
PHASE-RESOLVED PREDICTION OF NONLINEAR OCEAN WAVE
FIELDS FROM REMOTE OPTICAL MEASUREMENTS

PRÉDICTION À PHASE RÉSOLUE DE CHAMP DE VAGUES
NON-LINÉAIRE PAR TÉLÉDÉTECTION OPTIQUE

N. DESMARS(1)∗, Y. PERIGNON(1), G. DUCROZET(1),
C.-A. GUÉRIN(2), S. T. GRILLI(3), P. FERRANT(1)

(1)LHEEA Lab, UMR CNRS 6598, École Centrale de Nantes
(2)Mediterranean Institute of Oceanography (MIO UM 110), IRD, CNRS-INSU, Université de Toulon
(3)Department of Ocean Engineering, University of Rhode Island, USA

Summary

The performance of a phase-resolved algorithm is assessed for the prediction of nonlinear
ocean wave fields based on remote optical measurements of free surface elevations in space and
time. The accuracy of the wave forecast is evaluated here for the simple case of a unidirectional
wave field, by ensemble averaging a large number of synthetic data sets. For several characteristic
wave steepnesses, we compare results based on linear wave theory and a new weakly nonlinear
Lagrangian wave model. Results show that the proposed nonlinear model is able to simulate
relevant nonlinear effects that play an increasingly large role as wave steepness becomes larger,
such as wave shape asymmetry and phase shift. Experimental data is also used to illustrate the
performance of the method for actual wave field measurements.

Résumé

Les performances d’une méthode de prédiction de champs de vagues non-linéaires à partir
de mesures optiques spatio-temporelles d’élévation de surface sont étudiées. Afin de quantifier
la qualité des prédictions, des indicateurs d’erreur sont estimés dans le cas d’une houle unidi-
rectionnelle en moyennant les résultats sur un grand nombre de données synthétiques. Pour
quelques cambrures caractéristiques, nous comparons les résultats issus d’approches linéaire et
faiblement non-linéaire. Il est montré que le modèle non-linéaire utilisé, basé sur une description
Lagrangienne de la dynamique de surface libre, permet de capter des effets non-linéaires jouant
un rôle important et grandissant avec la cambrure, en particulier l’asymétrie de forme et le
déphasage. Des données expérimentales sont également utilisées pour illustrer les performances
de la méthode appliquée à des mesures réelles.
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I – Introduction: Formulation of the Prediction Problem

To many offshore applications, such as the optimal maneuvering and operational guidance of
surface vessels or active control of ocean renewable energy harvesting systems, the capacity to
predict in real-time the incoming phase-resolved wave field is a crucial issue. This problem
was studied in some earlier work on the basis of free surface elevation time series measured at
fixed wave probes [1, 23, 24]. However, in situ measurements, typically made from a moving
vessel or vehicle, are more challenging since wave reconstruction must rely on data acquired
at constantly updated locations surrounding the path of the vehicle, which leads to practical
limitations. Solutions to this problem is proposed based on X-band radar measurements made
from an on-board sensor, combined with a 3D-FT to reconstruct a large patch of free surface
elevation surrounding the sensor [4, 12, 13, 22, 26]. This initial estimate is then used in a direct
numerical simulation of the future evolution of the sea state.

Here, we present recent developments of a method for reconstructing and predicting ocean
waves in the short term, ahead of a moving or fixed ocean structure, based on optical measure-
ments such as made with a LIDAR camera mounted on the structure.

The general wave prediction problem is formulated in the form of explicit relationships be-
tween the main parameters of the problem, i.e., the incoming wave field, the targeted prediction
horizon (time span during which the wave field dynamics can be estimated), and the kinematics
and size of the structure of interest (e.g., a moving ship, a marine energy device).

Since typical wave fields are bounded in frequency and direction of propagation (i.e., the en-
ergy is not homogeneously spread out over all frequencies/directions), a basic statistical knowl-
edge of the incoming sea state can help to define relevant bandwidths for accurately representing
the underlying deterministic fields. In the following, the wave field directional energy density
spectrum S (k, θ) is assumed to be known, where k(ω) is the frequency-dependent wavenum-
ber, with ω and θ the wave angular frequency and direction of propagation, respectively. The
prediction horizon corresponds to the time constraint of the prediction problem, i.e., the time
needed for the structure control system or operator to adequately react to changes in incoming
waves. The ocean structure motion defines its path (assumed to be known), which together with
the structure size allows calculating the spatio-temporal area over which wave dynamics is to be
predicted.

A central element in the wave prediction problem, relating the aforementioned parameters,
is the concept of accessible prediction zone, that is the spatial area denoted here by P (t), over
which sufficient information on the wave field is available to adequately predict its dynamics.
This is detailed in the next section.

Accordingly, the wave prediction problem is formulated as follows: based on adequately
located real-time ocean surface measurements, extract and process sufficient data to predict the
wave dynamics at the structure’s future position, fast enough to satisfy the prediction horizon
constraint.

II – Application to Optical Measurements

II – 1 Accessible Prediction Zone from Nonuniform Observations

Earlier work has shown that the spatio-temporal region over which wave dynamics can be pre-
dicted based on a set of free surface measurements, is bounded [14,21,25]. When measurements
are made using an optical system, at a specific sampling rate and over a given observation zone,
this limits the amount of data that can be assimilated and used in the wave reconstruction pro-
cess, yielding a reconstructed surface in space/time defined with finite frequency and direction
bandwidths. In light of this, the sea-state prediction obtained by propagating the assimilated
information is similarly limited to a spatio-temporal region referred to as prediction zone. In the
following, we show how the latter can be defined for a set of nonuniform observations made in a
unidirectional wave field (i.e., irregularly distributed in space).
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(a) (b)

Figure 1: Evolution of the prediction zone in time and space, for: (a) spatial data; and (b) spatio-
temporal data (dash lines are prediction zones boundaries at time tk; the increase in prediction
zone relative to that of spatial observations is highlighted in red.

Both theoretical and experimental studies have shown that directional components in a dis-
persive wave field, of given amplitude, frequency, and phase, travel at the associated group
velocity along their direction of propagation [14,21]. The intersections of the slowest and fastest
components thus determine the boundary of the spatio-temporal region over which information is
available and a prediction can be issued. Consequently, as time increases, the accessible prediction
zone shrinks, to eventually disappear when the assimilated information is completely dispersed
in space. Figure 1 illustrates this phenomenon for a unidirectional wave field propagating in the
x-direction. The last time used for the assimilation corresponds to the reconstruction time tr.
If only spatial data is used in the assimilation (Fig. 1a), the prediction zone at reconstruction
time P (tr) is the spatial area where observations were made. However, when spatio-temporal
data sets are used (over an assimilation time Ta; Fig. 1b), P (tr) expands due to the advection
of wave information during Ta. A point (x, t ≥ tr) is included in the prediction zone if,

xbo + cg1 (t− tr) ≤ x ≤ xeo + cg2 (t− tr) , (1)

where cg1 and cg2 are the fastest and slowest group velocities, respectively, and xbo and xeo define
the beginning and the end of P (tr) as,x

b
o = min

k

{
xmin
ok + cg1 (tr − tk)

}
,

xeo = max
k
{xmax

ok + cg2 (tr − tk)} ,
(2)

where index k ∈ {1, ...,K} with K the number of observation times.

II – 2 Bandwidths of the Reconstructed Wave Field

The dynamics of a wave field is governed by the propagation of its most energetic components.
Since ocean wave generation processes eventually yield energy spectra with fairly narrow fre-
quency bandwidth in their main direction of propagation, the dynamics of the wave field can be
accurately represented by finite frequency and direction bandwidths having appropriate cutoff
limits

(
kmin,max, θmin,max

)
.

As mentioned above, the spatio-temporal characteristics of the observation grid constrain
the wave information that is accessible. The smallest wavenumber measurable in this grid
kmin = 2π/Lo is function of the largest distance Lo = xeo−xbo between two observation points at
reconstruction time tr (see Fig. 1b). However, Lo itself depends on the minimum and maximum
group velocities, thus on the cutoff frequencies. This paradox is resolved by conservatively cal-
culating kmin = 2π/Lc, with Lc = xeo − xmin

o(k=K) ≤ Lo. Lc only depends on the spatio-temporal
location of the observations and on the minimum group velocity, which is related to the high
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cutoff wavenumber kmax. When reconstructing a signal over a regular observation grid (i.e.,
with a constant spatial sampling), the maximum high cutoff frequency must satisfy Shannon’s
condition kmax ≤ 2π/ (2`o) where `o is the distance between two observation points. Since the
observation grid is highly irregular when using an optical method [16], kmax is set so that the
spectral energy truncated at higher frequencies is negligible for the dynamic description of the
wave field. Also, since optical measurements provide observations at many spatial locations,
there is no constraints on the cutoff directions from the observation grid. Hence, likewise kmax,
θmin,max are calculated based on the truncation of a negligible amount of energy. If an estimate
of the underlying wave field is known, one way to choose these parameters is to evaluate their
influence on the quality of the reconstructed or predicted wave fields, since a convergence of
the quality of the reconstruction/prediction is expected as kmax increases and

[
θmin, θmax

]
gets

larger. In operational conditions, such information is not typically available and one must rely
on an estimate of the wave spectrum, for instance based on measurements of the motion of the
structure of interest, or from earlier measurements of free surface elevations. In this case, relevant
values of kmax and θmin,max can be selected by ensuring that,∫ kmax

kmin

∫ θmax

θmin

S (k, θ) dθ dk ≤ (1− µ)

∫ +∞

0

∫ 2π

0
S (k, θ) dθ dk, (3)

where S (k, θ) is the directional wave energy density spectrum and µ� 1 is the fraction of total
energy that can be considered as negligible on free surface dynamics.

II – 3 Group Velocities for the Determination of the Prediction Zone

In practice, the cutoff frequencies calculated for the wave field reconstruction can be too re-
strictive for the determination of the evolution of the prediction zone. Hence, the wave group
velocities cg1,2 that govern the evolution of the prediction zone boundaries are instead defined
based on two wavenumbers k1,2, such that,

F (k1) = F (k2) = µF (kp) , (4)

where F (k) =
∫ 2π
0 S (k, θ) dθ is the one-sided wave spectrum, kp is the wavenumber based on

its peak wavelength, i.e., that of maximum energy, and µ is a small fraction, here, of the peak
spectral energy. k1 (k2) is the smallest (largest) wavenumber to respect condition (4). In the
following, we will use the linear deep water dispersion relationship to estimate the group velocities
from k1,2.

III – Wave Models

Computing real-time wave predictions using complex, highly nonlinear, wave models, such as
based on High-Order Spectral method, is challenging and may lead to prohibitive computing
times. Hence, similar to earlier work [16], we seek to apply a model that properly accounts
for nonlinear effects, which may significantly affect wave propagation in strong sea-states, while
being suitable for the real-time constraint of the prediction problem. In this work, we consider
and compare two wave models: a simple model based on linear wave theory (LWT), and a weakly
nonlinear wave model, denoted as Improved Choppy Wave Model (ICWM) [10], derived from a
Lagrangian approach of the description of the fluid motion, as an improved version of the earlier
CWM [17,18]. When applied to a set of observations, both models provide an analytic expression
of the reconstructed free surface elevations, which allows for a very efficient numerical prediction
of wave propagation, by simply increasing time in the formulation.

III – 1 Linear Wave Theory

Linear Wave Theory (LWT) refers to the Stokes wave model derived based on the classical
Eulerian approach and linearized with respect to wave steepness. With this model, the ocean
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surface is represented in a Cartesian coordinate system (x, y, z) (with x and y axes located on
the mean water surface and the z-axis being vertical and positive upward) as the superposition
of N individual periodic waves of amplitudes An, wavelengths λn, and propagating in directions
θn with respect to the x-axis, as,

η (r, t) =
N∑
n=1

An cos (kn · r − ωnt+ ϕn) , (5)

with r = (x, y) the horizontal position vector, t the time, ϕn a set of random phases uniformly
distributed in [0, 2π], and kn = knk̂n = (kn cos θn, kn sin θn) the wavenumber vectors, with
kn = 2π/λn. The latter are related to angular frequencies ωn through the deep water linear
dispersion relationship.

To simplify the mathematical formalism of wave field reconstruction methods developed here-
after, Eq. (5) is recast as,

η (r, t) =

N∑
n=1

an cosψn + bn sinψn, (6)

where ψn = kn · r − ωnt are spatio-temporal phases, and (an, bn) = (An cosϕn, An sinϕn) are
wave parameters describing the ocean surface.

III – 2 Improved Choppy Wave Model

At each data acquisition time, optical measurements of ocean waves provide surface elevations
measured at a set of irregularly distributed points of known coordinates in the reference frame.
Earlier ocean surface reconstruction and prediction algorithms were implemented to use such
irregular data sets [16, 25]. Moreover, Nouguier et al’s [16] algorithm, which is extended here,
was based on the Lagrangian CWM [8, 17, 18], which can simulate higher-order nonlinear wave
properties, in terms of steepness, than Eulerian models of the same order. In the following the
CWM equations are recast as the solution of Lagrangian dynamical equations in an Eulerian
system.

Considering a water particle located on the ocean surface at coordinates ξ in the horizontal
plane, its horizontal and vertical displacements are found as a Lagrangian perturbation expansion
in wave steepness as [15,19,20], {

r (ξ, t) = ξ +
∑

iDi (ξ, t) ,

z (ξ, t) =
∑

i Zi (ξ, t) ,
(7)

respectively, where Di and Zi are the horizontal and vertical particle displacements with respect
to the particle position at rest ξ associated with the ith-order of expansion, respectively. Noting
an inconsistency in the Stokes drift predicted by the CWM, Guérin et al. [10] added a correction
to these equations, yielding the Improved Choppy Wave Model (ICWM),r (ξ, t) = ξ +

∑N
n=1 k̂n

(
−an sin ψ̃n + bn cos ψ̃n

)
+ Ust,

z (ξ, t) =
∑N

n=1

(
an cos ψ̃n + bn sin ψ̃n + 1

2

(
a2n + b2n

)
kn

)
,

(8)

where ψ̃n = kn · r − ω̃nt, ω̃n = ωn − 1/2kn · Us and Us =
∑N

n=1

(
a2n + b2n

)
ωnkn.

To use ICWM in practical simulations, its Lagrangian formulation Eq. (8) is first transformed
into an equivalent Eulerian model, by deriving an approximate explicit relationship between r
and z. First, the horizontal particle shift Ust is implicitly incorporated into a modified angular
frequency, which yields,{

R (ξ, t) = r (ξ − Ust, t) = ξ + D (ξ) = ξ +
∑N

n=1 k̂n (−an sinψLn + bn cosψLn) ,

Z (ξ, t) = z (ξ − Ust, t) =
∑N

n=1

(
an cosψLn + bn sinψLn + 1

2

(
a2n + b2n

)
kn
)
,

(9)
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where ψLn = kn ·r−ωLnt and ωLn = ωn+1/2kn ·Us. Then, the particle horizontal displacement
D is calculated at the current particle location R rather than at its reference location ξ, as,

Z (ξ) = Z (R−D (ξ)) ' Z (R−D (R)) = η̃ (R) . (10)

Accordingly, the free surface elevation at any location r reads,

η̃ (r, t) =
N∑
n=1

(
an cos Ψn + bn sin Ψn +

1

2

(
a2n + b2n

)
kn

)
, with, (11)

Ψn = kn ·

(
r −

N∑
n=1

k̂n (−an sinψLn + bn cosψLn)

)
− ωLnt.

Earlier work has shown [9,16] that errors due to the approximation made in Eq. (10) are of the
order of the mean square slope (i.e., the second-order moment of the one-sided wave spectrum∫ +∞
0 k2F (k) dk) of the ocean surface, which is expected to be small compared to other sources
of error in the reconstruction process.

III – 3 Ocean Surface Reconstruction

Similar to earlier work [9, 16], the ocean surface is reconstructed, using either LWT or ICWM,
based on determining model parameters that minimize the mean square error between spatio-
temporal ocean observations and their representation in the model, referred to as the Cost
Function, i.e.,

C (p) =
K∑
k=1

J∑
j=1

(
ηjk (p)− ηjk

)2
=

L∑
`=1

(η` (p)− η`)
2 , (12)

in which p = {an, bn} (n ∈ {1, ..., N}) is the control vector containing the 2N unknown model
parameters, J and K are the number of spatial observations made at each observation time
and the number of observation times, respectively (hence, the total number of spatio-temporal
observations assimilated in the model is, J ×K = L), ηjk are free surface elevations measured
at spatial locations rj (j ∈ {1, ..., J}) and times tk (k ∈ {1, ...,K}), ηjk are estimates of these
made using the wave model, i.e., with Eq. (6) for LWT or Eq. (11) for ICWM.

III – 3.1 Linear Wave Field

The ocean surface is reconstructed through a least square minimization of the cost function, as,{
∂C

∂am
= 0,

∂C

∂bm
= 0

}
⇐⇒ Amnpn = Bm, (13)

for n,m ∈ {1, ..., N} (note that index summation is implied for repeated indices), with,

pn = an, pN+n = bn, (14)

the control vector of 2N unknown wave parameters. According to LWT, the right hand side
vector, which contains observations, reads,

Bm =

L∑
`=1

η` cosψm`, BN+m =

L∑
`=1

η` sinψm`, (15)
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and the 2N × 2N matrix Amn reads,

Amn =

L∑
`=1

cosψn` cosψm`, Am,N+n =

L∑
`=1

sinψn` cosψm`,

AN+m,n =
L∑
`=1

cosψn` sinψm`, AN+m,N+n =
L∑
`=1

sinψn` sinψm`. (16)

The linear system of Eqs. (13) is solved for the model parameters (an, bn), with the relevant
number of frequency components N being determined through a convergence study.

III – 3.2 Nonlinear Wave Field

Using the weakly nonlinear ICWM formulation (11), we have,

Bm =
L∑
`=1

η`Pm`, BN+m =
L∑
`=1

η`Qm`, (17)

and

Amn =
L∑
`=1

(
cos Ψn` +

1

2
ankn

)
Pm`, Am,N+n =

L∑
`=1

(
sin Ψn` +

1

2
bnkn

)
Pm`,

AN+m,n =
L∑
`=1

(
cos Ψn` +

1

2
ankn

)
Qm`, AN+m,N+n =

L∑
`=1

(
sin Ψn` +

1

2
bnkn

)
Qm`, (18)

in which,
Pm` = cos Ψm` − km (am sin Ψm` − bm cos Ψm`)×

{sinψLm` − [km (am cosψLm` + bm sinψLm`) + 1] amωmkmt`}+ amkm,

Qm` = sin Ψm` − km (am sin Ψm` − bm cos Ψm`)×
{− cosψLm` − [km (am cosψLm` + bm sinψLm`) + 1] bmωmkmt`}+ bmkm.

(19)

Since both Amn and Bm now depend on wave parameters (an, bn), the system of equations (13) is
solved iteratively [16]. Thus, when solving for p(q+1)

n at iteration q+1, A(q)
mn and B

(q)
m are based on

wave parameters obtained at the previous iteration q. The solution is initialized at q = 0 using
A
(0)
mn and B

(0)
m computed for the linear reconstruction with Eqs. (15) and (16). Convergence is

typically achieved within 5 to 20 iterations depending on wave steepness.

III – 3.3 Regularization of the Solution

In applications, the ocean reconstruction problem may become ill-conditioned due to practical
constraints, such as the heterogeneous distribution of spatial observation points, the limited
ocean area observed by the optical sensor, and the frequency and direction bandwidth cutoffs in
the reconstructed wave field. Nevertheless, consistent results can be achieved, independently of
the conditioning of the system matrix to invert (i.e., Amn), through a Tikhonov regularization
procedure, in which the matrix inversion is replaced by a minimization problem as,

min
{
||Amnpn − Bm||2 − r2 ||pn||2

}
, (20)

where r is the regularization parameter. The optimal value of the regularization parameter is
found using the “L-curve” method, which consists in finding the r value corresponding to the point
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of maximal curvature (i.e., corner) of the function (log ||Amnpn − Bm|| , log ||pn||). This method
thus provides an optimal compromise between minimizing the residual error and ensuring that
the norm of the solution does not become too large, i.e., ill-posed. The L-curve corner can be
determined analytically through solving a singular value decomposition problem [3, 11]. Note
that this procedure is equivalent to adding a constraint to the minimization problem, physically
representing the total energy of the reconstructed wave spectrum, since the latter is proportional
to the squared norm of pn; in this case, −r2 can simply be interpreted as a Lagrangian multiplier.

IV – Synthetic Application Case

In this application, similar to [9, 16], one-dimensional synthetic optical data is geometrically
created for irregular sea states described by their wave energy spectrum and generated using a
nonlinear wave model, here the HOS-ocean model [2,6,7]. The ocean surface is then reconstructed
and predicted based on this data set and compared to the original surface ηHOS. This is repeated
for realistic sea states of various characteristic steepnesses. Sea state parameters and optical
sensor configuration are similar to those used in earlier work [5], as briefly recapped below.

IV – 1 Setup and Error Definitions

A fixed optical sensor, located at abscissa xc and elevation zc = 30 m observes the ocean surface
for x < xc, with a mean viewing angle α = 76◦, an aperture angle αa = 20◦, and along J = 64
rays, which are homogeneously distributed over the aperture angle (Fig. 2). The sea state

Figure 2: Setup for the spatial sampling of a unidirectional wave field.

is represented by a JONSWAP spectrum of peak period Tp = 10 s and peakedness γ = 3.3.
The significant wave height Hs varies between 1.5 and 6 m. Converged results were achieved
using N = 50 frequency components, a high cutoff wavenumber kmax = 10kp, and a number of
observation times K = 10 with a sampling rate of 1 Hz. The spatio-temporal target zone for
wave prediction T (t) is 100 m long, centered on the sensor location xc, spans a 10 s time, from
20 to 30 s after the first waves enter the region. Hence, a point (x, t) is in the target zone if
xc − 50 ≤ x ≤ xc + 50 and tr + 20 ≤ t ≤ tr + 30.

Two error indicators are used to quantify the prediction accuracy. The first one is a local
“point to point” error,

ε (x, t) = |η (x, t)− ηHOS (x, t)|
/
Hs. (21)

In the second one, statistics are calculated by ensemble averaging 1,000 independent sea state
realizations, generated for different sets of random phases. For each sea state, the average root
mean square (RMS) error is calculated as,

εRMS (t) =

[∫
T (t)

(η (x, t)− ηHOS (x, t))2 dx

/∫
T (t)

η2HOS dx

]1/2
, (22)

with η is the predicted elevation using LWT or ICWM. This error is finally averaged over the
1,000 realizations.
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IV – 2 Results

The ocean surface predicted using the LWT or the ICWM models are compared with each other
and with the reference solution based on the two previously defined error indicators.

Thus, Fig. 3a shows ε(x, t) computed over a large spatio-temporal domain using ICWM,
for a specific realization with Hs = 3 m. Boundaries of the prediction zone are calculated

(a) (b)

Figure 3: Numerical error of ocean reconstruction: (a) ε(x, t) using ICWM for one realization
with Hs = 3 m; white box marks the spatio-temporal target zone T (t), within the prediction
zone P (t) marked by oblique lines; dashed line at x = xc marks sensor location. (b) ε (averaged
over 1,000 realizations) at x = xc, as a function of time, for different steepness using LWT
( ) or ICWM ( ); vertical dashed lines mark the prediction zone boundaries.

according to Eq. (1) and group velocities cg1,2, based on Eq. (4) for k1,2, with µ = 5%. For this
realization, the reconstruction error is very low in the spatio-temporal target zone T (t), within
the prediction zone P (t). Note that the error is higher at t = tr for low x-values than in the rest
of the prediction zone. This is due to the poor spatial sampling in this region which restricts
high-frequency resolution. Since the badly resolved high-frequency components propagate slower
than the rest of the wave components, they progressively leave the prediction zone as time
increases. Figure 3b shows the time evolution of the same error averaged over 1,000 realizations
at the sensor location xc, for 4 different characteristic steepnesses (i.e., significant wave heights),
using LWT or the ICWM model. For each steepness, the error decreases from a relatively large
value at t = tr, as waves enter the prediction zone (located between the vertical dashed lines
in the figure) where it reaches its lowest value, and then increases to reach ' 0.2 after 8Tp of
propagation. Within the prediction zone, ICWM does reduce ε in all cases as compared to LWT,
but most significantly for the largest steepness (i.e., non-linearity). Also, due to nonlinear phase
shifts for steep waves, the location of the minimum error shifts towards lower times as steepness
increases.

Figure 4a further quantifies the prediction algorithm performance over the target zone (box
in Fig. 3a), by plotting the time evolution of εRMS integrated within it, for LWT or the ICWM
model. As observed earlier, this error significantly reduces using ICWM for average to high
steepness. Moreover, εRMS only slowly varies with time and, hence, its time-average shown in
Fig. 4b can provide a global estimate of the prediction model performance, as a function of the
characteristic steepness Hs/λp. In all cases this average error reduces using ICWM rather than
LWT, with the largest reduction, 13% (from 0.52 to 0.39), occurring for the steepest wave field.
This confirms the importance of accurately representing nonlinear effects, with a model such as
ICWM, when performing an ocean surface prediction based on observations, and in particular
wave asymmetry and phase shifts, which increase as the sea state becomes more severe.
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(a) (b)

Figure 4: Numerical error of ocean reconstruction εRMS: (a) Instantaneous; and (b) time-
averaged over the target zone, for different steepnesses, using LWT ( ) or ICWM ( ).

V – Experimental Data

Next, the prediction algorithm performance is assessed for an actual wave field using experimental
data acquired in the ocean wave tank of École Centrale de Nantes (50 m× 30 m× 5 m).

V – 1 Experimental Setup

Laboratory experiments were performed in a wave tank, in which irregular waves were generated
with a wavemaker, based on a full scale JONSWAP spectrum, with Tp = 10 s and γ = 3.3,
and a few values of Hs (or characteristic wave steepness). Time series of surface elevation were
measured using 20 fixed wave gauges, irregularly spaced according to a geometric law (neglecting
wave shadowing effect; Fig. 5). Measurements made with these gauges are used as a proxy for

Figure 5: Locations of 16 (out of 20) irregularly spaced wave gauges (•) used in laboratory
experiments; (N) reference wave gauge.

data acquired at their location using an optical sensor. The equivalent optical sensor used in the
model is located at an elevation zc = 20 m, with a mean viewing angle α = 76◦, an aperture angle
αa = 20◦, J = 20 rays, and a 1/50th scale factor was used to account for wave tank limitations.
In results reported here, only the first 16 probes are used, which are closest to the reference
gauge (Fig. 5).

The number of observation times is set to K = 100, with a sampling frequency of 1.4 Hz,
leading to an horizon of prediction Lo = 2.78λp, i.e., similar to that of the synthetic case (2.55).
Unlike synthetic observations, only a finite and smaller number of independent realizations can
be performed experimentally. However, an average can be made over dependent realizations
by using a large enough time span between two reconstructions of the same wave field. Note
that while convergence of result is slower using experimental data, statistical estimates can be
approached with the method proposed by [14]. However, since the purpose of the experimental
results presented here is only to illustrate the method using actual field data, such methods are
not used here, but will be the object of future work.
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V – 2 Results

Figure 6 shows time series of surface elevation for four different wave steepnesses, at the location
of the reference probe (red triangle in Fig. 5). In the figure, t1 corresponds to the first observation

Figure 6: Time series of surface elevation in: ( ) laboratory measurements, ( ) LWT
model, and ( ) ICWM model, for Hs/λp = (a) 0.006, (b) 0.018, (c) 0.029 and (d) 0.041.
Vertical continuous line corresponds to the reconstruction time tr, and vertical dashed lines are
boundaries of the prediction zone.

time. We see that the reconstruction time tr is inside the prediction zone boundaries (calculated
the same way to the synthetic case), which means that the assimilation time (Ta = tr− t1 ' 7Tp)
is longer than the time needed by the information traveling at the slowest group velocity cg2 to
reach the reference wave probe (' 3Tp). Accordingly, the accessible prediction zone is divided in
two parts, the forecast region P (t > tr) and the hindcast region P (t < tr). Surface elevations
reconstructed/predicted by the LWT and the ICWM models are shown, and compared to the
laboratory measurements. As expected, the prediction is close to measurements within the
boundaries of the prediction zone. As the sea state characteristic steepness increases, the ICWM
solution increasingly differs from the LWT solution, while being closer to the measured surface.
Comparing the local surface shapes in the largest steepness case, one clearly sees that nonlinear
wave properties are better accounted for when using the ICWM model. In particular, both the
amplitude and phase of the steepest waves are better predicted.

VI – Conclusions

The characterization of the proposed ocean surface reconstruction and prediction algorithm,
based on spatio-temporal optical measurements of surface elevation, was extended through the
investigation of the influence of wave steepness on the prediction performance. For both synthetic
and field data sets, wave prediction was significantly improved using the new ICWM model, as
compared to LWT model, for moderate and high steepness. Results using synthetic or experi-
mental data both show that nonlinear wave properties modeled by ICWM, such as wave shape
asymmetry and phase shifts, are important for short-term ocean surface predictions.
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Future efforts will include a comprehensive experimental validation of the presented algo-
rithm, which will further assess the performance of the ICWM model for a directional wave field
prediction.
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