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ABSTRACT

We report on recent developments of a 3D hybrid model for naval hydro-
dynamics based on a perturbation method, in which velocity and pressure
are decomposed as the sum of an inviscid flow and a viscous perturbation.
The far- to near-field inviscid flows are solved with a Boundary Element
Method (BEM), based on fully nonlinear potential flow theory, acceler-
ated with a fast multipole method (FMM), and the near-field perturba-
tion flow is solved with a Navier-Stokes (NS) model based on a Lattice
Boltzmann Method (LBM) with a LES modeling of turbulent properties.
The BEM model is efficiently parallelized on CPU clusters and the LBM
model on massively parallel GPGPU co-processors.

The hybrid model formulation and its latest developments and imple-
mentation, in particular, regarding the improvement and validation of the
model for naval hydrodynamics applications, are presented in a compan-
ion paper by O’Reilly et. al (2017), in this conference. In this paper, we
concentrate on the BEM model aspects and show that the BEM-FMM
can accurately solve a variety of problems while providing a nearly lin-
ear scaling with the number of unknowns (up to millions of nodes) and
a speed-up with the number of processors of 35-50%, for small (e.g., 24
cores) to large (e.g., hundreds of cores) CPU clusters.

INTRODUCTION

The simulation of the dynamic response of maritime structures in waves
and wave-induced forces is typically based on linear wave models, such
as AEGIR (Kring et al.,1999), or in case of large motions and/or steep
waves, on using nonlinear wave models based on potential flow the-
ory (PFT), usually solved with a higher-order Boundary element method
(BEM). For structures with a forward speed, semi-empirical corrections
are often made to account for viscous/turbulent effects in the total re-
sistance. While standard Computational Fluid Dynamics (CFD) models
based on the full Navier-Stokes (NS) equations can also be used to sim-
ulate such problems, their computational cost is typically too prohibitive
and their accuracy for long-term wave modeling usually less than that of
PFT-BEM models. However, in some cases, the viscous/turbulent flow
around the structure’s hull and possible breaking waves and wakes re-
quire to be more accurately modeled to capture the salient physics of the
problem.

Here, instead of using a CFD-NS method to solve the complete prob-
lem, we present a fully three-dimensional (3D) hybrid method for solving
the hydrodynamic problem based on perturbation method, in which the
total velocity and pressure fields are decomposed into inviscid and vis-
cous (perturbation) parts (e.g., Alessandrini, 2007; Grilli, 2008; Harris
and Grilli, 2012). Further, in the hybrid model, the perturbation flow
component is only solved in the near-field, using a NS model based on a
Lattice Boltzmann Method (LBM; e.g., d’Humieres et al., 2002; Janssen,
2010; Janssen et al., 2010) with Large Eddy Simulation (LES) of the tur-
bulence (e.g., Krafczyk et al., 2003); and the far- to near-field inviscid
flow component is solved with a BEM model, based on Fully Nonlinear
PFT (FNPF). The latter model is also referred to as a “Numerical Wave
Tank” (NWT; Grilli et al., 2001), since it has the typical functionalities
of a physical wave tank (i.e., wave generation, propagation, and absorp-
tion). The free surface representation in the LBM is based on a VOF
method, with piecewise linear interpolation (PLIC) (e.g., O’Reilly et al.,
2015) and in the NWT on an explicit time updating.

More specifically, in the hybrid model, the NWT solution is computed
over the entire domain, for the incident wave field, including diffrac-
tion around the structure and radiation due to its possible motions (for
floating-surface piercing structures). The NWT solution results are then
used to force the LBM solution, which as indicated is only computed in
the near-field of the marine structures, in a domain overlapping with that
of the NWT. Hence, the hybrid approach can be much more computation-
ally efficient than traditional CFD solutions, in which the NS solver must
be applied to the entire domain.This concept had already been demon-
strated for instance by Reliquet et al.(2014), based on different types of
numerical models; see O’Reilly et al. (2016) and O’Reilly et al. (2017)
in this conference, for details of the hybrid model characteristics and ef-
ficiency.

The LBM has proved to be accurate and efficient for simulating a va-
riety of complex fluid flow and fluid-structure interaction problems and,
when implemented on a massively parallel General Purpose Graphical
Processor Unit (GPGPU) co-processor, it has also been shown to achieve
very high efficiency (over 100 million node updates per second on a
single GPGPU; e.g., Janssen, 2010 ; Janssen et al., 2013 ; Banari et
al.,2014). In this respect, LBM developments in this work are based
on the highly efficient, GPGPU-accelerated, Lattice Boltzmann solver

721

Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference
San Francisco, CA, USA, June 25-30, 2017
Copyright © 2017 by the International Society of Offshore and Polar Engineers (ISOPE)
ISBN 978-1-880653-97-5; ISSN 1098-6189 

www.isope.org



ELBE (Janssen et al., 2015; www.tuhh.de/elbe), developed at the Ham-
burg University of Technology (TUHH), which features various LBM
models, an on-device grid generator, higher-order boundary conditions,
and the possibility of specifying overlapping nested grids. ELBE also in-
cludes the earlier LBM perturbation model based on Janssen et al.(2010)
approach. Simple validations of the hybrid LBM and hybrid LBM-LES
approaches, for viscous and turbulent oscillatory boundary layers, were
reported by O’Reilly et al. (2015), Janssen et al. (2016), and in greater
details in O’Reilly et al. (2017) at this conference.

For the NWT part of the hybrid model, which is the focus of this pa-
per, we use a 3D-BEM-FNPF model based on the same approach as the
wave model of Grilli et al. (2001), which was successful at modeling
many wave phenomena, including landslide generated tsunamis, rogue
waves, surface effect ships, and the initiation of wave breaking caused
by bathymetry (also see Grilli et al., 2010). For the types of applica-
tions considered in earlier work, Grilli et al. were able to use structured
grids made of quadrilaterals, which enabled simpler approaches for set-
ting up higher-order (cubic) elements. In order to tackle more complex
geometries and grids, as well as accommodating surface-piercing fixed
or floating bodies, an implementation of Grilli et al.’s model for unstruc-
tured triangular grids was developed in recent years e.g., Harris et al.,
2014). Additionally, the efficiency of the BEM solution in the model for
large grids was improved by using a parallelized Fast Multipole Method
(FMM; Greengard and Rokhlin,1987), that was efficiently implement on
large computer clusters (Harris et al., 2016) [Note, Grilli et al.’s NWT
was accelerated with less efficient scalar FMM; Grilli et al., 2010].

The NWT was initially validated for wave propagation as well as ra-
diation and diffraction from vertical cylinders (Harris et al., 2016). More
recent improvements were made to increase the accuracy of such results,
for instance, when computing the internal solution within the NWT do-
main (which is required for coupling to the LBM models). Indeed, the
numerical integration of the BEM boundary integrals typically has in-
creasingly large errors for points approaching the domain boundary, such
as the free-surface or a maritime structure’s hull. Adaptively subdividing
the integration over BEM elements in this case (as proposed by Grilli and
Subramanya (1994) in 2D and extended by Guyenne and Grilli (2006) in
3D), allows maintaining a constant accuracy of the solution throughout
the domain. An adaptive integration method was implemented in the new
BEM-FMM-NWT, which also allowed for a more accurate solution near
corners and considering elements with larger aspect ratios.

Initially, to represent the solution at corners/edges located at intersec-
tions between various part of the BEM boundary (e.g., sidewall-bottom,
free surface-structure, sidewall-free surface,...), the NWT used a
multiple-node representation in which, following Grilli and Svendsen
(GSV; 1990) and Grilli and Subramanya (GSU; 1996), individual
nodes were specified on the various intersecting boundaries, having
the same coordinates but different outwards normal vectors. Individual
BEM equations were expressed at all nodes of a multiple-node, and
continuity conditions were specified for the velocity potential in order
to have a non-singular algebraic BEM system (see GSV for details
of corner continuity conditions at double-nodes, for a variety of 2D
Dirichlet-Neumann problems). To more accurately solve for the flow
near strongly moving solid structures intersecting the free surface,
such as a wavemaker, GSU formulated and implemented extended
compatibility at double nodes in their 2D BEM model, where they also
specified that, besides a continuous potential, the flow velocity vector
should also be unique at double nodes. In this paper, we extend the
latter method to the multiple-nodes occurring in our 3D-BEM NWT, in
various mixed boundary condition cases and assess its accuracy through
systematic numerical benchmarking.

MATHEMATICAL AND NUMERICAL MODEL
Governing Equations and Boundary Conditions
The 3D-BEM-NWT assumes an incompressible, inviscid and irrotational
flow represented by a velocity potential φ(x, t), in Cartesian coordinates,
with x = (x,y,z) and z pointing vertically upward. The governing equa-
tion is a Laplace’s equation for the velocity potential,

∇
2
φ = 0 , with u = ∇φ in Ω(t), (1)

expressed over the domain Ω(t) with boundary Γ(t), where u is the ve-
locity vector. Using Green’s second identity, this equation is solved as a
Boundary Integral Equation (BIE),

α(xl)φ(xl) =
∫

Γ(x(t))

{
∂φ

∂n
(x)G(x,xl)−φ(x)

∂G
∂n

(x,xl)

}
dΓ(x(t)) (2)

in which x = (x,y,z) and xl = (xl ,yl ,zl) are points on the boundary, n =
(nx,ny,nz) is the unit outward normal vector on the boundary, and α(xl)
is a geometric coefficient function of the interior angle of the boundary
at xl . In this BIE, the 3D free space Green’s function and its normal
derivative are defined as,

G(x,xl) =
1

4πrl
and

∂G
∂n

=− rl ·n
4πr3 (3)

in which rl = |rl | = |x− xl | is the distance between any point x from
collocation point xl , both on the boundary Γ(t).

On the free surface Γ f (t),φ satisfies the nonlinear kinematic and dy-
namic boundary conditions,

DR
Dt

= u = ∇φ on Γ f (4)

Dφ

Dt
=−gζ +

1
2

∇φ ·∇φ − pa

ρ
on Γ f (5)

respectively, with R the position vector of nodes on the free surface, g
the acceleration due to gravity, ζ the vertical elevation of the free sur-
face (referred to z = 0, denoting the still water level), pa the atmospheric
pressure, ρ the fluid density, and the material derivative being defined as,

D
Dt

=
∂

∂ t
+u.∇ (6)

Γr1

Γr2

Γb

ΓB

L

h

w

LAB

Fig. 1: Definition sketch of NWT computational domain for wave in-
teraction with a rigid body (in this paper a Karman-Trefftz foil) (length
L by width w by depth h). The no flow condition has been defined for
the bottom (Γb) and lateral (Γr2) boundaries; waves are generated on
the leftward boundary (Neumann boundary condition for known veloc-
ity and acceleration) and are damped on the far end of the NWT over an
absorbing beach (AB) of length LAB.
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In the NWT, waves can be generated by simulating a piston wave-
maker motion on the “open sea” boundary of the computational domain,
Γr1(t). In this case, wavemaker motion and velocity are specified over
the wavemaker paddle as,

x = xp; up =−∇φ ·n =−∂φ

∂n
on Γr1(t) (7)

respectively, where the overline denotes a specified value (see Grilli et
al., 2001 for detail). Along the stationary bottom Γb and on other fixed
boundaries Γr2, a no-flow condition is prescribed as,

∂φ

∂n
= 0 on Γb, Γr2 (8)

The boundary condition along a rigid surface piercing maritime struc-
ture, which moves with velocity VB would be define as,

∂φ

∂n
= VB ·n on ΓB (9)

To prevent wave reflection at open boundaries of the NWT domain an
absorbing beach (AB) is specified by adding terms: −ν(x)ζ and−ν(x)φ
to the right side of the kinematic and dynamic boundary conditions, re-
spectively, where ν = 0 for all of the domain except for points with ab-
scissa x ≥ xAB, where ν(x) = ν0((x− xAB)/LAB)

2 (Grilli and Horrillo,
1997).

BIE for internal velocities

Based on the BIE (2), another BIE can be derived that directly computes
the internal velocity as a function of boundary values of the velocity po-
tential and its normal derivative,

u = ∇φ(xi) =
∫ [

∂φ

∂n
(x)Q(x,xi)−φ(x)

∂Q
∂n

(x,xi)

]
dΓ (10)

where xi is a point inside domain Ω and (Guyenne and Grilli, 2006),

Q(x,xi) =
ri

4πr3
i

∂Q
∂n

(x,xi) =
1

4πr3
i

{
n−3(ri ·n)

ri

r2
i

}
(11)

Eqs. (10) and (11) are explicit (i.e., they do not include any new un-
known), and can be evaluated with the same discretization as that used
to compute the the boundary solution with BIE (2) (see next Section).
However, as pointed out by Guyenne and Grilli (2006), these are poten-
tially hypersingular equations for ri → 0, as they have highly varying
kernels for very small ri values as compared to the equivalent boundary
element length. Hence, as indicated in introduction, an adaptive integra-
tion method was implemented; details are given later.

Boundary discretization and standard algebraic system

The BIE (2) is discretized and solved by a BEM, using NΓ collocation
nodes (equal to the number of unknowns) and MΓ boundary elements, de-
fined over boundary Γ(t). In this NWT, in past work, linear isoparametric
triangular and quadrangular elements were mostly used, with spline el-
ements being used in a more limited way; future applications, however,
will make increasing use of the latter more accurate elements. Given the
BEM discretization, BIE (2) is transformed into a sum of integrals over
each element, which are computed by numerical integration after trans-
forming each element k, of boundary Γk

e, from the physical space to a
standard 2D reference element of domain Γξ ,η defined with curvilinear
coordinates (ξ ,η), by way of a Jacobian matrix Jk. Polynomial shape

functions Nj(ξ ,η), which interpolate both the geometry and field vari-
ables over each isoparametric elements, are defined over the reference
element. Therefore the integrals in Eq. (2) read,∫

Γ(x)

∂φ

∂n
(x)G(x,xl)dΓ =

MΓ

∑
k=1

∫
Γk

e

∂φ

∂n
(x)G(x,xl)dΓ

=
NΓ

∑
j=1

{
MΓ

∑
k=1

∫
Γξ ,η

Nj(ξ ,η)G(x(ξ ,η),xl)|Jk(ξ ,η)|dξ dη

}
∂φ

∂n
(x j)

=
NΓ

∑
j=1

{
MΓ

∑
k=1

Dk
l j

}
∂φ j

∂n

=
NΓ

∑
j=1

Kd
l j

∂φ j

∂n
(12)

and, ∫
Γ(x)

φ(x)
∂G
∂n

(x,xl)dΓ =
MΓ

∑
k=1

∫
Γk

e

φ(x)
∂G
∂n

(x,xl)dΓ

=
NΓ

∑
j=1

{
MΓ

∑
k=1

∫
Γξ ,η

Nj(ξ ,η)
∂G
∂n

(x(ξ ,η),xl)|Jk(ξ ,η)|dξ dη

}
φ(x j)

=
NΓ

∑
j=1

{
MΓ

∑
k=1

Ek
l j

}
φ j

=
NΓ

∑
j=1

Kn
l jφ j (13)

in which l = 1, ...,NΓ, Dk
l j and Ek

l j denote the local Dirichlet and Neu-

mann element matrices, and Kd
l j , Kn

l j the corresponding global (assem-
bled) matrices, respectively; note that j refers to local nodal values of
element k, but is expressed in the global node numbering, by way of
assembling.

Eqs. (10) and (11) yield the algebraic form of Eq. (2) as,

αlφl =
NΓ

∑
j=1

{
Kd

l j
∂φ j

∂n
−Kn

l jφ j

}
(14)

Boundary conditions are expressed with Eqs. (7) to (9) and the final
algebraic system is assembled by moving unknowns to the left hand side
and knowns to the right hand side of the equation (see Grilli et al., 2001
for a detailed description of the method.)

Evaluating Eqs. (10) and (11) matrix terms Dk
l j and Ek

l j requires in-
tegrating complex kernels over each boundary element k, which become
singular when rl → 0 in the Green’s functions. For triangular elements,
the weakly singular integrals are desingularized using Dunavant’s (1984)
rule, and for quadrangular elements by way of a tensor product of Gauss
integration. For linear triangular elements, singular integrals can then
be analytically integrated. Although analytical solutions of non-singular
integrals exist for linear triangular elements, to allow using the same for-
mulation for higher-order elements, we compute these integrals numer-
ically; and likewise for quadrangular elements (e.g., Grilli et al. 2001,
2010). Coefficients α in the BIE are found by applying the rigid mode
method (e.g., Grilli et al. 1989), which expresses that for a Dirich-
let problem with a homogeneous φ = 1 value specified over the entire
boundary, the discretized BIE solution must yield ∂φ/∂n = 0; the α co-
efficients are then found as the residuals of this Dirichlet problem. The
discretized algebraic BEM system is solved with BiCGSTAB, a Krylov
iterative solver.

In the non-singular integrals, as the free space Green’s function Eq. (3)
varies rapidly when collocation point l is specified close to the consid-
ered element (i.e., rl→ 0), an adaptive integration technique is used, both
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for collocation points belonging to the boundary discretization or for in-
ternal points where the internal velocity is computed with Eqs. (10) and
(11). The method used is similar to that described by Grilli et al.(2001)
for the same purpose, but here we consider a simpler distance criterion:
when the point under consideration is closer to the center of the element
than twice the maximum element edge length, the element is recursively
divided into four smaller elements, and this recursive process is done up
to 16 times.

Fast Multipole Method

In the FMM, the free space Green’s function is approximated for “dis-
tant” points by a truncated (order P) multipole expansion,

G(x,xl)≈
mx+my+mz=P

∑
mx=my=mz=0

(x− xl)
mx(y− yl)

my(z− zl)
mz

mx!my!mz!{(
∂

∂x

)mx
(

∂

∂y

)my
(

∂

∂ z

)mz

G(x,xl)

}
(15)

In this approach, both interactions that are “distant enough” are neglected
(yielding a sparse algebraic system matrix) and the full system matrix of
the BIE does not have to be assembled and solved, which is typically one
of the most time consuming part of the NWT solution, as it has a O(N2

Γ
)

numerical complexity. More specifically, to decide how to approximate
(or even neglect) interactions, the FMM uses a divide-and-conquer strat-
egy based on the distance between two points. Importantly, by assigning
intermediate points (e.g., at the centers of groups of nodes or elements
of the boundary mesh) and applying the binomial theorem, one is able
to manipulate multipole coefficients that only need to be computed once,
instead of directly evaluating the BIE between each element and node
(see Harris et al., 2016 for details).

Theoretically, if efficiently implemented and assuming NΓ is more
than a few thousand, the computational time of the FMM should scale
with O(NΓ) or so. This is much faster than the solution of the complete
BEM system with the best iterative solvers (which is O(N2

Γ
)). Several

variations have been proposed for the implementation of the FMM on
parallel clusters (Yokota, 2013), which generally rely on domain decom-
position, whereby the FMM is first applied on each processor over some
region of space and then results are combined. Harris et al. (2016) imple-
mented this domain decomposition parallel FMM approach and studied
the scaling of the two main phases of the FMM-BEM, using an itera-
tive solver : (i) the assembling of the global system (sparse) matrix, and
(ii) the matrix-vector products involved in the FMM. They showed good
scaling of the FMM-BEM assembling and matrix-vector products for a
mesh with quadrangular elements and NΓ = 79,202 nodes, with varying
numbers of CPUs, up to a few hundreds, over a simple parallelipipedical
domain, typical of modeling of nonlinear waves (e.g., Fig. 1). The grid
was partitioned into 1,024 sub-domains and a 15th-order FMM expan-
sion was used, with 100 integration points were used on each element.

While this approach permits good scaling, up to hundreds of proces-
sors and a billion unknowns (Yokota et al. 2011), for BEM problems
solved on small desktop computer clusters, that may only have O(105)
unknowns and less than 100 processors, a simpler approach referred to
as single-level FMM was found to scale much more efficiently. This was
pointed out by Waltz et al. (2007), who compared this approach to many
other parallelization attempts of the FMM-BEM and showed that this is
due to the fact that while the number of unknowns is large enough for the
FMM to be efficient, the number of unknowns per processor is low. The
FMM scaling of the present NWT will be studied later in applications.

Curvilinear coordinate transformation

A local non-orthogonal curvilinear coordinate system is used, following
Fochesato et al. (2005), to represent the geometry of higher-order BEMs,

and field variables and their derivatives at each collocation node on the
boundary, which extends the orthogonal coordinate assumption made by
Grilli et al. (2001). Thus, at any point x within a n-node isoparametric
BEM element k, the geometry and local non-orthogonal unit tangential
vectors are defined as,

x =
n

∑
j=1

Nj(ξ ,η)xk
j and s =

∂x
∂ξ

/

∣∣∣∣ ∂x
∂ξ

∣∣∣∣ , m =
∂x
∂η

/

∣∣∣∣ ∂x
∂η

∣∣∣∣ (16)

where xk
j are the element k nodal coordinates. The unit vectors of a cor-

responding local orthogonal coordinate system (s,m′,n) are then defined
as,

m′ =
1√

1−κ2
m− κ√

1−κ2
s with κ = s ·m (17)

the cosine of the angle between the unit tangential vectors. The normal
vector to the (s,m) plane (pointing outwards depending on proper num-
ber of element nodes) completes this orthogonal coordinate system and
can be calculated as,

n = s×m′ (18)

The Jacobian of the transformation between element k, in the global
coordinate system, to the reference element is defined as,

|Jk(ξ ,η)|=
{∣∣∣∣ ∂x

∂ξ

∣∣∣∣ , ∣∣∣∣ ∂x
∂η

∣∣∣∣ ,n} , (19)

which can be computed at any point x of element k with Eqs. (14-16).
Similarly, the gradient of the velocity potential, i.e., flow velocity, is

expressed as (Fochesato et al., 2005),

∇φ =
1

1−κ2

(
∂φ

∂ s
−κ

∂φ

∂m

)
s+

1
1−κ2

(
∂φ

∂m
−κ

∂φ

∂ s

)
m+

∂φ

∂n
n (20)

which can also be computed based on Eqs. (14-16), assuming the tan-
gential and normal derivatives of the potential are known. The normal
derivatives of the potential are obtained from BIE (2)’s solution and the
computation of tangential derivatives is detailed below.

As for the geometry, the potential φ over an isoparametric element k is
defined as the sum of nodal values multiplied by shape functions defined
over the reference element,

φ =
n

∑
j=1

Nj(ξ ,η)φ k
j (21)

The tangential derivatives of the potential over each element (i.e., tangen-
tial velocities) can thus be calculated by direct differentiation of Eq. (21)
with the operators,

∂

∂ s
=

∂

∂ξ
/

∣∣∣∣ ∂x
∂ξ

∣∣∣∣ and
∂

∂m
=

∂

∂η
/

∣∣∣∣ ∂x
∂η

∣∣∣∣ (22)

Hence, the tangential derivatives at point xl = x(ξl ,ηl) of element k read,

∂φ

∂ s
=

n

∑
j=1

∂Nj(ξ ,η)

∂ξ

1∣∣∣ ∂xk

∂ξ

∣∣∣φ k
j =

n

∑
j=1

S k
j φ

k
j (23)

∂φ

∂m
=

n

∑
j=1

∂Nj(ξ ,η)

∂η

1∣∣∣ ∂xk

∂η

∣∣∣φ k
j =

n

∑
j=1

M k
j φ

k
j (24)

Higher-order derivatives of the geometry and the potential on the bound-
ary can be defined in the same manner, in the local orthogonal coordinate
system (see Fochesato et al., 2005).
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Treatment of corners in global system matrix

As mentioned in the introduction, following Grilli et al. (1990, 1996,
2001), corners and edges of the BEM discretization, which mark in-
tersections of different parts of the boundary of the computational do-
main, in general have different normal directions and boundary condi-
tions. These are represented by multiple nodes, for which multiple BIEs
are expressed based on different values of the normal derivative of the
potential, but using a single value of the potential, as the latter must be
unique (i.e., continuous) at the same location. This condition is enforced
in the BEM solution by modifying all but one of the assembled algebraic
equations for each multiple node, to satisfy a potential continuity condi-
tion. This assumes that initially (for t = 0) the boundary conditions at
all corners are prescribed in a way that does not cause a mathematical
singularity in the problem.

In a 3D space there are both double (e.g., between the wavemaker and
the free surface) and triple (e.g., where the wavemaker and free surface
boundaries meet with a sidewall boundary) nodes. Thus, for double/triple
nodes, there are 2/3 discretized BIEs expressed at each multiple node.
To ensure uniqueness and well-posedness of the solution, however, and
in particular a single potential at any given location, 1 (in case of a dou-
ble node) or 2 (in case of a triple node) of these BIEs must be modi-
fied in the final algebraic system to ensure that both the global matrix is
not singular and the solution yields a single (continuous) potential. For
the simple domain shown in Fig. 1, the multiple nodes can be categorize
based on their boundary conditions as : (i) Dirichlet-Neumann (DN) dou-
ble nodes (e.g., wakemaker and free surface boundary); (ii) Neumann-
Neumann (NN) double nodes (e.g., bottom and sidewall boundaries);
(iii) Neumann-Neumann-Neumann (NNN) triple nodes (e.g., where the
wavemaker, bottom and sidewall boundaries meet); and (iv) Drichlet-
Neumann-Neumann (DNN) (e.g., where the wavemaker, free surface and
sidewall boundaries meet).

In a NWT with a moving free surface, possibly moving maritime
structure(s), and a moving wavemaker, Grilli and Subramaniya (1996)
showed in their 2D work that, to ensure a stable and accurate solution
near multiple-nodes, the velocity vector should also be unique at such
nodes, particularly on the free surface. Besides achieving an accurate so-
lution, this will also ensure that individual nodes on the free surface, that
are part of multiple nodes, move to an identical location through time
updating. These authors indeed showed that if velocity is not explic-
itly enforced to be unique at multiple nodes, by modifying the algebraic
BIE system in a proper way, large numerical errors will occur at and near
such nodes in the BIE solution, which will grow even larger through time
updating and, eventually, lead to instability of the solution, particularly
close to strongly moving rigid boundaries.

Hence, following Grilli and Subramanya (1996), in the 3D-NWT, we
extended the simple potential continuity condition at multiple nodes used
in earlier work to also enforce uniqueness of the velocity (i.e., gradient
of the potential) at individual nodes of multiple nodes. This was done
for all cases of mixed boundary conditions (e.g., DN, NN, NNN, DNN)
by replacing all but one of the assembled equations of a multiple node
in the algebraic system, by a so-called velocity compatibility condition,
which also includes the potential continuity condition; in the following,
we only present one example for a DN double-node case. These extended
multiple-node conditions, in fact, make the representation of the solu-
tion compatible (i.e., consistent) on both sides of a corner and effectively
eliminate the occurrence of (numerical) singularities in the discretized
solution. When using compatibility conditions at corners when solving
mixed boundary value problems in simple rectangular domains, Grilli
and Subramaniya (1996) showed that numerical errors at corners could
be reduced to almost arbitrarily small values in their 2D-NWT.

For instance, at a DN double node located at the intersection between

a piston wavemaker and the free surface, the compatibility condition
forced the BIE solution to compute a (corrected) value of the tangential
velocity on the free surface node l = f (of the double node), ∂φ f /∂ s, as a
function of both the normal velocity ∂φ f /∂n obtained from the solution
of the BIE (13) at the current time step, and the (specified) wavemaker ve-
locity on the wavemaker node l = p (of the double node), ∂φp/∂n=−up
(see Eq. (7)). Here, expressing this compatibility condition at a similar
DN double nodes, defined at the intersection between the free surface
and a wavemaker/maritime structure boundary in the 3D-NWT, we spec-
ify that up = u f , i.e.,

∂φ f

∂ s
s f +

∂φ f

∂m′
m′ f +

∂φ f

∂n
n f =

∂φp

∂ s
sp +

∂φp

∂m′
m′p +

∂φp

∂n
np (25)

in which the overlines indicate known/specified values. Note that the tan-
gential derivatives of the specified potential on the free surface (Dirichlet
boundary) are computed by way of the tangential derivative operators
defined in Eqs. (23) and (24), assuming l = f or l = p.

Moving the unknowns to the left-hand-side and projecting the equation
in the direction of unit vector i, we find,

−
∂φp

∂ s
(sp · i)−

∂φp

∂m′
(m′p · i)+

∂φ f

∂n
(n f · i) =

−
∂φ f

∂ s
(s f · i)−

∂φ f

∂m′
(m′ f · i)+

∂φp

∂n
(np · i) = ui (26)

Assuming that element k is on the free surface boundary and element m
is on the wavemaker/maritime structure boundary, and replacing the tan-
gential derivatives into Eq. (26), while specifying the potential continuity
condition φ m

1 = φ k
1 , we find

−
n

∑
j=2

{S m
j −κmM m

j }Cspi +{M m
j −κmS m

j }Cmpi

1−κ2
m

φ
m
j +

∂φ f

∂n
Cnf i =

−
n

∑
j=1

{S k
j −κkM

k
j }Csf i +{M k

j −κkS
k
j }Cmf i

1−κ2
k

φ k
j +

∂φp

∂n
Cnpi

+
{S m

1 −κmM m
1 }Cspi +{M m

1 −κmS m
1 }Cmpi

1−κ2
m

φ k
1 = u′i (27)

in which the C coefficients are the cosines of the angles between the unit
vectors indicated as lower indices. For a DN wavemaker boundary, such
as considered in this example, direction i can be individually selected at
each double node, as the horizontal projection of the local normal vector
to the wavemaker boundary np. Note that in Eq. (27) there are n un-
knowns in the left-hand side, n− 1 potential values at the non-multiple
nodes of element m on the wavemaker boundary and 1 normal derivative
of the potential on the free surface node of the multiple node in element
k; the right-hand side of the equation u′i is built with specified or known
values at the current time. Eq. (27) is substituted for 1 of the two BIE
equations assembled in the BEM algebraic system for this DN double
node.

In case of orthogonal elements (i.e., when κ = 0) and with m · i = 0
for 2D problems, Eq. (27) simplifies to the equation developed by Grilli
and Subramanya (1996) and used as extended compatibility condition in
their 2D-NWT.

For triple nodes, such as DNN, for instance at the intersection between
a wavemaker l = p, free surface l = f , and sidewall l = q boundary, 2
equations such as Eq. (25) would be derived, expressing up = u f = uq,
leading to 2 equations similar to Eq. (27), based on projections of each
of these in directions i and j, for instance pointing in the direction of the
horizontal projections of the local normal vectors to the wavemaker and
sidewall boundaries, respectively (np and nq). These 2 equations would
then replace 2 of the 3 BIE equations assembled in the BEM algebraic

725



Fig. 2: Speed-up of the 3D-FMM-BEM solution of a mixed-boundary
condition Laplace problem over the domain of Fig. 1, as a function of
the number of CPUs on a small desktop cluster, for: (i) matrix assembling
(•); (ii) internal velocity calculation (as a vector product sample) (•); and
(iii) complete solution (•). A grid of quadrangular linear elements is used
with NΓ = 54,000 collocation points.

NΓ MAX RMS( ∂φ

∂n ) RMS(φ ) MAX RMS( ∂φ

∂n ) RMS(φ )
with CC with CC with CC without CC without CC without CC

54 5.2984e-07 5.2938e-07 5.7738e-07 1.8131e-05 8.3901e-06 5.2273e-07
150 8.2993e-06 5.4940e-06 4.4905e-07 4.8857e-05 2.0582e-05 4.8828e-07
726 6.8341e-06 1.51491r-06 2.7939e-07 1.0558e-05 1.0558e-05 3.5162e-07

2,646 4.3483e-06 1.1496e-06 2.6854e-07 6.9098e-05 1.9098e-05 3.4782e-07
10,086 1.7760e-06 1.1326e-06 2.3885e-07 3.1012e-05 1.3773e-05 3.2742e-07

Table 1: Numerical errors (maximum (MAX); and root-mean-square
(RMS) of the 3D-NWT solution over a unit size cube domain, with and
without multiple-node compatibility conditions (CC), as a function of the
number of nodes NΓ.

system for this DNN triple node. Doing this, in the BEM solution, the
value of the normal velocity at the free surface node of the triple node
would depend upon both distributions of potential along the 2 intersect-
ing Neumann boundaries.

APPLICATIONS

Scaling of the FMM-BEM solution on parallel CPU clusters

We performed the same scaling study as Harris et al. (2016), but on
a small desktop CPU cluster with shared memory, of the solution of a
mixed boundary condition Laplace problem over the domain of Fig. 5;
the domain was discretized with NΓ = 54,000 nodes, and the problem
solved with 1,2,4,8 or 16 CPUs. In the FMM, the grid was partitioned
into 32 sub-domains, and 10 integration points were used on each ele-
ment. Fig. 2 shows the speed-up of the system matrix assembly, total
3D-FMM-BEM solution, and internal velocity, computational time as a
function of the CPU time on a single core. We see that on this small
system, while a significant speed up, almost optimal, of the complete so-
lution is achieved up to 4 CPUs, the marginal gain in speed-up is much
smaller when further increasing the number of CPUs. This is related
to the internal architecture and CPU to CPU communications within the
small desktop cluster.

Next, on the same system and for the same Laplace problem, we stud-
ied the scalability of the 3D-FMM-BEM complete solution for 1 and 8
CPUs, as a function of the number of nodes NΓ = 5,000 to 100,500.
Results in Fig. 3 show an O(N1.05) scaling for 1 and O(N1.09

Γ
) scaling

for 8 CPUs, which both are quite close to the optimal theoretical scaling
O(NΓ).

Fig. 3: Same case as 2. CPU time of the 3D-FMM-BEM solution for
NΓ = 5,000 to 100,500 nodes, using 1 (•) and 8 (•) CPUs on a small
desktop cluster. The red line shows an O(NΓ) scalability, whereas it is
O(N1.05

Γ
) for 1 CPU.

Compatibility conditions at multiple nodes

To assess the accuracy of the new velocity compatibility conditions (CC)
implemented at multiple nodes in the 3D-NWT, we performed a con-
vergence test of the solution of a mixed boundary value problem over a
unit size cube, which has a simple analytical solution, as a function of
the number nodes, NΓ = 54 to 10,086 (note, 54 nodes is the minimum
number for a cube to contain both double and triple nodes).

Both maximum (MAX) and root-mean-square (RMS) errors (over the
entire grid) of the solution were computed, with and without compatibil-
ity conditions, based on values of the normal velocity ∂φ/∂n or poten-
tial φ . These are listed in Table 1. In all cases, the potential continuity
conditions were specified at multiple nodes. Although RMS errors are
only slight smaller with compatibility conditions than without, the maxi-
mum errors on normal velocity, which occur at multiple nodes, are much
reduced when specifying compatibility conditions, particularly for the
larger discretization. We verified that differences are much larger be-
tween the two methods for a domain with complex geometry and, based
on earlier work (Grilli and Subramanya, 1996), we expect these to be
even larger once we will be updating the free surface geometry and or the
position of wavemaker/maritime structures as a function of time, since
this will cause cumulative error effects.

Computation of internal velocities

As discussed in introduction, this work is part of broader project to de-
velop a hybrid solver for naval hydrodynamics problem, based on an
coupling an efficient BEM-FNPF model, i.e., the 3D-BEM-FMM NWT
discussed here, and a LBM solution of Navier-Stokes (NS) equations,
through a perturbation approach. In the hybrid solver, the potential flow
solution is used to force the LBM-NS solution for the viscous perturba-
tion flow (see, Harris and Grilli (2012) and O’Reilly et al. (2017), in this
conference). This requires computing the internal velocity field at many
points within the NWT domain, at each time step.

Here, we validate the computation of the internal velocity field in the
3D-NWT by computing the flow around a symmetric Karman-Trefftz foil
(see Abbot and Von Doenhoff, 1959), for a free flow velocity U in the
x-direction. Specifying the 3D-NWT boundary conditions to solve a 2D
problem (using no-flow conditions on the sidewalls in the y-direction and
upper and bottom boundaries in the z-direction), an analytical solution of
the flow around the foil can be expressed based on a conformal mapping
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Fig. 4: Analytical solution for the scaled module of velocity u/U of the
(uniform) flow around a symmetric Karman-Trefftz foil.

Fig. 5: Computational domain for the computation of the (uniform) flow
around a symmetric Karman-Trefftz foil, using MΓ = 15,488 linear quad-
rangular elements.

(a)

(b)

Fig. 6: Case of Fig. 5. Zoom-in on relative errors of velocity module
computed using: (a) linear, or (b) B-spline quadrilateral elements.

in the complex plane ζ = x+ iy,

Z(ζ ) = nλ

(1+ λ

ζ
)n +(1− λ

ζ
)n

(1+ λ

ζ
)n− (1− λ

ζ
)n

(28)

which maps a cylinder of radius R centered at ζ = x = s, for which the
complex potential is the trivial superposition of a uniform flow of veloc-
ity U and a dipole: W (ζ ) = U(ζ +R2/ζ ), to the symmetric foil, where
n = 2−β/π , with β the angle at the foil trailing edge, and λ = R+ s.
Selecting R = 1 and the foil center at s = −0.045 we find β = 8o. The
2D analytical solution for the scaled module of velocity u/U around this
foil is shown in Fig. 4.

We consider a rectangular domain, with extension −100 < x < 100,
−100 < z < 100, and solve this 2D flow in 3D using a transverse direc-
tion y extending from,−15< z< 0. The computational domain boundary
is discretized with MΓ = 15,488 quadrangular elements with increasing
resolution towards the foil (Fig. 5), which are either: (i) linear isopara-
metric; or (ii) cubic B-spline elements; in the FMM, 15th-order expan-
sions are used in the BEM solution of Eq. (2). Compatibility conditions
are specified here at all multiple nodes. We then compute the velocity
field with Eq. (10) at 10,000 internal points xi, most of these being lo-
cated near the foil surface, and compare it with the analytical solution. In
Fig. 6a, we find that for case (i), maximum errors in velocity reach 0.45%
near the foil leading and trailing edges, while the L2-error is 10−6 over
the entire set of internal points. For case (ii), however, in Fig. 6b, these
errors are about 10 times smaller confirming the well known property
and importance of using higher-order elements in the BEM.

CONCLUSION

In this paper, we reported on recent improvements in the implementation
of a 3D-NWT solving FNPF with a free surface. The NWT is based on a
BEM, using linear or cubic B-spline elements, and the solution is acceler-
ated with an efficient FMM, showing nearly linear scaling in both scalar
and parallel computations. The NWT is a component of a hybrid model,
in combination with a Navier-Stokes LBM model with Large eddy sim-
ulation, aimed at solving naval hydrodynamic problems (e.g., ship sea-
keeping).

We showed, in particular, a good scaling of the FMM-BEM numerical
solution with problem size NΓ near the theoretical optimal (O(NΓ)) and
reasonable additional speed-up with the number of processors in a par-
allel implementation. Well-posed velocity compatibility conditions were
developed and implemented for multiple nodes at the corners and edges
of the 3D domain, which extend earlier 2D formulations by Grilli and
Svendsen (1990), Grilli and Subramanya (1996), and Grilli et al. (2001).
These were shown to reduce errors in the numerical solution for various
discretizations and cases.

We presented results for a uniform flow past a submerged symmet-
ric foil and showed that internal velocities could be both efficiently and
accurately computed by applying the same FMM-BEM approach. Such
internal velocity fields are used in the hybrid model to force the viscous
perturbation LBM solution based on the inviscid flow results in the NWT
(e.g., O’Reilly et al., 2016, 2017, the latter paper at this conference).

By extending the NWT formulation to a moving coordinate systems
and (later) to arbitrary geometries, we will be able to handle a broader
range of more complex applications of particular interest to Naval Hydro-
dynamics and ocean engineering. The extension of the BEM to higher-
order B-spline elements (e.g., Maestre et al. 2016; Harris et al. paper
at this conference), which was achieved without fundamental changes
in the FMM-NWT formulation, already demonstrated for the foil that
numerical errors can be significantly reduced. This will be very impor-
tant in naval hydrodynamics applications, when modeling submerged or
floating bodies of complex geometry.
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