimensional computational model (3D numerical wave tank), 
based on fully nonlinear potential flow (FNPF) theory, and its 
extension to incorporate the motion of a laboratory snake 
piston wavemaker, to simulate experiments in a large-scale 3D 
wave basin (i.e. to conduct “virtual” or numerical  
experiments). The code is based on a higher-order boundary 
element method combined with a Fast Multipole Algorithm 
(FMA). Particular efforts were devoted to make the code 
efficient for large-scale simulations using high-performance 
computing platforms to complement experimental 3D wave 
basins. The numerical simulation capability can serve as an 
optimization tool at the experimental planning and detailed 
design stages. To date, waves that can be generated in the 
NWT include solitary, Cnoidal, and Airy waves. In this paper, 
we detail the model, mathematical formulation, and wave 
generation. Experimental or analytical comparisons with NWT 
results are provided for several cases to assess the accuracy 
and applicability of the numerical model to practical 
engineering problems.  
 
1. INTRODUCTION 
Over the past decade, as modern computing platforms 
gradually increased in power, accurate and efficient three-
dimensional (3D) computational wave-basins (called 
numerical wave tanks or simply NWTs in this paper) have 
been developed and refined, which simulate complex 
processes of ocean wave generation, propagation over 
arbitrary bottom topography, interaction with ocean structures, 
and dissipation over sloping beaches. These computational 
tools allow researchers to conduct “virtual” or numerical 
experiments. Until recently, fluid dynamic phenomena had 
been mostly investigated by performing laboratory 
experiments in large-scale 3D wave basins, which are both 
expensive and time consuming to operate. While not intended 

to replace such facilities, NWTs can be used to simulate and 
optimize planned physical experiments, ahead of time, and 
thus allow to more efficiently devote time and efforts to 
targeted laboratory experiments. As an added advantage, once 
validated, NWTs can calculate time series of detailed flow 
parameters (e.g., velocity, pressure) everywhere in the 
numerical model, while these are usually available only at a 
limited number of experimental probes (and at the sacrifice of 
flow-field intrusion), in laboratory experiments. 

It is beyond the scope of this paper to provide an 
exhaustive literature review of the many methods that have 
been used to develop NWTs. We will only present and discuss 
a limited number of references, targeted to the type of models 
used in our work, i.e., models simulating nonlinear waves 
based on inviscid Fully Nonlinear Potential Flow (FNPF) 
theory, and implemented based on a higher-order Boundary 
Integral Equation (BIE) method, in a finite element (FEM) 
formalism, which is referred to as the Boundary Element 
Method (BEM). Besides its numerical efficiency and 
accuracy, the main advantage of the BEM in engineering 
applications is that the dimensionality of the discretized 
problem is reduced by one. Thus, 3D problems can be 
discretized using a surface-only (i.e. two-dimensional) mesh, 
which reduces the effort devoted to developing relevant 
numerical grids. Additionally, while the governing equation 
(here Laplace’s equation) is satisfied only approximately over 
the 3D-BEM domain boundary, it is satisfied exactly within 
the domain. Due to the reduced dimensionality, the numerical 
solution can be computed efficiently even for higher-order 
schemes and highly resolved BEM surface grids. Hence, 
problems such as free-surface waves can be solved very 
accurately. Finally, if required, it is easier to regrid the (2-D) 
boundary mesh, unlike (3-D) domain-discretization based 
methods (e.g., FEM). This is particularly useful for moving 
boundary problems (e.g., free-surface waves), wherein 
regridding will be redistributing nodes evenly during wave 
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propagation. The main drawback of the standard BEM, 
however, is that it yields non-symmetric and fully populated 
linear system matrices, which for large problems becomes 
prohibitive to solve, and thus require fast solution methods or 
a more advanced implementation that creates sparse matrices. 
This aspect, of improving the numerical efficiency of a 3D-
BEM-NWT, is one of the main aspects of this paper that is 
extensively discussed later. 

Historically, the BEM has been studied from the 
perspectives of classical boundary integral equations, 
mathematical analysis, and engineering applications (see, e.g., 
[1,2]). Following recent developments and advances in High 
Performance Computing (HPC), however, the BEM is 
receiving a renewed attention from various research 
communities resulting in new interesting practical 
developments and applications of the methodology. The 
solution technique used, the Fast Multipole Algorithm (FMA; 
see, e.g., [3-5]), makes the 3D-BEM much more efficient 
when using large-size discretizations required when solving 
practical engineering problems (which may require O(105 to 
106) BEM nodes). The FMA is an important and relatively 
recent development (particularly in the context of NWTs) that 
has brought the BEM to the forefront of numerical methods 
used in such problems. The principle of the FMA is first to 
approximate the free space Green’s function of the problem 
governing equations by a series of spherical harmonics. Then, 
for each BEM discretization node, a hierarchy of increasingly 
distant sub-domains is defined, in which the full Green’s 
function is used only in the nearest sub-domains, and a 
decreasing number of harmonics are used to represent the 
Green’s function (down to no harmonics), for increasingly 
distant sub-domains. Doing so both accelerates the 
computation (through numerical integration) of the non-zero 
coefficients in the BEM algebraic system matrices and creates 
large empty blocks in such matrices for sub-domains beyond a 
cut-off distance, thus yielding a sparse structure. When 
properly implemented, a BEM-FMA code can achieve an N 
log N numerical complexity (with N the boundary 
discretization size). Reference [4] reports on the initial (scalar) 
implementation and application of the FMA method in the 3D-
NWT used in this work. 
 
2. BACKGROUND OF FNPF THEORY AND 

MODELING OF FREE-SURFACE WAVES 
Potential flow theory solves inviscid, incompressible, Euler 
equations for irrotational flows. The governing equation for 
potential flows is mass conservation, which is expressed as a 
Laplace’s equation for the potential, i.e., a second-order linear 
elliptic partial differential equation. Nonlinearity in wave 
processes originates from the presence of, and equations 
governing, the free surface, i.e., the dynamic (DFSBC) and 
kinematic (KFSBC) free surface boundary conditions. When 
full nonlinearity is kept in the latter, this yields FNPF 
equations.  

Earlier work in applying FNPF theory to modeling 
various strongly nonlinear nearshore waves [6,7] indicates that 

it is accurate outside of the surfzone, up to the breaking point, 
where viscous effects are usually negligible, and hence 
vorticity is not generated, except in thin bottom and free-
surface boundary layers. Additionally, in the presence of 
submerged or floating ocean structures, viscous effects are 
also negligible for large-scale bodies (such as ships); for small 
bodies (e.g., pipelines), while viscosity may be locally 
important for the flow around the structure, it will typically be 
negligible for the large scale (or far-field) wave flow itself. 
The assumption of incompressible fluid is valid when there is 
no air-water mixing (i.e., no bubbles), which is mostly the 
case for non-breaking waves. Accordingly, most results of 
classical wave dynamics and applications to date have been 
based on FNPF theory, or on other equations derived from it 
through perturbation expansions (e.g., Stokes waves [8]; 
Boussinesq equations; see, e.g., [9]). One severe limitation of 
FNPF theory, however, is that wave overturning and breaking 
will cause flow (i.e., breaking jet) penetration, which violates 
the governing equations and thus interrupts computations 
based on this flow model. Hence, in FNPF-NWTs, numerical 
absorbing beaches have been developed and used to prevent 
waves from overturning, through the absorption of the energy 
of steeper waves, usually by specifying an “absorbing” 
pressure distribution on the free surface.  

In the 2D-FNPF models (and NWTs) initially 
developed [10-15], both the solution method (based on a direct 
Gaussian elimination scheme) and the computation of the 
matrix elements limited the size of problems that could be 
handled.  With regard to fluid-structure interactions, using 2D-
FNPF theory, Lin [10] studied the nonlinear behavior of the 
flow near the intersection point of a free surface and a floating 
body (represented by a piston wavemaker). A numerical 
algorithm was proposed to accommodate the singularity 
resulting from satisfying conflicting boundary conditions near 
the intersection point. This aspect was revisited by Grilli, et al 
[11,12] in the context of a different BEM model 
implementation, which used double nodes with specific 
continuity and compatibility conditions, and extended to the 
generation of waves by paddle flap or piston wavemakers [11-
15].  

As part of a pioneering project on 3D numerical 
simulations of nonlinear water waves, Zandbergen and co-
workers [16] generated substantial research based on using the 
BEM and FNPF approaches. This work confirmed that, for 
large objects with characteristic dimensions on the order of 
one wavelength, viscous as well as compressibility effects can 
be neglected in the fluid flow: while the assumption that the 
flow is potential is not valid at all stages of physical processes, 
it is valid for many practical engineering situations. Liu et al. 
[17] compared BIE solutions of 2D nonlinear water wave 
problems using free space or periodic Green’s functions. 
Cooker [18] further develops the method for 2D nonlinear 
wave propagation over irregular beds. 

 
In a series of research papers that represents the basis 

for the present work [19-21], Grilli and co-workers developed 
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an accurate and versatile 3D-NWT based on FNPF theory, 
which directly extended their earlier 2D work (e.g., [7,11-15]). 
This 3D-NWT was initially based on combining a 3rd-order 
BEM, based on a free-space Green’s function in the physical 
space, with an explicit time updating based on 2nd-order 
Taylor series expansions, in a Mixed Eulerian-Lagrangian 
(MEL) formulation [19-21]. To improve the computational 
efficiency, the method was later extended [4,21-24] to using a 
Fast Multipole Algorithm (FMA). The method used for 
solving the BEM algebraic system was Generalized Minimal 
Residual (GMRES). In applications of the BEM-FMA model, 
the numerical complexity was found to be nearly proportional 
to the problem size N.  

Despite its demonstrated success for academic-type 
applications, the range of engineering applications that could 
practically be solved using Grilli et al.’s 3D-NWT, however, 
was limited by the size of problems that could be solved on a 
single processor machine. This was because both the FMA 
and the BEM had been implemented in scalar mode in the 
original model. Also, while wavemakers had been used in a 
few applications (e.g., [19-21]) the FMA implementation of 
the 3D-NWT did not feature a snake piston wavemaker for 
simulating laboratory wave generation (e.g., such as in Oregon 
State University’s (OSU) 3D wave basin), which is an 
important requirement to be able to model shallow water wave 
in a physical wave basin, nor was there a fully operational 
absorbing beach (AB), as used in 2D applications. 

In this work, we report on recent improvements of 
the 3D-NWT implementation and validation by: (i) addition of 
a snake piston wavemaker for arbitrary wave generation (with 
the development of a wave generation module based on the 
control software driving the actual wavemaker at OSU’s wave 
basin); and (ii) an efficient absorbing beach. These 
improvements bring the 3D-NWT model to the level of an 
engineering tool, able to simulate meaningful laboratory 
experiments in a large-scale wave basin, on a moderate size 
HPC platform. This is demonstrated by comparing numerical 
results for 3D wave generation and propagation to laboratory 
measurements. 

In the following, we first present a summary of the 
mathematical model and numerical algorithms underlying the 
FNPF 3D-NWT, and then we describe the enhancements 
implemented into the NWT and their systematic validation for 
the generation of solitary waves and periodic waves (Cnoidal 
and Airy waves). Applications are presented, with a 
comparison of numerical results to experimental data and 
theoretical solutions.  
 
3. MATHEMATICAL MODEL 
As indicated before, under FNPF theory, the governing 
differential equation, i.e., mass conservation, is governed by 
the Laplace equation. With  denoting the velocity potential 
and the velocity given by , this reads, 

2  
2
x2

 
2
y2

 
2
z2

 0
  (1)

 

 

Figure 1 shows the general set-up and typical 
geometry of the 3D-NWT, in the case of wave generation by a 
snake piston wavemaker on the leftward boundary w, with 
stroke function xp(y,t). Wave elevation (x,y) on the free 
surface boundary f  is defined with respect to the still water 
level, corresponding to the (x,y) plane (that is z = 0). The tank 
axis is at y = 0, and x is positive rightward, in the initial 
direction of wave propagation away from the wavemaker. As 
in OSU’s wave basin, we assume here that the four sides of 
the tank are vertical boundaries, one of these being the moving 
snake wavemaker and the opposite end, parallel to the (y,z) 
plane, a moving absorbing piston boundary ap. The two 
sidewalls s, parallel to the (x,z) plane, are fixed in location. 
The impermeable bottom boundary b is represented in the 
figure with a constant depth h0, but can be specified to be 
sloping or with an arbitrary topography. 

On the free surface f, the potential satisfies the 
nonlinear kinematic (KFSBC) and dynamic (DFSBC) 
boundary conditions, 

       (2) 

                 (3) 

respectively, with R(t) the position vector of a fluid particle on 
the free surface and g the acceleration due to gravity. Both 
conditions are required since there are two unknowns (position 
and potential) on the free surface. The KFSBC states that the 
normal velocity is equal to the normal fluid velocity at the 
surface, when following a fluid particle at the free surface (this 
means that such particles remain on the free surface). The 
DFSBC, obtained from Bernoulli’s equation (i.e., an 
integration of Euler equations), states that the pressure on the 
free surface equals the atmospheric pressure, which is 
assumed here to be zero for simplicity.  

For fixed boundaries, a no-flow condition (zero flux) 

is specified as , where n is the normal vector to the 

surface (pointing outside the fluid). 
For a moving (piston) wavemaker boundary, both the 

motion (stroke function) and velocity are prescribed based on 
waves to be generated, by way of a wavemaker theory, as, 

   (4)
 

where xp and up are the wavemaker stroke and velocity, 
respectively.

 The initial free surface boundary condition (at t = 0) 

is given by specifying a cold start in the NWT, with a still 

water level (z = 0) and zero potential (Dirichlet BC), and all 

other surfaces having zero or specified normal fluxes 

(Neumann BC).
 

 

u    (u,v,w)

DR

Dt
u 

1
.

2

D
gz

Dt

      

0
n






x  xp(y,t);  

n

 up . n
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4. NUMERICAL IMPLEMENTATION 
A higher-order BEM is used to solve Eq.(1), whereby, Green’s 
second identity is applied to transform Laplace’s equation into 
a BIE, which is discretized on the boundary. The numerical 
implementation is summarized below. For details, see [19-
20,23]. 
4.1 Governing equation  

The BIE representation of Eq.(1) reads,  
 

 (5) 

 
where denotes the boundary of the fluid domain, (xl) is 
function of the exterior solid angle made by the boundary at 
the collocation point xl, and the 3D free space Green’s 
function for Laplace’s equation is defined as, 

   (6) 

where  is the distance from the source point x to 

the collocation point xl (both on the boundary). The normal 
derivative of the Green’s function further reads, 
 

  (7) 

4.2 Time integration 
Second-order explicit Taylor series expansions are 

expressed for the free surface position and potential, updated 
to the next time step t + t, as a function of the solution at t, 

   (8) 
These expressions yield an explicit, stable, and efficient MEL 
time stepping scheme. In these equations, zeroth-order 
coefficients are given by the free-surface geometry and 
potential at time t. First-order coefficients are evaluated from 
the free surface BCs Eqs.(2,3), also as a function of geometry 
and the BIE solution for  and n at time t. Based on 
Eqs.(2,3), second-order coefficients are expressed as, 
 

  

    

  

   (9) 
The expressions in Eq.(9) can be calculated as a function of 
geometry and the BIE solutions for both the potential and the 
time derivative of the potential at time t (i.e., t and 

2tn). It should be emphasized that this second BIE 
solution uses the same system matrix as the first one and has 
boundary conditions, which can be calculated as a function of 
the solution of the first BIE. 
 
5. SALIENT FEATURES OF THE NUMERICAL 

ALGORITHMS 
Salient features of the numerical algorithms combining higher-
order BIE solutions and an explicit time updating scheme can 
be summarized as follows (as above, see [19,20,23] for 
details): 

 Second-order Taylor series coefficients, used in the   
time updating, are obtained from time derivatives of 
the boundary potential and flux, which are obtained 
from solving another BIE. Since this is performed 
using the same geometry as that for the first BIE for 
the potential, the same discretized BEM algebraic 
system matrix is used, with a different right hand 
side; hence the solution of the second BIE comes 
only at a moderate additional time cost. 

 The time step is adapted as a function of the 
minimum distance between two nodes on the free 
surface, based on a constant mesh Courant number 
C0 ~ 0.45 [12]. 

 The numerical solution of the algebraic BEM systems 
uses GMRES, wherein the matrix vector products are 
replaced by the fast multipole algorithm (FMA) for 
distant sources points, relative to a given collocation 
node [4,23]. This algorithm, which uses multipole 
expansions and tree data structures, avoids the full 
assembling of the discretized system matrix in 
memory. The theoretical computational complexity 
of the FMA is O(N log N), where N is the number of 
nodes on the boundary [4,22]. This is a very good 
improvement over the standard GMRES 
implementation, which results in an O(N2) 
performance. More details on the FMA 
implementation can be found in [4]. Here, the FMA 
was modified to allow for a parallel implementation 
on computer systems with multi-core nodes that share 
a large central memory. 

 The majority of the 3D-NWT code was developed in 
FORTRAN, while the FMA algorithms used libraries 
written in C language. 

 The user’s input to the 3D-NWT was designed to be 
minimal, in the form of the broad dimensions of the 
NWT and number of elements in each direction, plus 
a few other control and FMA parameters. The 3D 
surface mesh is automatically generated in the model, 
based on input parameters, thus resulting in a 
considerable time saving for the user.  

 A node regridding technique can be automatically 
applied for any user-specified iterations so that free 
surface nodes are redistributed evenly over the grid. 
This option helps prevent inaccuracies and 

 (x l )(x l ) 

n

(x)G(x,x l )  (x)
G

n
(x,x l )







( t )

 d

 

G(x,x l ) 
1

4r
r  x  x l

3

1 . 
( , ) . 

4l

G
G

n r


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  
r n

x x n

R(t  t)  R(t)  t
DR

Dt
(t) 

(t)2

2

D2R

Dt 2 (t) O (t)3 

(t  t)  (t)  t
D
Dt

(t) 
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2

D2
Dt 2 (t) O (t)3 

D2R

Dt 2 
Du

Dt

u

t
u. u  


t
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D2
Dt 2  g

Dz

Dt


1
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instabilities due to a very uneven distribution of 
nodes during wave propagation (which may occur 
due   to Stokes drift for strongly nonlinear waves). 

 
6. PISTON WAVEMAKER MOTION AND WAVE 

GENERATION 
Boundary conditions for a plane (2D) piston wavemaker were 
derived in [13], for generating solitary, Cnoidal, or other types 
of elementary waves. Grilli, et al. [24] extended this 2D 
wavemaker generation to arbitrary irregular waves, based on a 
target wave energy spectrum (such as a JONSWAP spectrum), 
and the possibility to correct the wavemaker stroke function 
for reflection in the NWT. In the 3D-NWT, Brandini and 
Grilli [19] implemented a snake flap wavemaker to model 3D 
wave focusing (see also, [21]).  

Here, to more accurately generate shallow water 
waves, a snake piston wavemaker similar to that at OSU’s 
wave basin is implemented in the 3D-NWT. To ensure a 
match between experimental and numerical wave generation, 
the wavemaker paddle stroke function in Eq. (4) is specified 
such as to closely approximate the laws of motion of the 
mechanical actuators used in OSU’s basin. In the latter, the 
multidirectional (or snake) wavemaker has 29 rigid segments 
connected at the edges to 30 independently controlled 
actuators. While, for the purpose of validating the new 3D-
NWT implementation, we will only present in this paper 
applications with long-crested 2D waves, more general and 
complex cases of wave generation will be reported in future 
work.  

The wavemaker stroke were general functions of time 
t and lateral position y (there is no vertical variation for a 
piston wavemaker), with stroke xp(y,t) (Fig. 1), velocity: |up| = 
up = dxp/dt, and acceleration ap = dup/dt, so that an arbitrary 
snaking motion could be specified. 

A new module (Wavegen) was implemented to 
generate the various stroke functions (xp ,up ,ap) required to 
simulate laboratory experiments in OSU’s wave basin, for 
various type of standard waves, based on algorithms used in 
OSU’s wavemaker driver software. At present, Wavegen 
offers three types of long-crested wave generation capabilities, 
which will be illustrated in the present applications: solitary, 
Cnoidal, and Airy waves. Hughes [25] presented various 
issues related to wave generation using wavemakers, including 
more complex or nonlinear waves.  
 
7. VERIFICATION OF GENERATION, PROPAGATION 

AND ABSORPTION OF SIMPLE WAVES IN THE 
NWT 

The original model, on which this NWT is based, has already 
been validated for a number of theoretical applications (e.g., 
for solitary waves) where both convergence and accuracy of 
the BEM solution were assessed as a function of mesh and 
time step parameters [22]. None of these earlier validation 
tests, however, had been conducted for large 3D grids and 
with the solution performed using the new parallelized FMA 
algorithm. Additionally, although the equivalent 2D-FNPF 

model had been validated for strongly nonlinear waves using 
experimental data [15], no such comparison of 3D-NWT 
results with detailed laboratory experiments in a large 3D 
wave tank, such as available at OSU, had been done to date. 

In this section, we perform numerical simulations to 
verify that the new implementation of wave generation by a 
piston wavemaker, propagation over constant depth, and 
energy absorption by the “absorbing beach”, perform as 
expected. In these validation applications, only simple long-
crested (i.e., 2D) waves are generated, as detailed in the 
previous section, and, hence, the piston wavemaker moves as 
a whole (i.e., there is no snaking effect). For such cases, the 
width of the NWT does not really matter and can be small, to 
save on computational time; we thus are dealing here with a 
narrow 3D-NWT. In the following computations, the 3D-
NWT has a length of 25 m, a depth of h = 0.75 m, and a width 
of 1 m for solitary waves, or 0.5 m, for Cnoidal, or Airy 
waves. These waves are generated at the wavemaker, 
propagate in the tank and are absorbed at the far end in an 
Absorbing Beach (AB) of 3 m length (with an AB coefficient 
o = 400 kg/(m.s); see [14]). Although OSU’s wave basin has 
larger dimensions (length 48.8 m and width 26.5 m), the 
reduced dimensions (along length and width) in the model are 
acceptable, as already indicated, since we are only generating 
2D waves (in the vertical plane). Results detailed below 
include a comparison with experiments and theoretical wave 
profiles.  
7.1 Solitary waves 

In this simulation, the BEM grid has 200 elements 
along the length, 5 elements along the width, and 8 elements 
along the depth. This yields a total of N = 6,138 nodes and M 
= 5,280 elements. Two waves are generated, with targeted 
heights H = 0.3 and 0.45 m in depth h = 0.75 m, or H/h = 0.4 
and 0.6, respectively (Fig. 3); hence these are strongly 
nonlinear waves. For both waves, numerical wave profiles, at 
the wavemaker and 3 wave gages, and particle velocities at the 
third gage (at a depth z = -0.61 m), are found to agree well 
with experimental results. Wave absorption (absorbing piston 
and absorbing pressure beach) at the end of the tank appears to 
be working well as no significant reflected waves can be seen 
in the wave gage records.  
7.2 Cnoidal waves 

Here, the NWT-BEM grid has 200 elements along 
the length, 5 elements along the width, and 5 elements along 
depth. This yields a total number of nodes N = 4,896 and 
elements M = 4,050. The targeted wave height is H = 0.3 m 
and period T = 3.5 s; the expected wavelength from Cnoidal 
theory is L = 9.84; hence, L/h = 13.1, which corresponds to a 
fairly long (but still intermediate depth) wave, and H/h = 0.4, 
indicating a strongly nonlinear wave. Additionally, Cnoidal 
theory predicts a trough depth of  -0.08 m and a crest height of 
0.22 m (Fig. 6). Fig. 6 shows that the initial numerical wave 
profile at the wavemaker agrees well with the theoretical one. 
Fig. 7 shows wave profiles computed at a few gages, and Fig. 
8 shows particle velocity components at one location. The 
good periodicity of these parameters, once simulations have 
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reached a quasi-steady state, indicates that wave absorption is 
working adequately in the NWT. Note, in Fig. 7, while both 
crest height and trough depth stay quite close to the expected 
values, the small oscillations in each wave trough, which are a 
well-known indication of the generation of higher-order 
harmonics in the generation of strongly nonlinear waves using 
a low-order wave theory. 
7.3 Airy Waves 

The grid used here is the same as for Cnoidal waves. 
The wave height is H = 0.2 m and period T = 3.0 s, yielding a 
linear wavelength L = 7.68 m (Eq. A13); hence, L/h = 10.2, 
which corresponds to an intermediate wave, and H/h = 0.27 
and H/L = 0.026, indicative of a fairly strongly nonlinear 
wave. In Fig. 9, we see, the initial wave shape at the 
wavemaker is, as expected, closely sinusoidal and trough/crest 
symmetric. Fig. 10, however, shows that, as expected, the 
linear wave gradually adjusts its shape, to reach a permanent 
form profile consistent with wave nonlinearity. Thus, at the 
farther gage down the NWT (g3), wave profiles have become 
fairly steady, with narrower and taller crests (at 0.15 m) and 
wider and shallower troughs (at -0.06 m). Wave particle 
velocities at locations far down the tank also become quasi-
steady (Fig. 11). Wave absorption in the absorbing beach is 
thus also working well in this case. 
 
8. CONCLUSIONS 
This paper presented improvements in the implementation of 
an existing computation model (3D-NWT), based on FNPF 
theory, to make it an efficient tool to complement 
experimental facilities such as OSU’s 3D wave basin or 
elsewhere. The numerical algorithms and mathematical 
formulations involved in furthering the development of wave 
generation capabilities (i.e., for solitary, Cnoidal and Airy 
waves) are provided. Comparisons with experiments for 
simple waves illustrate that numerical and experimental results 
are in good agreement and provide a strong basis for the use of 
the 3D-NWT code for all appropriate and practical 
engineering purposes. More complex cases of wave 
generation, for fully 3D waves and/or varying bathymetry in 
the NWT, will be reported in future work.  
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Figures 

 
Fig. 1: Sketch of 3D-NWT geometry and parameters, for wave 
generation by a snake piston wavemaker (notation and details 
of mathematical model can be found in section 3) 
 
 

 
Fig. 2:  Snapshot of 3D-NWT simulaitons for the propagation 
of a solitary wave over constant depth in a geometry identical 
to that of OSU’s wave basin (48.8 m long, 26.5 m wide, 0.78 
m deep).  
 

 
Fig. 3: Solitary waves of target height H = (a) 0.3 m; (b) 0.45 
m, in water depth h = 0.75 m. Surface elevations versus time 
at the wavemaker, in: () numerical model; (-o-) OSU’s 3D 
tank experiments (experimental data were shifted by a 0.04 s 
time lag; only 25% of experimental points are shown). 
 

 

 
Fig. 4:  Solitary waves of target wave height H = (a) 0.3 m; (b) 
0.45 m, in depth h = 0.75 m. Numerical () and experimental 
(-o-) surface elevations as functions of time, at three gages at x 
= 8.8 m (g1), 14.9 m (g2), and 18.7 m (g3), with y = 0 
(experimental data were shifted by a 0.16 s time lag; only 25% 
of experimental points are shown). 
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Fig. 5:  Solitary waves of target wave height H = (a) 0.3 m; (b) 
0.45 m, in depth h = 0.75 m. Numerical () and experimental 
(-o-) water particle velocity components (u, w) as functions of 
time, at gage g3 location: x = 18.7 m, y = 0, at depth z = -
0.61m (only 25% of experimental points are shown).  
 
 
 

 
Fig. 6: Cnoidal wave of target height H = 0.3 m and period T 
= 3.5 s, in water depth h = 0.75 m. Numerical () and 
theoretical (- - -) surface elevations at the wavemaker as 
functions of time.  
 
 

 
Fig. 7:  Cnoidal wave of Fig. 6. Numerical wave elevation as a 
function of time, at three wave gages at x = (g1: ) 8.8 m, 
(g2: - - -), 14.9 m and (g3:  .) 18.7 m, with y = 0. 
 
 

 
Fig. 8 :  Cnoidal wave of Figs. 6,7. Numerical: wave particle 
velocity components u (), w (- - -) as functions of time at 
gage g3, with  x = 18.7 m, y = 0, at depth z = -0.61m. 
 

 
Fig. 9:  Airy wave of target height H = 0.2 m and period T = 
3.0 s, in water depth h = 0.75 m. Numerical () and 
theoretical (- - -) surface elevations at the wavemaker as 
functions of time. 
 
 

 
Fig. 10: Airy wave of Fig. 9. Numerical surface elevation as a 
function of time, at three wave gages at x = (g1: ) 8.8 m, 
(g2: - - -), 14.9 m and (g3:  .) 18.7 m, with y = 0. 
 

 

 
Fig. 11:  Case of Figs. 9,10, numerical: wave particle velocity 
components u (), w (- - -) as functions of time at x = 18.7 m, 
z = -0.61m, y = 0. 
 
 

 


