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Nonlinear Ocean Wave Reconstruction Algorithms
Based on Simulated Spatiotemporal Data

Acquired by a Flash LIDAR Camera
Frédéric Nouguier, Stéphan T. Grilli, and Charles-Antoine Guérin

Abstract— We report on the development of free surface recon-
struction algorithms to predict ocean waves, based on spatial
observations made with a high-frequency Flash light detection
and ranging camera. We assume that the camera is mounted on
a vessel, in a forward looking position, and is pointing at some
distance ahead of its path yielding a sample of spatiotemporal
wave elevation data. Because of the geometry, the density of
measurement points gradually decreases (i.e., becomes sparse)
with the distance to the camera. Free surface reconstruction
algorithms were first developed and validated for linear 1-D and
2-D irregular surface models, whose amplitude coefficients are
estimated on the basis of minimizing the mean square error of
simulated surface elevations to measurements, over space and
time (for a specified time initialization period). In the validation
tests reported here, irregular ocean surfaces are generated on the
basis of a directional Pierson-Moskowitz or Elfouhaily spectrum,
and simulated LIDAR data sets are constructed by performing
geometric intersections of laser rays with each generated surface.
Once a nowcast of the ocean surface is estimated from the
(simulated) LIDAR data, a forecast can be made of expected
waves ahead of the vessel, for a time window that depends both
on the initialization period and the resolved wavenumbers in
the reconstruction. The process can then be repeated for another
prediction window, and so forth. To reconstruct severe sea states,
however, nonlinear effects must be included in the sea surface
representation. This is done, here, by representing the ocean
surface using the efficient Lagrangian choppy wave model [1].

Index Terms— Analytical wave models, Flash LIDAR camera,
free surface reconstruction algorithms, linear and nonlinear
waves, ocean waves.

I. INTRODUCTION

IN MANY ocean engineering applications where ocean
wave information is needed, it is often sufficient to use

phase-averaged wave data, usually in the form of a directional
wave energy spectrum. For some applications, however, both
more accurate and detailed phase resolved, real time, wave
data are required. This is for instance the case when predicting
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seakeeping and anticipating the motions of a surface vessel,
based on measurements of the ocean surface made ahead of
its trajectory. Here, the free surface must be reconstructed
in real time from a limited number of measurements, which
requires applying so-called free surface reconstruction algo-
rithms. In the last decade, new techniques were proposed in
the microwave domain for the reconstruction of surface ele-
vation maps [2]–[5], using radar systems at grazing incidence
angles. Here, we report on the development and application of
reconstruction and prediction algorithms for the ocean surface,
based on spatiotemporal data acquired at high frequency by a
Flash LIDAR camera [(FLC) such as designed by Advanced
Scientific Concepts Inc.; Santa Barbara, California, USA]. An
FLC generates a n × n matrix of laser rays (with n = 64–128
in the currently existing design), providing n2 simultaneous
measurements of the distance from the FLC to the ocean
surface. The camera can be mounted on a vessel (on top
of a mast), in a forward looking position, pointing at some
distance ahead of its path. From the measured data and the
camera’s location and orientation, as well as known vessel’s
motions, the elevation and horizontal position of the measured
surface points can be generated in an absolute coordinate
system.

A shallow angle (vessel mounted) LIDAR scanning system
was already proposed by [6] and field tested for wave profiling
up to distances of hundreds of meters, for 1-D cases (i.e., in
a vertical plane). As indicated by the authors, since laser rays
are first reflecting off of the nearest ocean wave crests (through
wave shadowing effects), the density of measurement points
inevitably gradually decreases with the distance to the camera
even if the horizontal sampling is regular. Hence, this results
in a highly spatially nonuniform distribution of ocean surface
elevation values/data (as, e.g., sketched in Fig. 1), as a function
of time (i.e., a spatiotemporal data set), based on which the
ocean surface must be reconstructed.

Although a linear reconstruction should be sufficient for the
short-term forecast of moderate sea states, to better estimate
more severe sea states and predict them later in time, nonlinear
effects must be included in the sea surface representation.
In addition to changing wave steepness, such effects also
influence the wave phase speed that increasingly affects the
forecast as time increases. The use of second- and third-
order (and even higher-order) free surface models in ocean
wave reconstruction algorithms was investigated by [7]–[9].
The proposed nonlinear models, however, were all quite
computationally demanding, particularly in a reconstruction
mode. Here, we represent nonlinear sea surfaces through the
efficient Lagrangian model choppy wave (CW), which was
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Fig. 1. Sketch of Flash-LIDAR angle of view of the ocean surface and
visualization of a few rays (1-D situation). Measurement points are sparse far
from the ship.

demonstrated to correctly approximate second-order properties
of waves with narrow-banded spectra [1] and to be accurate
enough for most sea states, as long as there are limited
decimeter gravity waves. The CW model is used in the
proposed reconstruction algorithms.

In Sections II and III, we present the development and
validation of new free surface reconstruction algorithms based
on a linear or second-order representations of 1-D and
2-D irregular ocean surfaces, whose parameters are estimated
through minimizing the mean-square error of simulated sur-
face elevations to measurements made over space and time
(for a specified time prediction window). If sea state is
properly estimated, a prediction of expected waves ahead of
the camera/vessel can be made; the process is then repeated
for another prediction window, and so forth. Our methods and
results apply to fully 2-D ocean surfaces (Section V).

II. OCEAN FREE SURFACE REPRESENTATION

In this paper, we consider ocean surface representations
based either on linear superposition [10] or on the nonlinear
CW model, which is an extension of Gertsner’s wave theory
[1]. As a reminder, linear Stokes wave theory shows that for
any wave harmonic of wavenumber kn (wavelength λn) and
circular frequency ωn , (period Tn), the dispersion relationship

ω2
n

g
= kn tanh knh with ωn = 2π

Tn
; kn = 2π

λn
(1)

and the group velocity

cgn = d ωn

d kn
= g

2ωn
tanh (knh)

{
1 + 2knh

sinh (2knh)

}
(2)

holds at second-order (in water depth h, where g denotes
the gravitational acceleration). Amplitude dispersion effects,
which are not included in these equations, only appear at third
and higher orders. Other characteristics, such as wave crest
and trough elevations, wave slopes, however, differ at second
order. In deep water, (1) and (2) simplify to ω2

n = gkn and
cgn = g/(2ωn).

Hence, the linear superposition of n = 1, . . . , N individual
wave harmonics of elevation An and direction �n yields the
linear ocean surface representation, in the horizontal plane of
coordinates x = (x, y)

η(x, t) =
N∑

n=1

An cos (�n − ϕn); �n = knx x + kny y − ωnt

(3)
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Fig. 2. Directional EY wavenumber spectrum for a significant wave height
Hs = 2.62 m and spectral peak wavelength λp = 88 m.

where �n are spatiotemporal phase functions, ϕn = 2πRn
are mutually independent (i.e., random) phases, with Rn ∈
[0, 1] a set of uniformly distributed random numbers, and
(kxn, kyn) = kn{x cos �n + y sin �n} = kn · x, with kn =
kn(cos �n, sin �n) = kn k̂n , with k̂n = (cos �n, sin �n), the
unit wavenumber vectors (where �n ∈ [0, 2π] denotes a
direction of propagation).

To simplify the following mathematical and algorithm
developments, related to free surface reconstruction, it is more
convenient (and numerically accurate) to use the equivalent
linear representation

η(x, t) =
N∑

n=1

|kn|−3/2 {an cos �n + bn sin �n} (4)

where {an, bn; n = 1, . . . , N} are 2N wave harmonic parame-
ters describing the ocean surface, with

an = |kn|3/2 An cos ϕn ; bn = |kn|3/2 An sin ϕn. (5)

The factors |kn|−3/2 constitute a preconditioning, which
anticipates the fact that the harmonic amplitude coefficients are
related to the square root of the energy density spectrum (see
below). This preconditioning will make for better conditioned
matrices in the reconstruction algorithms discussed later.

The CW ocean surfaces are obtained from linear surfaces,
such as (4), based on the transformation

(x, η(x, t)) → (x + D(x, t), η(x, t)) (6)

where D(x, t) is the spatial Riez transform (Hilbert transform
in 1-D) of η. It can be shown [1] that this transformation
introduces a phase quadrature with respect to the original
signal; hence, it writes

D(x, t) =
N∑

n=1

|kn|−3/2 {−an sin �n + bn cos �n} k̂n. (7)

The nonlinear surface, η̃ is thus implicitly defined as

η̃(x + D(x, t), t) = η(x, t). (8)



NOUGUIER et al.: NONLINEAR OCEAN WAVE RECONSTRUCTION ALGORITHMS 1763

The horizontal displacement D is assumed small enough that
there are no multiple-valued points in the abscissa transfor-
mation and the correspondence between η̃ and η is univocal;
i.e., in 1-D, there exists an increasing function ξ = 
(x) such
that x = ξ + D(ξ). This is the case if the condition |D′| < 1
is satisfied, which imposes a restriction on the ocean surface
slopes, since D and η can easily be shown to have the same
rms slope.

In the ocean, we assume that the wave amplitude of each
component can be found from a (discretized) directional
energy density spectrum S(kn) = S(kn,�n) (or S(ωn ,�n);
these two forms being related through (1) as

An = √
2S(kn,�n) kn�k ��. (9)

In the following applications, when generating ocean surfaces
(whether linear or nonlinear), we will either assume an omni-
directional discrete Pierson–Moskowitz spectrum (PM) for
fully developed open seas, or a directional discrete Elfouhaily
spectrum (EY). Here, the PM spectrum is defined for both
positive and negative wavenumbers as

S(kn) = α

2|kn|3 exp

(
− βg2

k2
nU4

19.5

)
(10)

with the Philips constant α = 4.05 10−3, β = 0.74, and U19.5
the wind speed at 19.5 m above the surface. For the PM
spectrum, the dominant wave angular frequency is defined as,
ωp = 0.877g/U19.5, with in deep water k p = ω2

p/g and hence
a dominant wavelength λp = 8.17 U2

19.5/g; (9) also simplifies
to An = √

2 S(kn) �k.
The directional Elfouhaily spectrum (EY) [11] is defined

by way of an omnidirectional curvature function B(kn) and
a directional spreading function δ(kn). The total directional
density spectrum writes

S(kn,�n) = B(k)

2πk4
n
(1 + δ(kn) cos(2�n)) (11)

where �n is the direction of wave component n relative to the
wind direction. The detailed definitions of B(kn) and δ(kn) can
be found in [11]; both are function of wind speed measured
at 10 m above the ocean surface U10 and wave age � (which
is related to fetch). The spectral peak wavenumber is defined
as

k p = g�2

U2
10

(12)

which corresponds to a dominant wavelength λp = 8.6 U2
10/g

for fully developed open seas (i.e., � = 0.84).
For PM or EY spectra, the sea state significant wave height

is related to the zeroth spectral moment mo by

Hs = 4
√

mo ; mo = σ 2 =
N∑

n=1

S(kn,�n) kn �k��

(13)

where σ denotes the standard deviation of the ocean free
surface. Combining (1)–(13), one can also generate a EY
spectrum for specified (Hs, Tp) values.

In the applications, the target ocean free surfaces will be
generated, for PM or EY spectra, using a fast Fourier transform

(FFT). To do so, one first sets low and high frequency, or
wavenumber, cutoff values (kmin, kmax) and use N wavenum-
bers kn defined on a linear scale in between these values.
In practice, kmin is related to the maximum wavelength that
can be represented in the sea state, λmax = 2π/kmin, which is
also used as the discretized surface characteristic dimension,
and kmax is related to the sampling wavenumber to satisfy
Shannon’s condition: kmax = ke/2, where ke is the sampling
wavenumber.

Fig. 2 shows an example of a directional EY spectrum,
with U10 = 10 m/s (note U10 � 0.91U19.5) for a significant
wave height Hs = 2.62 m, and a peak spectral wavelength
λp = 88 m.

III. FREE SURFACE RECONSTRUCTION ALGORITHMS

Assuming a set of observations of the free surface ele-
vation made at M times, using a LIDAR camera with J
active rays (i.e., actually intersecting the free surface), i.e.,
η j,m = η(x j , tm); l = j, . . . , J ; m = 1, . . . , M , one wishes
to reconstruct the ocean surface geometry over some spec-
ified range of wavelengths: (λr

min, λ
r
max). In the following,

we present reconstruction algorithms based on a linear or
first-order (choppy) representation of the free surface. These
consist in optimizing the values of 2N unknown parameters
(an, bn) by minimizing a cost function expressing the rms
difference between the reconstructed surface values and the
observations.

Owing to the lack of actual data at this time, we validate
the proposed algorithms using numerically simulated LIDAR
data, extracted from randomly generated ocean surfaces
(i.e., linear or choppy), having a specified wave energy spec-
trum as detailed in the previous section. In the validation
applications, both 1-D and 2-D (linear or choppy) cases will
be presented and discussed.

A. Linear Ocean Free Surface Reconstruction

Here, we assume that the ocean surface is represented
by (4). The simplest minimization of differences between
model and observations can be achieved through applying a
straightforward least square method. Therefore, we define a
cost function for the measured spatiotemporal data points ηl
(l = 1, . . . , L = J · M) as

C = 1

L

L∑
l=1

(η(xl , tl) − ηl)
2 (14)

where η(xl , tl) are the unknown reconstructed surface eleva-
tions and ηl are the observations. An extremum of this function
is reached for

∂C

∂am
= 0,

∂C

∂bm
= 0 ; m = 1, . . . , N. (15)

Developing these equations yields a linear system of 2N
equations for 2N unknown parameters (m = 1, . . . , N)

L∑
l=1

N∑
n=1

|kn|−3/2{an cos �ml cos �nl + bn cos �ml sin �nl}

=
L∑

l=1

ηl cos �ml
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L∑
l=1

N∑
n=1

|kn|−3/2{an sin �ml cos �nl + bn sin �ml sin �nl}

=
L∑

l=1

ηl sin �ml (16)

where wave harmonic phases are defined as, �nl = kn · xl −
ωntl . This linear system can be recast in matrix form as

Amn Xn = Bn ; Xn = [a1..aN , b1..bN ] (17)

where Xn is a vector made of the 2N unknown parameters

Bn =
{∑L

l=1 ηl cos �nl; 1 ≤ n ≤ N∑L
l=1 ηl sin �nl; N + 1 ≤ n ≤ 2N

}
(18)

and, Amn the 2N × 2N matrix

Amn =
L∑

l=1

|kn|−3/2 cos �ml cos �nl

Am,N+n =
L∑

l=1

|kn|−3/2 cos �ml sin �nl

AN+m,n =
L∑

l=1

|kn|−3/2 sin �ml cos �nl

AN+m,N+n =
L∑

l=1

|kn|−3/2 sin �ml sin �nl . (19)

The linear system (17) is solved at each step of data
acquisition (for data acquired at the current and earlier time
steps), using either the direct Gauss elimination method or, for
larger systems, the more efficient iterative method GMRES. As
an example, 7.58 s on a three-year-old basic laptop are needed
for a typical inversion with Nk = 400 and L = Nv ×Nh ×Nt =
16, 384, where Nv = 64, Nh = 64, and Nt = 4 is the number
of temporal acquisition steps before the inversion is performed.

B. Choppy Ocean Free Surface Reconstruction

Here, we assume that the ocean surface is represented by
(8), using the definition of D in (7). As before, we use a
quadratic cost function to optimize the reconstructed surface
amplitude parameters (an, bn) with respect to L = M · J
spatiotemporal observations ηl , as

C̃ = 1

L

L∑
l=1

(
η̃(yl , tl) − ηl

)2 (20)

where yl is the horizontal coordinate of the set of observations
points on the surface. For each yl , we can find xl such that

yl = xl + D(xl , tl). (21)

Using this equation in (20) and the implicit definition (8)
of the nonlinear surface, we recast the cost function as

C̃ = 1

L

L∑
l=1

(η(xl, tl ) − ηl)
2 (22)

where η is the underlying linear surface taken at the horizontal
coordinates xl .

The extremum condition is thus still defined by (15), which
results in the same linear system of equations, however, with
the important difference that now ηl and η are elevations taken
at different horizontal coordinates. As D and thus xl and all
�nl are unknown, we need to proceed iteratively to find them
jointly with η. Since in choppy the nonlinear surface is close to
the linear one, we begin the iterative process by assuming that
x(0)

l = yl (i.e., D = 0). Solving the system of equations yields
a first solution (ã(0)

n , b̃(0)
n ), which allows deriving a better

estimate of xl : x(1)
l = yl−D(0)(x(0)

l , tl ). This iterative process
can thus formally be defined as in equation (23), shown at the
bottom of the page, where superscripts in parentheses refer
to the iteration number. Step (a) is achieved by solving the
system (17) and step (b) via applying the definition in (4) and
(7). It should be noted that the first step is equivalent to a linear
reconstruction. Practically, convergence is reached after only
a few iterations. Hence, a nonlinear inversion usually takes
three or four times longer to compute than a linear inversion.

IV. RECONSTRUCTION AND PREDICTION

OF 1-D SURFACES

A. Effect of Nonlinearity on Nowcast and Forecast

As a preliminary step, we would like to insist on the
need for considering a nonlinear time-evolution to achieve an
accurate wave forecast, even though this is much less crucial
for nowcast. Therefore, we compare the linear and nonlinear
reconstructions of a 1-D ocean surface (with waves traveling
only in the positive x direction), independently from the data
acquisition method (i.e., LIDAR camera or otherwise) and
data type (e.g., dense or sparse). Hence, we simply assume
that the data set of observations is constituted of all the points
used for numerically generating the ocean surface. A nonlinear
ocean surface is generated using choppy (with N = 2048
wavenumbers), assuming a PM spectrum with a wind speed
U19.5 = 7 m/s, yielding a dominant wavelength λp = 44 m
and wavenumber kp = 0.14 rad/m (10). A linear surface is first
generated using the random phase method, by way of a FFT
with 2048 points over 200 m (3) and (9), and then transformed
into a nonlinear surface through the choppy transformation (6).

Both linear and nonlinear free surface reconstructions are
performed with Nk = 400 wavenumbers kn , and two or three
iterations are needed for a nonlinear reconstruction. The obser-
vation data set used in the reconstruction is the whole surface
sampling (i.e., with 2048 points). The expected footprint area
of a typical forward-looking LIDAR camera is assumed to
be around 100-m wide, and a unique snapshot of the surface
will not be sufficient for the accurate reconstruction of a
larger wave. The reconstructed surface spectrum will thus be
necessarily truncated. We consequently fixed the reconstructed
wavenumber vector to be logarithmically spaced in between
kmin = 2π/λmax and kmax = 2π/λmin, with λmax = 200 m and
λmin = 2 m, with λmax thus being more or less the longest
wave that can be inverted.

x(n+1)
l = yl − D(n)(x(n)

l , tl) −→
(a)

(ã(n+1)
n , b̃(n+1)

n ) −→
(b)

(η(n+1), D(n+1)) (23)
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Fig. 3. Linear and nonlinear reconstructions of a time evolving 1-D choppy wave surfaces, at t =0, t =10, and t = 20 s. A PM spectrum is assumed with
a wind speed U19.5 = 7 m/s.

Fig. 3 shows a sample of the simulated, and the linear
and nonlinear reconstructed, surfaces at different times, for
a PM spectrum and a wind speed U19.5 = 7 m/s. Surfaces at
time > 0 are obtained by time updating the phase functions
�s. For the nowcast (t = 0), errors between reconstructed
and simulated surfaces are small and mainly because of the
poor reconstruction of shorter waves (because of the reduced
number of higher harmonics in the reconstruction). The linear
and nonlinear reconstructions are equally accurate, because
our reconstruction methodology relies on a cost function
minimization. For the forecast at t = 10 and 20 s, there is an
increasing discrepancy with time between the reconstructed
and simulated surfaces, and more so for the linear recon-
struction (at t = 10 s, the nonlinear reconstruction is very
accurate, except for some shorter waves). This is shown in
Fig. 4, which shows the ratio ε/ε̃ of linear to nonlinear relative
errors in the reconstruction as a function of the forecasting
time, and for four different wind speeds (over x ∈ [0 100] m
and averaged for 50 surfaces both for statistical purposes and
to provide smoother curves). As expected, the ratio increases
with time and wind speed (thus wave height) because the
nonlinearity increases and affects the whole spectrum for
larger waves. Hence, using a nonlinear reconstruction method
becomes increasingly necessary, the stronger the wind and the
steeper the waves. For wind speed as small as 10 m/s, the
reconstruction error can be divided by a factor of 8 when
using the nonlinear method.

As waves propagate in a nonlinear manner for the simu-
lated choppy surfaces (i.e., they are subjected to amplitude
dispersion effects), the estimated coefficients of the linear
reconstruction (an, bn) will change at each time step. There-
fore, forecasting the time evolution of the reference surface
based on such linear coefficients leads to gradually increasing
errors with time. By contrast, coefficients estimated with the
nonlinear scheme (ãn, b̃n) remain nearly identical at each time

Fig. 4. Ratio of relative errors of the linear to nonlinear reconstructions as
a function of the forecasting time.

step and, hence, discrepancies between the nonlinear forecasts
and simulated surfaces remain small, as compared with the
linear forecast.

Finally, since (ãn, b̃n) are only slowly varying in time, as
compared with (an, bn) including observations made at differ-
ent times, the cost function minimization will improve the non-
linear reconstruction. By contrast, using different observation
times in the linear reconstruction of a nonlinear surface does
not really help and could even be detrimental to the forecast
when nonlinearities appear.

B. Generation and Reconstruction Using 1-D LIDAR Data

Here, we consider one of the sea states used earlier,
described by a PM spectrum with U19.5 = 10 m/s, and create
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Fig. 5. Example of 1-D LIDAR camera sampling of a nonlinear surface.

a simulated LIDAR data set by calculating the geometric
intersections of a series of LIDAR rays with 1-D simulated
free surfaces, as a function of space and time (e.g., Fig. 5). The
spectrum has been cut-off in the lower and higher wavenumber
ranges such that kmin = 2π/w and kmax = 2π/dr , where
w = 200 m and dr = 0.20 m are the surface length and the
spatial sampling, respectively. The surface length is selected
to be larger than the peak spectral wavelength λp = 83.3 m,
and dr is such that λmin = 2 × dr , the minimum wavelength
on the free surface. In the following, we also assume that the
LIDAR camera is located at z0 = 10 m above the ocean mean
water level, with its main axis of view pointing at a distance
d0 = 50 m ahead. The vertical aperture is θv = 13 deg. and
there are nrv = 64 rays in the vertical plane.

Ocean surfaces are generated on the basis of the PM
spectrum, as before, using a random phase method. We again
use N = 1024 individual wavenumbers distributed over the
selected range, with 512 positive and negative k values. The
corresponding frequencies can be calculated using the linear
dispersion relationship (1) assuming deep water waves, i.e.,
ω2

n = gkn.
Fig. 6 shows results of applying the interface reconstruction

algorithms to simulated LIDAR data obtained from a unique
snapshot of a 1-D CWM ocean surface. In the linear recon-
struction algorithm results shown in Fig. 6(a) and (b), we use
Nk = 40 or 400 wavenumbers, logarithmically spaced between
0.07 and 3.1 rad/m (λmax = 90 m and λmin = 2 m), respec-
tively. Black dots represent the data set of simulated LIDAR
observations. No additional noise, representing experimental
errors, is included at this stage. As expected, the reconstruction
is very accurate over the LIDAR footprint area, with only
40 wavenumbers, but the algorithm fails to reconstruct the
surface outside this zone, where the inversion process is not
constrained. The footprint area size is thus a major parameter
and should be carefully defined as a function of the desired
reconstructed wavelength interval.

Additionally, we see that, despite the paucity of data for the
more distant waves resulting from shadowing effects (which
is an expected characteristics of low incidence LIDAR data),
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Fig. 6. Linear reconstruction of a 1-D CWM surface. Black dots: simu-
lated LIDAR observations on the simulated surface (blue lines). Red lines:
reconstructed surfaces with Nk = (a) 40; (b) 400.
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Fig. 7. Relative error of linear reconstruction of a CWM surface, versus the
number of harmonics.

and particularly behind wave crests, the reconstructed surfaces
capture well the salient features of the actual ocean surfaces,
above the 2-m wavelength selected as the higher frequency
cut-off in the algorithm. However, as indicated before, the
surface sampling process is strongly nonuniform and the
density of sampled points on the sea surface is strongly
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decreasing with distance from the camera. Thus, the choice
of the optimum number of reconstructed harmonics (Nk ) is
highly dependent on the LIDAR illuminating configuration.

The relative error of the reconstruction is plotted as a func-
tion of Nk in Fig. 7 for the specific illuminating configuration
used above

ε =

√√√√√ Nv∑
l=1

(ηr − ηs)2 ×
[

Nv∑
l=1

(ηs − ηs)
2

]−1

(24)

where ηs , ηr and ηs are the simulated and reconstructed
surfaces, respectively, taken at each sampled point, and the
mean elevation of the simulated surface. On Fig. 7, each
marked data point was obtained by averaging the relative
error over ten test surfaces. A good compromise between
accuracy and computational time is obtained around Nk = 400
harmonics, which corresponds to about ten times the order
of magnitude of observations points However, other simula-
tions with higher wind speeds show that increasing Nk no
longer improves reconstruction once the maximum wavelength
becomes significantly larger than the camera’s footprint size.
This confirms that the camera configuration (e.g., aperture
angle) must be adapted to wind conditions.

C. Reconstruction and Prediction Through Time Integration

At this point, our inversion scheme suffers that a data set
obtained from a single snapshot of the surface at a given time
does not provide enough information to discriminate between
wave propagation directions (i.e., upwind or downwind in
1-D). Therefore, a time-dependent data set is required with
the additional advantage of accessing some new points on the
surface, which may have been hidden by a foreground wave
crest at previous time steps.

As an example, we generated 1-D LIDAR data sets, using
the previous camera configuration, over a simulated nonlinear
CWM surface with parameters : PM spectrum; U19.5 = 7 m/s;
surface length of 200 m; spatial step of 20 cm. We assumed
that waves propagated in both positive and negative x direc-
tions in a dissymmetric manner with: 90% of the spectral
energy associated with the wind direction (positive x) and
10% opposite to wind direction (negative x). Maximum and
minimum wavelengths were, respectively, set to 45 m and
40 cm and the peak wave celerity to cp = 8 m/s. The LIDAR
frequency of acquisition rate was set to 2 Hz, and thus a
64-point 1-D data set would be obtained every 0.5 s. The
footprint of the LIDAR camera’s aperture is around 100 m,
as shown on Fig. 5. With 200 reconstructed harmonics spread
over positive and negative wavenumbers, five to seven itera-
tions in CWM inversion algorithm are usually needed.

As remotely sensed waves are moving during time acquisi-
tion by the camera, it is no longer justified to define a relative
error between simulated and reconstructed surfaces over the
footprint area. Since the targeted application for this project
is to derive the best estimate of the sea state in front of a
(moving) vessel, in order to find the best way to steer it
through a given sea state, we define a new zone where the
sea state estimate is useful for the vessel’s path prediction.
In the example below, we decided that this “prediction zone”
is spanning from around 20 m in front of the vessel (i.e.,
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Fig. 8. Relative error versus forecasting time in the prediction zone.
Acquisition frequency 2 Hz.

20 m in front of the camera) and the relative error of the
reconstruction would thus be evaluated over this zone. Hence

ε = 1

ση

√√√√ 1

Nz

Nz∑
l=1

((ηr − ηz
r ) − (ηs − ηz

s))
2 (25)

where the simulated surface variance is defined as

σ 2
η = 1

Nv

Nv∑
l=1

(ηs − ηs)
2 (26)

where Nz is the number of simulated points in the “zone
of prediction” and Nv is the total number of point of the
simulated surface. ηz

r and ηz
s are the mean surface elevation

of the reconstructed and the simulated surfaces, respectively,
over the zone of prediction and ηs is the mean elevation of
the whole simulated surface (usually zero). Such a definition
implies that the error is not sensitive to wavelengths greater
than the zone of prediction size. We recall here that the free
surface variance is related to the significant wave height as,
Hs = 4ση.

We tested four data sets, with different measuring times
from 0 to 12 s (i.e., 1–25 surface snapshots with a 2-Hz
data acquisition frequency), and computed the relative errors
defined by (25), between the simulated and reconstructed
surfaces. Fig. 8 shows the relative error over the “prediction
zone” as a function of time. For instance, the red curve
labeled Ti = 8 s means that data acquisition took place
between t = −8 and t = 0 s. At t = 0 s, remotely sensed
waves have not yet reached the prediction zone and hence
the simulated and reconstructed surfaces are still significantly
different. Around t = 15 s most sensed waves have reached
the “prediction zone” and the relative error reaches a minimum
before increasing again once waves have passed by the vessel.
Errors plotted in Fig. 8 are averaged over 40 nonlinear CWM
surfaces, to obtain smooth curves. Fig. 8 thus shows that
the prediction accuracy cannot be as good as that of a mere
inversion of a unique snapshot, and is dependent on the
acquisition time. This is because the entire range of simulated
wavelengths is not inverted and sensed wave are moving with
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different velocities; hence this yields an unavoidable minimum
error. An alternative error, defined for waves only belonging
to the range of interest, could have been introduced, but it
could not be used in practical tests. Nevertheless, Fig. 8 shows
that a forecast is clearly possible and that Time-dependent
data acquisition is highly desirable for improving sea surface
prediction.

The error oscillations in Fig. 8 are due to the inability to
estimate properly the propagation direction of waves with a
frequency exactly equal to half the LIDAR frame rate. Indeed,
such waves exactly travel half their wavelength between two
illuminations of the surface. It is therefore impossible to
evaluate their propagation direction. This phenomenon will be
explained in more details in the 2-D case. A consequence of
this limitation is that error oscillate at the same frequency (half
the camera frame rate) and with an amplitude proportional to
the corresponding wave amplitude.

In any case, the longer the measurement time, the larger
the prediction time window and the smaller the error. More
specifically, if one wishes to predict the sea state “n” seconds
in the future, one needs to observe (i.e., sense) waves in the
wavelength range of interest, which will reach the “prediction
zone” in “n” seconds. A continuous real-time inversion will
keep the relative error to the minimum level and is thus the
best option. However, for vessel path prediction, sea state
forecasting must be achieved for “prediction zones” located
near the camera footprint area, rather than close to the vessel’s
stern; one would expect even smaller errors in these zones.
Note, in practical applications, the useful forecasting zones
will also be dependent upon vessel speed. A complete study
of the inversion algorithm performance as a function of all the
parameters including vessel speed is left out for future work.

V. RECONSTRUCTION AND PREDICTION OF 2-D SURFACES

Forecasting 2-D ocean surfaces on the basis of reconstruc-
tion with LIDAR data is the main goal of this work. Here,
we validate the 2-D algorithms assuming a slightly reduced
wind speed of 5 ms−1 and generating the ocean surface
between −70 and +70 m in the wind direction and between
−36 and +36 m in the crosswind direction. This is a minimum
configuration, which reduces the computational effort while
still allowing us to correctly model the surface in terms of
mean square elevation and peak wave length.

The LIDAR camera parameters are also selected as a
minimum configuration: (nrv = nrh = 64 × 64 rays (i.e., 4096
LIDAR rays) and frequency of data acquisition: 1 Hz (i.e.,
�t = 1 s), which should represent an achievable hardware
with current Flash LIDAR technology. For the purpose of
illustration, the camera is located at x0 = 70 m, y0 = 0 m,
and placed at z0 = 10 m above mean sea level. The camera’s
main axis of view is pointing at a distance d0 = 50 m ahead,
so that the main wind wave direction is toward the camera; the
vertical aperture is θv = 13 deg. and the horizontal aperture
θh = 30 deg. The LIDAR configuration and footprint surface
are shown in Fig. 9. The red area closer to the camera position
represents the “prediction zone,” over which we will compute
the relative error of the forecasted surface in the following
simulations.

We randomly generate 2-D nonlinear CWM surfaces on
the basis of an EY directional energy density spectrum, with
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Fig. 9. Geometric configuration of the 2-D reconstruction problem using a
Flash LIDAR camera located at x0 = 70 m, y0 = 0, and z0 = 10 m (blue
lines) simulated surface limits; (blue dots) LIDAR ray intersections with the
horizontal plane; and (red area) “prediction zone.”

U10 = 5 m s−1 The peak spectral wave has a λp = 23 m
wavelength or a phase speed cp = 6 m/s, for a peak spectral
period Tp = 3.81 s. The energy spectrum is truncated in
both the along-wind and crosswind directions at kmax = ke/2,
where ke = 2π/dr is Shannon’s wavenumber (dr = 0.28 m).
The low cut-off of the spectrum is defined as kmin = 2π/L,
where L is the surface length in the considered direction.
Fig. 10 shows a 145 × 70 m simulated surface, generated over
512 × 256 points with a 0.28 m spatial sampling. The
surface is generated by fast Fourier transform with 512 × 256
harmonics. Wind blows in the positive x direction.

Fig. 10 also shows the simulated 2-D LIDAR data set at
t = 0 s, yielding L = 4096 simulated observations, where
the Flash LIDAR camera rays intersect the ocean surface.
Based on preliminary results, we decided to distribute the
reconstructed harmonics over a polar coordinate grid, rather
than a Cartesian one. To reduce computational effort, we used
only a small number Nk = 71 of wavenumber norms, which
were selected as logarithmically spaced within the interval
[0.1, 3.1] rad/m (λ ∈ [2, 63] m) and Nθ = 70 azimuths,
linearly spaced within the interval [0, 2π]. This leads to
positive and negative wavenumbers for both the along- and
across-wind directions. With these parameters, 4970 pairs of
(an, bn) coefficients are calculated in the LMS minimization
performing the free surface reconstruction.

Fig. 11 shows the reconstructed linear surface at t = 0 s
of Fig. 10. As in the 1-D case, the reconstructed free surface
captures well the salient features of the simulated ocean
surface. Fig. 12 compares vertical cross sections through
both surfaces, along five azimuthal directions relative to wind
direction (x), versus distance from camera. As expected, only
the properly illuminated part of the simulated surface is
correctly reconstructed. However, the relative error between
the simulated and reconstructed surfaces in the “prediction
zone,” based on a single snapshot exceeds acceptable values,
as previously observed for 1-D cases.
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Fig. 10. Example of simulated 2-D nonlinear CWM ocean surface for a EY
spectrum with U10 = 5 m/s blowing in positive x direction (λp = 23 m).
Black dots mark Flash LIDAR camera rays intersections with the simulated
ocean surface.

Hence, as in 1-D, we perform a 2-D reconstruction
using a finite measurement/observation time Ti . As in 1-D,
where spectral energy was arbitrarily spread over the upwind
and downwind directions, we also introduce a modification
of the directional wave energy spectrum, representing an
upwind/downwind dissymmetry. Thus, in time-dependent sim-
ulations, we define the linear wave harmonic amplitudes as

An =
√

2S(kn,�n) cos2(�n/2) kn �k��n. (27)

The assumed directional wave energy distribution is shown in
Fig. 13(a). Time evolution is carried out by marching forward
in time both the simulated and reconstructed surfaces, and
relative errors are calculated between both of these, as an
average over 48 surfaces to obtain smooth curves. Fig. 14
shows relative errors over the “prediction zone” as a function
of forecasting time, for various observation time Ti , with
Ti = n implying the camera acquires data between t = −n and
t = 0 s. Results correspond to a 1-Hz acquisition frequency.
While relative errors vary with forecasting time qualitatively
as in 1-D, they are larger than in 1-D. This can be explained
first by the smaller number of harmonics used here and second
by waves propagating from large azimuthal directions relative
to the camera’s axis, which are not observed and hence cannot
be reconstructed.

Fig. 13 shows the simulated and reconstructed wave ampli-
tudes over the reconstructed wavenumbers for a few Ti values.
As expected, up to some maximum forecasting time, the
greater the measurement time and the smaller the reconstruc-
tion error, the better the wave energy distribution estimate
(amplitude and directionality). However, even if the latter
is good at large azimuths, the reconstructed waves in this
wavenumber domain will probably not cross the prediction
zone as they are merely moving across the observation zone
and thus do not contribute to error reduction in the predic-
tion zone. To achieve a better estimate of phases for waves
crossing the prediction zone it would be necessary to use a
larger azimuthal aperture of the camera (this could be easily
simulated later).

The circle observed on Fig. 13(d) at wavenumber norm
k = 1 is an artifact of having a regular camera sampling rate
as already explained in Section IV-C. It corresponds to waves
frequency ( f = 0.5 Hz) with half the LIDAR camera frame

Fig. 11. Case of Fig. 10. Example of reconstructed 2-D nonlinear CWM
surface; 4970 wavenumbers (Nk = 71 and Nθ = 70) are used in the LMS
inversion method.
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Fig. 12. Vertical cross-sections in simulated (solid - blue) and reconstructed
(dashed - red) 2D nonlinear CWM surfaces for 5 azimuth angles. Abscissa
values represent distance from the camera.

rate. For this particular wavelength, the wave direction cannot
be determined and wave energy is equally spread over opposite
wavenumbers. It results on an persisting 0.5-Hz oscillation
error, which is clearly visible on Fig. 14.

We note that the best reconstruction time is obtained around
t = 5−10 s, which corresponds to the time interval needed for
reconstructed waves to reach the “prediction zone.” As shown
in Fig. 14, the time window for an optimal reconstruction
corresponding to the minimum error is dependent on the mea-
surement time; other simulations also show that the minimum
error decreases with the number of harmonics Nk used for
the reconstruction. Hence, further improving the reconstruction
of such sea states would require using longer measurement
times and larger Nk values, and hence greater computational
resources than used here for the purpose of method validation.
Finally, in operational conditions, each inversion leading to
interface reconstruction would likely benefit from results of
the earlier ones; this would speed up calculations in the
iterative GMRES solver and lead to better sea state estimates
due to the inclusion of previous inversion results as initial
condition.

A rigorous analysis of the predictable area in space-time
for a directional wave field was proposed by Wu (2004), who
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Fig. 13. Case of Fig. 12. Wave amplitude spectrum over the reconstructed
wavenumber domain for various observation times Ti . Amplitudes are aver-
aged over 48 surfaces. (a) Original waves amplitude. (b) Estimated waves
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Fig. 14. Case of Fig. 12. Relative error between reconstructed and simulated
nonlinear surfaces versus forecasting time over the “prediction zone,” for
various observation times Ti . Acquisition frequency 1 Hz.

showed that, for a single probe (i.e., one spatial data point),
the maximum prediction time is a function of the slowest and
fastest wave components (in terms of group velocity, (2), i.e.,
cmin

g and cmax
g , respectively), that “cross” the measurement

period Ti (8 s maximum here)

T f = Ti
cmax

g

cmax
g − cmin

g
. (28)

The same work also showed how this prediction time can
be increased by increasing the number of “wave probes.” In
our test case, where wind speed is taken at 5 m/s, the inverted
wavenumbers are kn = 0.1 to 3.1 rad/m, the minimum and
maximum group velocities of directional wave components

are, cmin
g = 0.85, cmax

g = 4.77 m/s; hence, the prediction
time for one probe is limited to T f = 10 s. Although we did
not perform any detailed calculation for the large number of
spatial “probes” that the intersecting LIDAR rays constitutes
and the effect of the “prediction zone” maximum size and
position relative to camera, we verified that T f = 10 s is at
or near the upper bound of what is acceptable for an accurate
enough forecast in the selected spatial area. More work is
clearly needed to better establish the relevant value of T f as
a function of all the problem parameters.

VI. CONCLUSION

Rather than finding the optimum configuration of the
observing system our goal was to exemplify the possibilities
of the linear and nonlinear sea surface inversion algorithm.
To this end, a methodology of sea surface reconstruction and
forecasting is applied to several 1-D and 2-D configurations,
showing encouraging results in both cases. In this “proof of
concept,” we thus concentrated on assessing the inversion
algorithm efficiency and dependency on inversion parameters
(e.g., Nk ). Therefore, we on purpose limited the problems to
particular cases, using a fixed camera location and specifi-
cations (i.e., vertical and horizontal angular aperture, aiming
direction, ray numbers, acquisition frequency, etc.). To better
optimize the problem parameters, the ideal “prediction zone”
for assisting in vessel path steering should be defined first.
Then, one would adjust the observation zone and observing
LIDAR system orientation and parameters (e.g., aiming direc-
tion, aperture, data acquisition rate, etc.) as a function of the
wind vector and the vessel speed. Indeed, observing waves
just in front of the vessel may not be the best choice of
camera orientation, since most of the waves that will cross the
vessel path propagate along the wind direction. Additionally,
because we used a fixed camera location in our simulations,
the observed area remained the same; however, one could
easily imagine that this area would change as the vessel is
moving and hence would naturally provide more spatially de-
correlated data at each acquisition time. This could lead to
more accurate inversions, but would require a higher frequency
of data acquisition. On the other hand, due to vessel motions,
waves encountered during navigation will be different than
those used in a static inversion; and waves traveling from the
vessel sides become less important than waves propagating
in the vessel direction. Thus, the camera azimuthal aperture
could be chosen smaller than that in our study. We could also
think of a uniform horizontal sampling of the surface (which
implies a nonuniform angular sampling of the camera rays) to
get a better estimation of the surface, assuming this is optically
achievable.

As a first conclusion, one can state that the optimal LIDAR
configuration will strongly depend upon the sea state (peak
wave, wind speed, and direction) and vessel kinematics. How-
ever, we have established that a satisfactory inversion and
prediction can easily be achieved using the current inversion
algorithm. The method is also shown to be easily extendable
to nonlinear surfaces and to yield good results for such
cases, providing the measurement and prediction zones are
commensurate.

We also showed in this paper that both 1-D and 2-D irregular
ocean surfaces can be reconstructed as a nowcast, on the basis
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of unevenly distributed simulated LIDAR observations. Both
linear and choppy free surface generation and reconstruction
algorithms were developed and validated. The best results were
obtained when the LIDAR data set combines both spatial and
temporal data, which is practically easy to achieve, considering
the fairly high frequency of data acquisition anticipated for
typical LIDAR cameras (i.e., 4–20 Hz). In the case of a 2-D
linear reconstruction, using spatiotemporal data, we showed
that a short-term forecast of the ocean surface can be accu-
rately and efficiently (i.e., analytically) generated. Relative
errors over the prediction zone can be as small as 15% of
the significant wave height with a basic inversion algorithm
parametrization (71 inverted wavenumbers for 70 different
azimuths).

A larger data set (i.e., in terms of LIDAR rays/data points
and frames) allows both for a better spectral description of the
ocean surface (i.e., using a larger number of wave harmonics
and providing a better coverage of the relevant frequency
range), and a more accurate reconstruction (in terms of RMS
difference with the actual surface), particularly in shadow areas
behind wave crests. In such instances, the forecast is also
expected to be improved and to stay reliable for a longer term
forecast.

Linear or choppy reconstructions of the ocean surface were
performed for both 1-D and 2-D cases. The use of the efficient
iterative solver GMRES allows for a fast and accurate solution
in few seconds on a standard laptop, with no particular opti-
mization and classic interpreted software. Clearly, a multiple
core or GPU implementation in a compiled language would
reduce this time by one to two orders of magnitude. This
optimization part of the numerical model will take place in
future work.

Future work will also include a systematic assessment of
the sensitivity of results to various numerical and model
parameters as well as the effects of noise and measurement
errors in simulated LIDAR data. Importantly, one should
assess the effect of motion of the vessel (on which the LIDAR
camera is mounted) on the spatiotemporal reconstruction of the
ocean surface.
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