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a b s t r a c t

In this paper, we present extensions, extensive validations and applications of our
previously published hybrid volume-of-fluid-based (VOF)model for the simulation of free-
surface flow problems. For the solution of the flow field, the lattice Boltzmann method is
used, where the free surface is represented by a VOF approach. The advection equation
for the VOF fill level is discretized with a finite volume method, on the basis of a 3D
Piecewise Linear Interface Reconstruction (PLIC) algorithm. The model is validated for
several standard free surface benchmarks, such as breaking dam scenarios and a free
falling jet. Finally, the hybrid algorithm is applied to the simulation of a wave breaking by
overturning during shoaling, which is considered to be a demanding test case, especially
for VOF solvers. In this case, the flow field is initialized early in the shoaling process with a
solitarywave solution from inviscid, irrotational potential flow. Thewave breaking process
is then simulated with the 3D transient and turbulent LBM–VOF solver. All validation and
benchmark tests confirm the accuracy of the proposed hybrid model.

© 2013 Published by Elsevier Ltd

1. Introduction

The lattice Boltzmann method (LBM) has become an increasingly efficient approach for solving a variety of complex
fluid dynamics problems, particularly in the field of multiphysics. By contrast with classical flow solvers, which discretize
and solve the macroscopic Navier–Stokes (NS) equations on a continuum mechanics basis, the LBM tackles such problems
on a mesoscopic scale and represents the fluid as a field of particle distribution functions. Particle motions are found by
solving discrete Boltzmann equations. Nevertheless, it can be shown that the LBM essentially solves for the same physics
as classical NS models. LBM, however, offers specific advantages regarding algorithmic operations and data locality. The
efficiency and accuracy of the LBM method has been demonstrated in many publications. Additionally, the method was
shown to be particularly well suited for large-scale simulations onmassively parallel computer clusters [1,2] and/or general
purpose graphics processing units (GPGPUs; see [3–5]).

For the simulation of free surface flows, the basic LBM bulk scheme has to be extended. Technically speaking, free surface
flows are multiphase flows, typically with an air and a water phase. For such multiphase flows, the ability of a numerical
model to handle high viscosity ratios and high density ratios is crucial to the solver’s accuracy. However, when dealing
with wave flows, owing to the high density and high viscosity ratios of air and water, only the denser and more viscous
phase (i.e., water) needs to be simulated. The second (less dense) phase (air) is represented by appropriate kinematic and
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dynamic boundary conditions at the interface (i.e., here a free surface). Capillary forces can be simulated by adding additional
curvature-dependent terms to the dynamic free surface boundary condition.

From a numerical point of view, a free surface represents amoving boundary, hence, leading to a transient computational
domain. To calculate the movement of phase interfaces, an additional advection equation has to be solved in the LBM. To
do so, the LBM provides the flow field at all times, which then is used for the advection of the phase interface. Various
methods exist to deal with phase interfaces. In interface tracking methods, the interface location is directly accessible, e.g. by
defining marker particles, that are advected with the flow in a Lagrangian manner (Marker And Cell method, MAC, [6,7]). In
Smoothed Particle Hydrodynamics methods (SPH, [8–10]) or Arbitrary Lagrangian Eulerian formulations (ALE, [11,12]), the
grid for the calculation of the flow field is updated at every time step and follows the free surface. In contrast with this, in
interface capturing methods, the interface location has to be reconstructed out of one or more additional variables, such as
the fill level of cells (VOF, see e.g. [13]), the position of the fluid center of mass (Moment Of Fluid Method, MOF, [14,15]),
or the distance of the grid points to the phase interface (Level Set methods, LS, [16]). Also, several approaches have been
developed to directly apply an LBM to free-surface problems. Thus, [17] introduced the immiscible lattice Boltzmann (ILB)
model, which is technically a multiphase model with an additional anti-diffusion sweep (recoloring step) to prevent mixing
between the two phases. In [18], the authors modified the ILB model and removed the second fluid phase, so that the
LBM calculation steps occur only at the nodes of the liquid phase instead of solving for the flow fields of both liquid
and gas phase. In [19,20], the authors combined the LBM with a VOF method. The cell fill levels are updated based on
local fluxes caused by propagating LBM particle distribution functions. A straightforward geometrical representation of
the interface is used to keep the interface sharp, and the advection steps apply on interface cells only. The latter work
already indicates, that the computational algorithm can be split up into two independent parts: (i) the flow field is calculated
with the LBM; (ii) the interface location is updated using a different and independent solver. Hence, flow field calculations
and interface advection can be treated independently, making it possible using optimal methods for both purposes. In a
similar way, in [21] the LBM was combined with a Lagrangian front-tracking method. The interface is represented via
marker particles, which are advected on the basis of the LBM velocity field. Following the same principles, we recently
presented a hybrid free surface scheme, which discretizes the advection equation in a classicalmacroscopicway, rather than
in a mesoscopic LB framework [22]. A VOF method computes the dynamics of the interface, but the fluxes are calculated
based on the LBM velocity and pressure fields. The details of this hybrid LBM–VOF algorithm already have been discussed
and published. However, in the present paper, we extend this hybrid LBM–VOF advection scheme, as the simulation of
demanding benchmark test cases required further improvements of the flux calculations. In contrast to our previous work,
the flux terms are now evaluated for a complete set of twenty-six neighboring cells, and the time-dependency of the fill
levels is considered in the advection step. Moreover, a linear extrapolation of the free surface velocity is used in the dynamic
free surface boundary condition, and new boundary conditions for the advection scheme have been introduced. After the
basic validation, we simulate a plunging (i.e., overturning) wave breaking during shoaling on a plane slope, and subsequent
post-breaking processes, by initializing the hybrid LBM–VOF with a potential flow solution for an incident solitary wave, at
an early stage of shoaling. We find that our hybrid LB-VOF-potential flow algorithm provides very good results for all the
validation tests, even for the demanding wave breaking test case.

2. The lattice Boltzmann method

The LBM solves for CFD problems on a mesoscopic scale by representing the fluid as a field of particle distribution
functions f (t, x, ξ). These express the probability to encounter a particle at position x and time t , with velocity ξ. The
Boltzmann equation (Ludwig Boltzmann, 1872) describes the time-change of such distribution functions f :

Df
Dt

=
∂ f (t, x, ξ)

∂t
+ ξ ·

∂ f (t, x, ξ)
∂x

= Ω. (2.1)

The left-hand side of this equation is an advection-type expression, while the collision operator Ω describes the interactions
of particles on a microscopic scale. For continuum flows with low Knudsen numbers, discretized microscopic particle
velocities eα can be introduced to obtain a model with reduced computational cost, leading to a set of discrete Boltzmann
equations:

Dfα
Dt

=
∂ fα(t, x)

∂t
+ eα ·

∂ fα(t, x)
∂x

= Ωα. (2.2)

In the present work, the D3Q19 model [23] is used for the discretization of the velocity space. This model introduces
19 velocities, 18 velocities pointing to neighboring nodes and the zero velocity, while the space diagonals are omitted:
eα = {0, 0, 0} , {±c, 0, 0} , {0, ±c, 0} , {0, 0, ±c} , {±c, ±c, 0} , {±c, 0, ±c} , {0, ±c, ±c} , α = 0, . . . , 18. The velocity
magnitude is related to a constant velocity c , which is related to the speed of sound as c = cs

√
3. A finite difference

discretization in space and time is introduced, on a grid such that c = ∆x/∆t = 1 (grid spacing ∆x, time stepping ∆t),
which finally leads to the lattice Boltzmann equation,

fα(t + ∆t, x + eα∆t) − fα(t, x) = Ωα, (2.3)
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which typically is split up into a local collision step, which drives the particle distribution functions locally to equilibrium,
and a propagation step, where the evolved particle distribution function is advected. It has been well-established that
solutions of the lattice Boltzmann equation converge to those of the incompressible NS equations, up to errors of O(∆x2)
andO(Ma2) [24,25], whereMa =

|u|

cs
is theMach number. Macroscopic hydrodynamic quantities such as density fluctuation

ρ and momentum ρ0u can be obtained from low order hydrodynamic moments of the distribution functions:

ρ =

18
α=0

fα and ρ0u =

18
α=0

eα fα (2.4)

where ρ0 is the reference density. Note that, as the flow field is described by a higher number of degrees of freedom per
node than in conventional NS solvers, additional information, such as the spatial derivatives of the flow field (i.e. the stress
tensor), can be obtained from the particle distribution functions by a proper design of the collision operator. In a simple
approximation for the collision term Ωi, the particle distribution functions are driven to an equilibrium state with a single
relaxation rate (single relaxation time model, SRT, [26]). In the more advanced multi relaxation time (MRT) model [27],
the particle distribution functions are transformed into moment space before relaxation. For the following relaxation,
different relaxation rates can be used, which increases stability and allows for the development of more accurate boundary
conditions [28]. The momentsm = M · f are labeled as

m =

ρ, e, ϵ, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz

T
,

and denote the following: mass density m0 = ρ; the part of kinetic energy independent of the density m1 = e; the part of
kinetic energy square independent of the density and kinetic energym2 = ϵ; the momentum m3,5,7 = jx,y,z ; m4,6,8 = qx,y,z
are related to heat flux; m9,11,13,14,15 are related to the symmetric traceless viscous stress tensor; m16,17,18 are third-order
moments; andm10,12 are fourth-order moments. The collision operator for MRT reads:

Ω = M−1
· S ·


M · f − meq (2.5)

M denotes the transformation matrix from distribution functions to moments (m = M · f and f = M−1
· m) and the meq

α

are the equilibrium moments. The diagonal collision matrix S = sα,α contains the relaxation parameters, which are partly
related to the kinematic viscosity ν via the relaxation time τ

s9 = s11 = s13 = s14 = s15 = −
∆t
τ

, (2.6)

which is defined as

τ = 3
ν

c2
+

1
2
∆t. (2.7)

The remaining relaxation rates can be freely chosen in the range [−2, 0] and tuned to improve stability [29]. The optimal
values for these parameters dependon the specific geometry and the initial andboundary conditions of the system.However,
reasonable values are given in [27]; here, we choose sα = −1.0 for the remaining parameters.

2.1. Smagorinsky LES

Free surface flows usually occur at high Reynolds numbers in the range 105–107, well within the turbulent regime.
Although LBM can be used to perform the equivalent of Direct NS (DNS) simulations, most practical problems require using
grid cells much coarser than the smallest turbulent scales. Hence, in order to capture the turbulent flow structures on the
sub-grid scale, a Large Eddy Simulation model (LES; [30]) can be used. In LES, a spatial filter is applied to the velocity field,
which should be fine enough that the larger turbulent structures of the flowdo not get filtered out. Typically, the grid spacing
∆x is used as filter length. Hence, only the dissipative effects of the sub-grid eddies on the large-scale flow structures are
modeled with the LES subgrid scheme. These are included in the LBM model through an additional turbulent viscosity νT ,
which is represented by a Smagorinsky model as a function of shear rate. Details on the LES model can be found in [30].

2.2. Boundary conditions and volume forces

In the LBM, by nature, boundary conditions for the distribution functions have to be directly specified at the boundary
nodes, which are quite different from standard boundary conditions in macroscopic flow solvers. For no-slip boundary
conditions, we use a second-order bounce-back scheme [31], and for slip boundary conditions, the macroscopic velocity
u at the boundary is calculated, then projected onto the surface normal vector n̂ as u∥ = u − (u · n̂)n̂ and finally applied as
the boundary velocity u∥ using a modified version of the second-order bounce-back scheme. At the free surface boundary,
the anti-bounce back rule enforces the equality of fluid and surrounding pressure [19]:

f t+1
ᾱ = −f tα + f eqᾱ (ρB, uB) + f eqα (ρB, uB) (2.8)

where f eqα,ᾱ(ρB, uB) are Maxwellian equilibrium distribution functions, ρB is related to the surrounding pressure by ρB =

pBc−2
s , free surface velocity uB = u(tB, xB), time tB = t +

1
2∆t , and xB = x +

1
2 êα .
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Volume forces F , such as gravity, are included by adding an additional term directly to the distribution functions fα , at
every time step [32]:

∆fα = 3ωαρ eα · F . (2.9)

Note, [32] compares and analyzes different forcing terms and reports a lack of accuracy of formulation Eq. (2.9), for space-
and time-varying body forces F . In such cases, they propose a formulation, which also depends on the relaxation time τ .
Alternatively, in MRT models, volume forcing – which is, in fact, a momentum source term – can be directly added to the
corresponding momentam3,5,7:

∆ji = ρFi∆t. (2.10)

2.3. Initial conditions

Initial conditions have to be specified in all numerical simulations. Often, simulations are started from a state of rest
(i.e. cold start) with zero flow velocities and dynamic pressures in the entire domain. For steady state cases, the flow field
gradually converges to constant values, even an improper and inconsistent initialization of the flow field yields accurate
results (at least for most of the standard steady state flow benchmarks, such as Poiseuille or Couette flows). By contrast, in
transient flow simulations, the accuracy and relevance of the initial solution directly affects the quality of the overall result
and the transient flow behavior. If no initial velocities are known, the flow field of a free surface flow simulation should
at least be initialized with a hydrostatic pressure distribution, being consistent with the free surface pressure boundary
condition and the imposed gravity field. Alternatively, for propagating surface waves, linear or higher-order wave theories
may provide adequate initial flow fields in many cases. In the LBM, the particle distribution functions f are initialized, based
on this velocity information, using Maxwellian equilibrium distribution functions:

fα = f eqα (ρ̄, v̄) (2.11)

which read, in a formulation tuned for incompressible flows,

f eqα = wα


ρ + ρ0


3
eα · u
c2

+
9
2

(eα · u)2

c4
−

3
2
u2

c2


(2.12)

where wi are lattice-dependent weighting factors. Note that the non-equilibrium parts of the moments still are zero in this
initialization. In the analysis of the decaying velocity fields in a standard Taylor–Green vortex it has been observed that this
lack of initialization of the non-equilibrium parts of the moments introduces systematic errors, which do not decay during
the simulations. Hence, after the basic initialization detailed above, a local Poisson-type iteration should be used to estimate
the non-equilibrium parts of the distribution functions [33], in which collision and propagation steps are executed, on the
basis of the fixed initial velocity field.

2.4. Initial flow fields from potential flow theory

Formore sophisticated free surface flow simulations,where consistent initial conditions canno longer be easily estimated
andwave theories are not applicable either, models with reduced equation sets can provide the initial velocity and pressure
fields. For instance, fully nonlinearwave processes can accurately bemodeled, prior to breaking, using potential flow theory,
which assumes inviscid and irrotational flow. As thewave approaches breaking, the potential flow simulation can be stopped
and the simulation data transferred to the LBM as an initial condition, as detailed before. In this work, to study such complex
nonlinear wave and breaking processes, a two-dimensional fully non-linear potential flow (2D-FNPF) solver is used for
calculating the initial velocity and pressure fields. This ‘‘numerical wave tank (NWT)’’ is based on [34,35]’s implementation.
Laplace’s equation is solved using a Boundary Element Method (BEM), and 2nd-order Taylor series expansions are used,
in an Eulerian–Lagrangian formulation, for the time updating of both the free surface potential and all moving boundary
geometries (i.e., free surface, absorbing wavemaker). This requires solving two elliptic problems at each time step, one for
the potential and one for its time derivative. Higher-order elements and very accurate numerical integration methods are
used in the BEM, which make it possible to achieve extremely high accuracy of the solution and thus to perform long term
simulations in the NWT without the need for smoothing or filtering of the solution. In the case of long term simulations
(e.g., for periodic or irregular waves), an absorbing beach, combining an ‘‘absorbing pressure’’ on the free surface and a
lateral absorbing piston wavemaker yields negligible reflection in NWT experiments. Various ways of generating waves are
available in the NWT, including flap and pistonwavemakers, exact nonlinearwaves (both periodic and solitary), and internal
sources. Wavemakers can also be used to generate nonlinear random waves based on standard energy spectra. A feedback
control loop allows to iteratively modify the wavemaker stroke spectrum to better approach the targeted spectrum.

2.4.1. Governing equations
In accordancewith 2DFNPF theory,we introduce a velocity potentialΦ(x, z, t), which represents inviscid and irrotational

flows in the vertical plane in such a way that the velocity is defined as the gradient of the potential uI
i = ∇iΦ .
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Hence, continuity equation becomes Laplace’s equation for the potential

∇j

uI
i


= ∇j (∇iΦ) = ∇

2Φ = 0. (2.13)

Using Green’s 2nd identity, Eq. (2.13) is transformed into a boundary integral equation (BIE)

α(xl)Φ(xl) =


Γ


G (x, xl)

∂Φ (x)
∂n

− Φ (x)
∂G (x, xl)

∂n


dΓ (2.14)

with the 2D free space Green’s function:

G (x, xl) =
−1
2π

ln r and
∂G (x, xl)

∂n
= −

1
2π

r · n
r2

(2.15)

with r = x−xl and r = |r| the distance from point x = (x, y, z) to a point of reference xl = (xl, yl, zl), both on the boundary,
the outward normal vector n, and a geometrical parameter α(xl) = θl/(2π), function of the outer angle θl of the boundary
at position xl.

On the stationary parts of the boundary, a no-flow condition is prescribed by specifying zero velocity in the normal
direction to the boundary,

∂Φ

∂n
= 0. (2.16)

For wave generation using a wavemaker, the time-dependent position xw and velocity uw of the wavemaker are
prescribed via

∂Φ

∂n
= uw · n and x = xw. (2.17)

On the free surface boundary, the non-linear kinematic and dynamic boundary conditions read, in Eulerian–Lagrangian
form:

DR
Dt

= u = ∇Φ and
DΦ

Dt
= −gz +

1
2
∇Φ · ∇Φ −

pa
ρ0

(2.18)

with free surface position R, gravitational acceleration g , atmospheric pressure pa, fluid density ρ0 and material derivative
D/Dt .

The solution for the velocity potential and its derivatives along the boundary is obtained in the BEM. Velocities at any
arbitrary point inside the domain uI

i can be explicitly obtained, in a postprocessing step, as a function of the boundary
solution for Φ as

uI
i(x) =


Γ


∇G (x, xl)

∂Φ (x)
∂n

− Φ (x) ∇
∂G (x, xl)

∂n


dΓ . (2.19)

For the calculation of the velocity gradient ∇iuI
i(x), the ∇ operator is applied once more to Eq. (2.19).

2.4.2. Mapping to the LBM
In order to transfer simulation results from the NWT to the LBM, a parametrization has to be established, to select the

LBM parameters for grid spacing ∆x, Mach number Ma, forcing gLB, and viscosity ν. This involves three steps. First, as LBM
solutions satisfy NS equations, up to an order O(Ma2), it is necessary prescribe the maximum Mach number Ma and hence
the maximum velocity vmax = Ma · cs = Ma ·

c
√
3
in the LBM simulation. Second, free surface flows are typically qualified

by their Froude number, i.e., a dimensionless number that compares inertia and gravitational forces, Fr = vmax (gh)−0.5

using the reference water depth h. The Froude numbers in the NWT and the LBMmust be identical, so that based on a given
LB discretization we can calculate the LB gravitational term gLB = v2

maxFr
−2h−1

LB . Third, in experimental benchmarks, the
Reynolds number of experiments and numerical simulations should be the same. The NWT, however, is based on inviscid
potential flow theory, so that a Reynolds number cannot be assigned. Nonethelesswe can calculate a correspondingReynolds
number via Re =

vD
νwater

and, consequently, find the resulting LBM viscosity as νLB = vLBhLBRe−1.
Finally, we find that NWT results for velocity and pressure should be transferred to the LB simulations by applying the

following scaling factors

∆v =
vmax,LB

vmax,NWT
and ∆x =

hLB

hNWT
(2.20)

∆t =
∆x
∆v

and ∆p =
ρLBgLBhLB

ρNWTgNWThNWT
. (2.21)

It turns out that the only free parameters in these equations are the grid resolution (which directly governs ∆x) and the
Mach number limit (Mamax = 0.1 is considered a reasonable maximum value for an incompressible limit).
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(a) Unsplit method. (b) Split method.

Fig. 3.1. Split and unsplit flux calculation.

3. Free surface advection scheme

In this work, we use an interface capturing method on the basis of a VOF approach to follow the interface position. We
describe the fill level of a control volume Vcv using a fluid fraction variable ε, i.e. the volume fraction being filled with fluid:

ε =
Vfluid

Vcv
. (3.1)

A fill level of ε = 0 indicates a completely empty cell, while a fill level of ε = 1 indicates a completely filled cell. For the
weakly compressible LBMapproach, the sumof fill levels is not conserved due to compressibility effects, so that the interface
advection is governed by the full continuity equation:

Dρ

Dt
=

∂ρ

∂t
+ ∇ · (vρ) = 0. (3.2)

This equation can be discretizedwith variousmethods. In algebraicmodels, the gradient operator is discretizedwith higher-
order numerical methods, which leads to a diffusive phase interface with an interface thickness of typically two to five cells.
By contrast, in a geometric discretization, the interface is kept sharp. The equation is discretizedwith a classical finite volume
method and the interface position is reconstructed at every time step to perform the interface advection. These two essential
VOF steps of the latter kind of method will be described in the following.

3.1. Geometric discretization of the advection equation

Integrating mass conservation equation over a control volume Ω and applying the divergence theorem, we obtain a
surface integral for the convective terms:

Ω

∂ρ

∂t
dΩ +


Ω

∇ · (vρ)dΩ =
∂

∂t


Ω

ρ dΩ +


Γ

(vρ) · n̂dΓ (3.3)

where n̂ is the unit outward normal vector on the corresponding face of the control volume. A further discretization in time
with an explicit Euler finite difference scheme leads to

mt+1
= mt

−

d
i=0

Φi (3.4)

where Φi denotes the flux through the ith face of the control volume

Φi =

v · n̂ρ

t
i ε

t
i dt (3.5)

where εt
i denotes the wet surface area at the corresponding face of the control volume. The new VOF fill level of an interface

cell is calculated by summing up all flux terms:

εt+1
=

mt+1

ρt+1
=

mt
−

d
i=0

Φi

ρt+1
=

εtρt
−

d
i=0

Φi

ρt+1
, (3.6)

for a model with d exchange directions. In this unsplit method, all d flux terms are calculated at the same time (Fig. 3.1a),
while in split methods the advection directions are alternated (Fig. 3.1b). For the calculation of Φi, one needs to account for
changes in cell fill during the advection. If this is ignored, the fluxes may be higher than the actual cell retention volume,
leading to the need to redistribute excessive mass (see e.g. [22]). In contrast to that, a time-linear evaluation of the volume
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fluxes does not introduce excessive mass, since by construction the maximum volume fluxes can never be exceeded:

Φi =

v · n̂ρ

t
i ·


t
εi(t)dt. (3.7)

Here, the temporal change of wet surface area εi is considered. In a standard LB free-surface approach, the VOF control
volume Ω then is assigned to the LB nodes [19], and the flux terms Φi are expressed in terms of LB particle distribution
functions. In contrast to these approaches, we propose a staggered grid layout, where every cell (i.e., control volume) is
spanned by eight LB nodes. The mass exchange between neighboring cells is no longer calculated in terms of LB distribution
functions f , but must be evaluated from macroscopic velocity and density information on the surface Γ of the control
volume Ω .

The resulting advection algorithm has recently been published in [22]. Initially, the mass exchange was evaluated for six
neighboring cells only (d = 6). Moreover, the red marked volume in Fig. 3.1a (left) was fluxed multiple times, both to the
adjacent right and bottom cells, instead of using a more sophisticated algorithm with tracing the characteristics (Fig. 3.1a,
right). Hence, with a maximum LB velocity of vmax ≈ 0.05, on a Cartesian grid with ∆x = ∆t = 1.0, the maximum volume
error yields 0.053

≈ 1.2510−4 and we considered this to be negligible [22]. However, although the model was successfully
validated for various benchmark problems, such as breaking dams, it turned out that more demanding flows could only
be addressed by modeling a complete mass exchange to all the neighboring cells with d = 26. More particularly, in the
simulations of a plunging breaker, where high velocities and a high interface curvature occur, the reduced six-direction
advectionmodel failed. Hence, in this work, all 26 geometrical neighbor cells are used for computing free surface advection.
This way, the diagonal fluxes are much better represented, in particular leading to an improved overall breaker shape.

3.2. Piecewise Linear Interface Reconstruction

The interface reconstruction itself can be executed independently of the order of flux calculations and split/unsplit type
of methods. In this work, this is done using the PLIC method [36,37]. This type of methods determine the interface location
and hence the flux terms more accurately than simpler models, and avoid oscillations on the phase interface. In PLIC, the
free surface is represented as a series of linear segments (in 2D) or planes (in 3D), which are uniquely defined by their unit
normal vector n and the distance α to a point of origin:

x · n = α. (3.8)

The normal vector is approximated by the gradient of the fluid volume fraction ε:

n = −
∇ε

∥∇ε∥
. (3.9)

The gradient∇ε can be calculated from the surrounding cell fill levels, using the finite-difference ansatz discussed in [38,39]
and tested in [22]. As the fill level in a cell is limited to the range ε ∈ [0, 1], it can be shown that the resulting surface normal
is between first- and second-order accurate, depending on the interface inclination.

Subsequently, the only remaining unknown for the linear surface reconstruction is the distance α between the surface
segment and a coordinate origin, which can be calculated from the surface normal vector n = ni and the fill level ε. In 3D,
the expression for the cell fill level, which in fact corresponds to the cut volume of the reconstructed interface plane segment
and a unit cell with ∆xi = 1.0, is given by

ε(n, α) =
1

2n1n2n3


α3

−

3
j=1

H(α − nj)

α − nj

3
+

3
j=1

H(α − αmax + nj)

α − αmax + nj

3 (3.10)

with H the Heaviside step function and αmax =
3

j=1 nj. Solving analytically for α is not possible since an inverse of this
expression is not generally possible to derive. Therefore, a case distinction is introduced, depending on the Heaviside terms
H in Eq. (3.10). The values of ε, for which these Heaviside functions switch from zero to one are typically referred to as critical
volumes εc

i . These can be calculated easily using Eq. (3.10) as

εc
1 =

1
6

n2
1

n2n3
(3.11)

εc
2 =

1
6
n2
1 + 3n2

2 − 3n1n2

n2n3
(3.12)

εc
3 =


1
2
n1 + n2

n3
n1 + n2 < n3

1
6
n3
2 + n3

1 − n3
3 + 3n2n2

3 + 3n1n2
3 − 3n2

2n3 − 3n2
1n3

n1n2n3
n1 + n2 > n3

(3.13)

εc
4 = 1 − εc

3, εc
5 = 1 − εc

2, εc
6 = 1 − εc

1. (3.14)
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Table 3.1
Analytical solutions for the plane coefficient α.

Region Result

ε < εc
1 α =

3
√
6n1n2n3ε

εc
1 < ε < εc

2 α =
n1
2 −

1
6

√
−3n1n2 + 72n2n3ε

εc
2 < ε < εc

3 ∅

εc
3 < ε < εc

4 α =
1
2 n1 +

1
2 n2n3ε, if n1 + n2 < n3

∅, if n1 + n2 > n3
εc
4 < ε < εc

5 ∅

εc
5 < ε < εc

6 α = αmax − (
n1
2 −

1
6

√
−3n1n2 + 72n2n3(1 − ε))

ε > εc
6 α = αmax −

3
√
6n1n2n3(1 − ε)

Note that, in this derivation, the normal vector components are first permuted and sorted, so that n1 ≤ n2 ≤ n3 holds and
further case distinctions can be avoided. After the calculation of εc

i is done, Eq. (3.10) can be piecewise inverted, leading to
the values of the plane coefficient α that are given in Table 3.1. Note that for three configurations, an algebraic inversion is
not possible: εc

2 < ε < εc
3, ε

c
3 < ε < εc

4 (if n1 + n2 > n3), and εc
4 < ε < εc

5 (∅ in Table 3.1). In these three cases, the value
for α is determined iteratively, e.g. by a secant method, or the faster-converging Brent’s method [40].

The position of the interface plane now is uniquely determined, since both n and α are known, so that fluxes Φi can be
calculated. For the latter, we use a geometric flux calculation, in which fluxes are calculated as the intersection of the fluid
body and the fraction of the cell volume that is advected, for example, V0,cell = v0∆t∆x1∆x2 in the x0-direction. The cut
volume of a plane and an arbitrary cuboidal control volume, with extent ∆xi is given by

V (n, α, ∆xi) =
1

2n1n2n3


α3

−

3
j=1

H(α − ∆xjnj)

α − ∆xjnj

3
+

3
j=1

H(α − α̃max + ∆xjnj)

α − α̃max + ∆xjnj

3 (3.15)

with α̃max = ∆x · n =
3

j=1 ∆xjnj. This volume V is evaluated for the reconstructed linear surface (normal vector n, plane
parameter α) and the portion of the cell volume which is advected to the neighboring cell, vi∆t:

Φi = V (n, α, vi∆t). (3.16)

If one or two components of the surface normal vector are zero, reduced one- or two-dimensional PLIC schemes are used
for the flux calculation.

4. Details on the overall hybrid algorithm

The previously describedmethods for calculating the flow field and the interface advection are now coupled, resulting in
a hybrid LBM–VOF free surface flow model. The LBM serves to calculate the flow field, which then advects the free surface
using the VOF–PLIC method detailed above. Topological changes resulting from interface advection are then transferred
back to the LBM domain.

4.1. Extensions to the LBM

The LB solver has to be modified to incorporate the free surface capturing capabilities. As the computational domain
changes in time, there will be inactive lattice nodes outside the fluid domain. Hence, an additional flag field is used to track
whether a node is inside or outside the fluid domain and, hence, has to execute collision or propagation steps, respectively.
A pressure boundary condition is applied at the free surface. Apart from the prescribed boundary value for the atmospheric
pressure, the free surface velocity u(tB, xB) for the anti-bounce back scheme (Eq. (2.8)) along the lattice link i is obtained by
linear extrapolation from the fluid velocities inside the domain:

ui(tB, xB) = u(tB, x) + 0.5 (u(tB, x) − u(tB, x − ei∆t)) . (4.1)

Accurate velocity extrapolation is crucial to ensuring accurate free surface results, especially in regions with high gradients
and high interface curvature as, e.g., in breaking wave jets. A higher-order extrapolation might further improve the results.
However, according to our experience, the linear order is sufficient, as it corresponds to the order of the pressure boundary
condition (2.8) and to the order of the surface reconstruction scheme, which is of first to second order accuracy due to the
normal vector calculation in (3.9). In future work, as soon as proper second-order boundary conditions for the flow field
are available, higher-order interpolations will be addressed. In any case, the previously proposed constant extrapolation
definitely leads to inaccurate results.



C.F. Janßen et al. / Computers and Mathematics with Applications 65 (2013) 211–229 219

(a) Inflow. (b) Outflow.

Fig. 4.1. Inflow and outflow boundary conditions.

4.2. Extensions for the advection scheme

Similar to the flow solver, the advection schememust be extended aswell, especially regarding the treatment of interface
cells next to solid boundaries, boundary conditions and the time stepping.

4.2.1. Boundary conditions
On the free surface boundary, the kinematic boundary condition is inherently fulfilled by the advection scheme. After

reconstruction, the interface is advected in a Lagrangian way, so that the total flux through the interface surface is zero. On
solid boundaries, a no-flow boundary condition guarantees that no fluid leaves the boundary cells: if a face i of the control
volume contains solid nodes only, the resulting flux is set to zero, Φi = 0. Along boundaries where a flux q is prescribed, the
information is split up. The velocity v is used for the boundary condition of the flow solver, and the corresponding water
height h is used as boundary condition for the advection scheme: the water level and the interface normal at boundary cells
are kept identical in the flow solver and the advection scheme. These are fixed to the desired boundary value (Fig. 4.1a). At
pressure boundaries of the fluid solver, which are mainly used as outflow boundary conditions, zero-gradient conditions for
the surface normal are assumed (Fig. 4.1b). Alternatively, if the flow direction is clear, a backward estimation of the surface
normal can be used.

4.2.2. Interface cells at the boundary
For interface cells in the vicinity of solid walls, several model extensions have to be introduced in addition to the no-flow

boundary condition in the wall normal direction. First, the size of the control volume may change, since a cell can contain
parts of the solid phase, in addition to gas and fluid. For this purpose, a solid fill level function ζ (x) is introduced to quantify
the relative amount of the cell volume that is occupied by solid obstacles. Eq. (3.6) is modified accordingly to

εt+1
=

εtρt(1 − ζ ) −

i

Φi

ρt+1(1 − ζ )
. (4.2)

Additionally, if an edge of the control volume is cut by a solid obstacle, the mean solid volume in the corresponding cell is
evaluated and serves as a weighting factor for the flux term Φi:

Φ∗

i = Φi ·


1 −

ζ (x) + ζ (x + ei∆t)
2


. (4.3)

Finally, the finite difference evaluation of the surface normal vector fails for boundary cells,where the application of centered
finite differences is not possible, since the solid cell does not contain valid information on the fill level. Instead, an asymmetric
finite difference scheme is used near solid boundaries.

4.2.3. Adaptive time stepping
In hybrid approaches, the idea of adaptive time stepping is tempting, especially when both solvers act on different time

scales. The resulting maximum velocity magnitude in an LBM simulation is typically limited by the Mach number, which
controls the convergence of the LBM scheme to the incompressible NS equations. Reasonable Mach number values should
be selected in the range of 0.005–0.05, corresponding to maximum LBM velocity magnitudes of ≈0.0025–0.025. Opposite
to that, the advection scheme has shown to produce good results even for CFL numbers around 0.1 or higher [22]. Hence, an
adaptive time stepping for the advection scheme has been introduced in order to save computational cost. During runtime,
the maximum global velocity magnitude is evaluated in certain intervals. Then, the time interval for the interface updating
is changed and the velocities are rescaled before the evaluation of the flux terms (Eq. (3.16)) according to

tUI =
CFLmax

CFLactual
and vUI =

tUI
tLB

vLB. (4.4)

For typical LBM simulations, the interface is updated each 35–350 time steps without substantial negative impact on the
overall result quality. Especially for gravity-driven simulations, as e.g. falling drops or dambreak scenarios, where the fluid is
accelerated from a state of rest, the performance gain of proceeding in thismanner during the initial stages of the simulation
is high.
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4.2.4. Calculation of cell densities and face velocities
The advection scheme relies on the cell-centered values of fill level ε and mass m of each cell. An average cell density ρ

is needed to convert between these intensive and extensive quantities. It is obtained by averaging the fluid densities of all
cell fluid nodes according to

ρt
cell =

1
nf


nf

ρt
i (4.5)

for a cell with nf fluid nodes. A more sophisticated interpolation using information on the exact fluid distribution in a cell
(by means of a node fill level) did not further improve the results.

The treatment and calculation of free surface velocities has to be done with great care. In standard VOF methods, the
advection velocities are defined on each face centroids of the control volume. In most cases, the same staggered grid layout
is also used for the solution of NS solutions, so that inter- or extrapolation is not needed. By contrast, in the present hybrid
LBM–VOFmethod, the fluid velocities are known on the eight lattice nodes in the corners of each cell. In a low-order ansatz,
the face values of density ρi and velocity vi are determined from the corresponding nodal values:

vi =


i

vi · n̂ ∀ fluid nodes i. (4.6)

If the cell is not entirely filled with fluid, gas nodes appear, which do not have valid particle distribution functions and hence
no valid velocity information. In the worst case of an under-resolved wave front, this interpolation is constant in space, and
grid refinement is necessary to improve the accuracy. For all other cases, the interpolation is linear, which is sufficient since
this corresponds to the order of the free surface reconstruction scheme and the time discretization. For testing purposes,
an extrapolation approach, which is consistent with the calculation of the free surface velocity for the pressure boundary
condition, was implemented: if a face is a fluid face and enough fluid nodes are available in the neighboring cells, linear
interpolation is applied to obtain the corresponding velocity values. Again, the results were not significantly improved.

4.3. Algorithm

The resulting advection algorithm is included in the LBM framework referred to as VirtualFluids [41,42] and is given
in Algorithm 1. After the LBM collision and propagation steps, the position of the interface is updated on the basis of the
new valid velocity and density fields. Note that the advection algorithm loops over interface cells only; for further details
the interested reader is referred to [22].

5. Validation

Several state-of-the-art benchmark test cases were used to validate the new hybrid model. First, two- and three-
dimensional breaking dam benchmarks were used to verify that the hybrid model is capable of simulating real world
hydraulic engineering fluid applications. The presence of solid objects as obstacles to the flow will validate the basic
approach of accounting for solid bodies. Wave impact on solid boundaries is also checked and validated as part of these test
cases, including the treatment of corner points and geometric discontinuities. The breaking dam test cases do not require
the use of elaborate boundary conditions, so that after these initial breaking dam validations, the behavior of a free falling
water jet is analyzed to validate the use of proper inflow and outflow boundary conditions. After that, the validation of the
LBM coupling to a potential flow solver is performed for the case of a breaking of a wave during shoaling on a 1:10 slope.
The simulations were run on a single core of a 2.6 GHz Intel Quad X5550 CPU. The performance of the code is measured in
million node updates per second (MNUPS). The typical performance of LBM bulk flow solvers without free surface capturing
on such hardware, for the purpose of comparison, is between 4 and 5 MNUPS.

5.1. Breaking dam with obstacle

The classical dam breaking benchmark is one of the most widely used free surface flow validations. Neither advanced
boundary conditions nor complex initial conditions are needed. In [22], the standard dam breaking benchmark of [43] was
successfully simulated. Here, this benchmark case is extended with the addition of a solid obstacle in the center of the
domain, according to the experiments of [44] (Fig. 5.1).

Upon removal of the dam, the collapsing of the water column is initiated and the front evolves and finally impacts the
solid obstacle. At thismoment, the flowpattern changes drastically, similar towhat occurs duringwave impact on structures.
As the water level decreases, a small, highly curved jet evolves, and the water is deflected to the top of the obstacle. A set
of snapshots is given in Fig. 5.2 for four selected points in time, which illustrate this flow evolutions in model results and
experiment.

In Fig. 5.3, the numerical results are compared to experimental observations by Kölke [44] for two different grid
resolutions. Very good agreement can be seen for the fine grid, at least for this qualitative comparison. The jet evolves slightly
faster in computations than in the experiment, but the time-lag decreases with grid refinement. Hence, we conclude that
a proper grid resolution is essential, to capture at least the large-scale sprays and the resulting energy dissipation, and to
accurately represent the solid body. We verified that, in the LBM, a careful treatment of the slip–slip corner boundaries is
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Algorithm 1 Update interface algorithm (PLIC surface reconstruction)
if node type == fluid then

collision
forcing
propagation
apply boundary conditions

end if
if cell type == interface then

determine face values for density ρi and velocity ui
determine surface normal vector n
reconstruct surface (i.e. determine plane parameter α)
determine face fill levels εi
calculate mass fluxes Φ

evaluate new fill level εt+1
i

if new fill level εt+1
i < 0.0 then

add cell to container with new gas cells
set new fill level to 0.0 and store excessive mass portion

end if
if new fill level εt+1

i > 1.0 then
add cell to container with new fluid cell
set new fill level to 1.0 and store excessive mass portion

end if
set new cell states
check consistency of node and cell states
set new node states
initialize new fluid nodes
check and adjust interface cell states
if applicable, locally distribute the excessive mass

end if

(a) Parameters. (b) Geometry.

Fig. 5.1. Breaking dam with solid obstacle.

crucial to achieve good results. For slip BCs an accurate normal vector is needed in the LBM nodes, which is discontinuous
in corner points. If a smoothed geometry is used, where the corner is ‘‘rounded out’’ and the corner node uses a linear
interpolation of the neighboring surface normal vectors, the jet shape is affected. For this reason, the normal vector at the
obstacle corners is set to the normal vector of each respectively participating face. With this definition, the overtopping jet
can be accurately simulated. The node update rate for this test case was about 2.55MNUPS, leading to a computational time
of 6 h, for the 464 × 1 × 360 nodes’ grid configuration.

5.2. Breaking dam with obstacle and pressure probes

After qualitatively validating the jet geometry, this next test case serves to validate results for the free surface–structure
interaction in terms of water elevation and impact pressure. The corresponding experiments have been carried out at
the Maritime Research Institute Netherlands (MARIN) [45,46]. A laboratory tank with an open roof was used (Fig. 5.4).
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(a) t = 0.16 s. (b) t = 0.24 s. (c) t = 0.32 s. (d) t = 0.50 s.

(e) t = 0.16 s. (f) t = 0.24 s. (g) t = 0.32 s. (h) t = 0.50 s.

Fig. 5.2. Breaking dam with an obstacle (Fig. 5.1): experimental results of [44] compared to present numerical results (fine grid).

(a) Coarse grid (58 × 1 × 45).

(b) Fine grid (464 × 1 × 360).

Fig. 5.3. Results for dambreak test case with obstacle (Fig. 5.1) for two different grid resolutions, in comparison to experimental data (solid lines).
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(a) Parameters. (b) Geometry.

Fig. 5.4. Breaking dam (3D).
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Fig. 5.5. Fourier spectrum of the P1 pressure signal, before (blue) and after (red) filtering. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Behind x = 2 m in the back part of the tank, a water column is made to collapse. In these experiments, unlike the thin
diaphragm used in [43], the water column is constrained by a door which is pulled up by releasing a weight at initial time.
The water elevation then was measured in the tank at four locations (H1 in the reservoir and H2, H3, H4 in the tank at
xi = 0.5, 1.0, 1.5, 2.66 m).

The same setup is used to perform two sets of experiments. In the first one, performed by Kleefsman [45], a box was
placed in the tank and was covered by eight pressure sensors, four on the front of the box at height z = 0.025, 0.063, 0.099
and 0.136, and four on the top of the box at x = 0.806, 0.769, 0.733 and 0.696. The experimental results for the height probes
H2 and H4 and the pressure probes P1 and P7 are public domain and can be downloaded [47]. The same experimental setup,
without the box, is used by Wemmenhove [46] to examine tank sloshing phenomena with flexible walls.

In the LBM, a 2D equivalent test case is used for this numerical simulation, assuming periodicity in the third spatial
direction. In Fig. 5.6, the results for the surface elevation gages H2 and H4 on a grid with 256×1×80 nodes are compared to
the experimental data for three different configurations of boundary conditions. In general, good agreement can be observed.
More specifically, the initial peak at gage H2 cannot be reproduced if no-slip bottom boundary conditions are assumed,
whereas the simulation with frictionless bottom overpredicts the surface elevation near the obstacle. The measured arrival
time of the reflectedwave at t ≈ 5 s is shifted by about 0.4 s in all three simulations,which ismost likely due to the simplified
2D setup. It is notable that the simulation without bottom friction, but using an LES model, predicts a higher value for the
reflected wave amplitude than the slip-simulation without LES. Results for gage H4 show similar characteristics, including a
comparable time-lag. However, the slip simulation with an LES model produces the best results. Results at pressure probes
P1 and P7 are shown in Fig. 5.7 for the no-slip LES simulation in the finest grid (512 × 1 × 160 lattice nodes). The pressure
at probes P1 and P4 qualitatively corresponds to the experimental data and we see that the time lag between incident
and reflected waves is small. The amplitudes match reasonably well, although the pressure signals of the simulation were
processed with a low-pass filter to remove the high-frequency pressure noise.

The observed pressure noise is mainly caused by inconsistent node initializations during the free surface advection, that
potentially leads to shock waves. Due to the weak compressibility of the numerical method, these shock waves propagate in
the computational domain with a finite speed, i.e. the speed of sound. Once released, they are only damped by viscous
dissipation. However, in high-Reynolds number simulations at low viscosities, these shock waves are not remarkably
damped, but are reflected back and forth in between solid domain boundaries. A Fourier analysis of the original LB pressure
signal reveals two dominant noise frequencies, f1 = 45 Hz and f2 = 70 Hz, that strongly dilute the pressure signal. Hence,
two moving average filters with corresponding filter widths Ti = f −1

i , i.e. T1 = 0.022 s and T2 = 0.014 s, have been used to
smooth the pressure signal and to reduce the noise. The pressure spectrum before and after the smoothing process is shown
in Fig. 5.5.

The simulations for this test case took approximately 2 h, on the fine grid with 512× 1× 160 nodes, which corresponds
to a node update rate of 2.65 MNUPS.
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(a) Water level probe H2.
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(b) Water level probe H4.

Fig. 5.6. 3D dam breaking (Fig. 5.4), results for height probes H2 and H4 for three simulation setups (∆x = 0.0125 m).

5.3. Free falling jet

The earlier cases of breaking dam scenarios were demanding in terms of free surface advection, pressure evaluation, and
representation of solid obstacles in the flow. However, in those cases, complex boundary conditions were not needed as the
entire domain boundary was made of impermeable no-slip or slip-walls. Hence, for validating the inlet and outlet boundary
conditions in the model, we investigate a free falling jet over a horizontal slip-surface (Fig. 5.8). Initially, the LBM domain is
empty and an inflow on the left side is specified, with a flow rate q = 0.0643 m2/s per unit width. The inflow water depth
h = κyc depends on the critical water depth, here yc = 0.075m, similar to the experimental setups of [48]. We examine the
cases κ = 0.49, 0.68, 1.00, corresponding to Froude numbers Fr = 1.0, 1.78 and 2.91. Gravity is given as g = 9.81 m/s2.

After the flow develops over the domain solid part at x = 0.3 m, it falls freely as a jet and adjusts its shape until a quasi-
steady geometry is reached. During free fall, the fluid is accelerated in the vertical direction and the jet narrows. In Fig. 5.9,
the computed free surface geometry is compared to the experimental data [48] for two different grid resolutions, comparing
the geometry of the free surface over the obstacle and that of the lower part of the free falling jet. Good overall agreement
is observed for all three cases in both grids. Moreover, comparing results for two different grid resolutions, we see a clear
convergence to the experimental data. The free jet location in the coarse grid (∆x = 0.25 cm, Fig. 5.9a) is slightly lower than
the experimental values, indicating that the horizontal velocity component is too low. Grid refinement yields a higher jet
position (∆x = 0.125 cm, Fig. 5.9b), which agrees better with experiments. Again, the proper handling of the surface normal
vector discontinuity at the corner, xs = (0.3, 0.3) is crucial in this test case. If the corner was rounded out, the jet would
stick to the wall and its geometry would be distorted. For this reason, the normal vector at xs is assumed to be ns = (0, 1).
The computational time for this test case was between 13.5 h (κ = 1.0) and 24 h (κ = 0.49), for the 480 × 1 × 320 grid
configuration.
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(a) Pressure probe P1 (low-pass filtered).
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(b) Pressure probe P7 (low-pass filtered).

Fig. 5.7. 3D dam breaking (Fig. 5.4), results for pressure probes, high-resolution simulation with LES and no-slip boundary conditions (∆x = 0.00625 m).

(a) Parameters. (b) Geometry.

Fig. 5.8. Free falling jet.

5.4. Breaking wave during shoaling

As a final validation benchmark, we analyzed the case of a solitary wave that breaks during shoaling over a plane slope
in a series of increasingly refined LBM grids. As discussed before, these computations were initialized using the geometry,
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(a) Coarse grid.

(b) Fine grid.

Fig. 5.9. Free falling jet (Fig. 5.8): position of the free jet for two different grid resolutions in comparison to reference data (black squares, [48]).

dynamic pressure, and velocity fields computed in a very accurate Numerical Wave Tank (NWT), based on fully nonlinear
potential flow theory. Results of theNWT simulations for the initialization data are shown in Fig. 5.10, for an incident solitary
wave of height H = 0.5 m over a 1:15 slope (note, in the NWT we used the fully nonlinear solitary wave solution of Tanaka
to initialize the computations, [49]). Once the wave starts breaking (by overturning on the slope), this test case is extremely
demanding in terms of the free surface capturing scheme, as was already noted by other investigators using other VOF
methods [50–52].

The LBM simulations are run for four different grid resolutions and two Mach numbers, as summarized in Fig. 5.10. A
slip boundary condition is used along the bottom boundary, whereas at the offshore boundary a constant water depth h̄ is
prescribed. As illustrated in Fig. 5.11 for time t = 3.0 s, in the finer gridwithMa = 0.001 the overall flowbehavior in the LBM
is as expected, and the breaker jet geometry agrees very well with results of purely potential flow simulations (e.g., [53]).
While the overall wave flow is not too influenced, a high dependency of results in the breaker jet on grid resolution and
Mach number can be seen in Fig. 5.12.

The test case was the most challenging validation example during the development of the new VOF advection scheme.
Even thoughmore simple validations, such as the breaking dam setup, worked fine even with less sophisticated free surface
capturing methods, for the breaking wave, more accurate concepts were required to achieve sufficient accuracy. Thus, here,
at the free surface boundary, a linear extrapolation of surface velocity is used for the pressure boundary condition, and the
flux calculation is extended to twenty-six directions, as already mentioned in Section 3.1.

Note that – even though this test case is 2D – the simulation was carried out with the 3D solver using periodic boundary
conditions in the transverse y direction. Hence, the simulation of 3D plunging breakers or deepwater freakwaves is possible
without further modifications of the code. The performance of the code for this test case yields between 2.5 and 3.0 MNUPS.
Due to the very low Mach number and the resulting small time step, this leads to a computational time of 18 h, on the
1200 × 1 × 140 grid.



C.F. Janßen et al. / Computers and Mathematics with Applications 65 (2013) 211–229 227

(a) Parameters. (b) Initialization (interface position, ρ, vx1 , vx3 from
top to bottom).

Fig. 5.10. Breaking wave during shoaling.

Fig. 5.11. Breaking solitary wave jet (Fig. 5.10): comparison of LBM–VOF model to the FNPF results of [53], finest grid, Ma = 0.001.

6. Conclusions and outlook

In this paper, we presented the extension and detailed validation of a hybrid scheme for free-surface flow simulations.
For the simulation of flow fields, an LBM model is used, on the basis of MRT collision operators with a Smagorinsky LES
subgrid scheme. The free surface is represented with a VOF method and a PLIC-based interface reconstruction. The surface
normals for the PLIC are obtained by a finite-difference approximation.

The extended hybrid algorithm was applied to several state-of-the-art validation problems, such a breaking dam or
free falling jet problems, for which experimental results are available. The numerical results were found to agree with
experiments quite well in all cases, and convergence to the experimental data was observed. Finally the even more
demanding case of an overturning breaking wave during shoaling was successfully simulated.

For the breaking dam experiments with elevation and pressure gages, the difference between experimental and
numerical results was still significant in some instances. However, it can be shown that this is due to an improper or
underresolved modeling of the flow field rather than to errors in the phase advection scheme itself. This emphasizes that a
physically sound modeling, including a proper choice of boundary conditions, initial conditions and turbulence models, is
key to meaningful simulation results.

In future work, surface tension will be included in the hybrid free surface model. Several algorithms for doing so were
published and successfully applied to VOF free surface representations, e.g. [46,54]. Moreover, a more sophisticated solid
boundary representation should be introduced with solid boundaries and moving solid objects. In analogy to the PLIC
representation of the fluid surface, the solid surface itself could be represented by a solid fill level, and additional surface
normal information. Such a more complete solid boundary representation is likely of great importance for the accurate
simulation of dynamic fluid–structure interaction problems, in which the solid boundary moves, deforms as a result of
hydrodynamic forces, and inclined and curved solid boundaries appear. Moreover, the solid fill levels are time-dependent
and have to be carefully updated at each time step. Initial validation of such wave–structure interaction simulations already
has been done [55,56] and will be part of an upcoming publication.
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(a) Ma 0.01.

(b) Ma 0.001.

Fig. 5.12. Breaking solitary wave jet (Fig. 5.10): results for two different Mach numbers and three grid configurations (300, 600 and 1200 lattice nodes in
x direction).

With regard to further applications of the hybrid solver, the wave breaking study will be extended to full 3D cases, and
more breaker types and wave heights will be examined [52,57]. This way, more insight on wave breaking processes and
turbulent energy dissipation can be gained.
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