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ABSTRACT

Underwater landslides may be triggerred by the reduction in
soil strength (sometimes up to the point of liquefaction) caused
by excess inter-granular pore pressures resulting from sesimic
activity. Here, we study micro-mechanical processes responsible
for such excess pore pressure build up in soils, by way of mi-
crofluidics technologies, with the long term goal of contributing
to the prediction of tsunamigenic landslides. Thus, both large-
and small-scale experiments are performed; the former are
standard cyclic triaxial tests, using both natural and idealized
saturated soils, while the latter take place in custom-fabricated
mini-channels, filled with water or with a mixture of water and
idealized sediments. In parallel, a new Computational Fluid
Dynamics model is developed based on the lattice-Boltzmann
method (for the fluid phase), coupled with a “physics engine”
(for the solid/granular phase). After being validated for standard
analytical solutions for steady flows, the model is used to simulate
the behavior of an ideal saturated granular soil, represented by
rigid spheres. In future work, once it is made both more general
and efficient, the model will be used to simulate mini-channel
experiments, such as reported here, as well as cyclic triaxial tests.

KEYWORDS : Microfluidics technology; Lattice-Boltzmann
Method; Pore pressure; Soil liquefaction; Underwater landslide.

INTRODUCTION

Although “co-seismic” tsunamis generated by earthquakes of
large magnitude (

� � �
) may be very devastating (e.g., the

12/26/04 Indian Ocean tsunami; [18]), they are fortunatelyquite
rare. By contrast, the more frequent average magnitude earth-
quakes (

� � � 	 
 � �
) may destabilize sediments on, or near,

�
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the continental shelf slope, causing underwater landslides, which
may themselves create significant, or even sometimes catastrophic
tsunamis for nearby coastal areas (e.g., [27]). These so-called
“landslide” tsunamis are usually made of shorter and more dis-
persive waves (e.g., [19, 30]), which upon propagating onlya few
to tens of minutes, due to bathymetric focusing or wave guideef-
fects, may concentrate their energy over narrow sections ofthe
coastline, yielding large runup and inundation (e.g., [30,27]).
While landslide tsunami generation, propagation, and coastal im-
pact, have been well studied, both experimentally and numerically
(by this group, e.g., [8, 9, 19, 30], and others), particularly for
rigid slides (i.e., cohesive sediment), the triggering of submarine
landslides in less- or non-cohesive soils, by the combination of
seismic loading (i.e., cyclic ground shaking) causing oscillatory
excess pore pressures, resulting in a reduction in soil strength or
possibly liquefaction, is still poorly understood.

In this work, we study the triggering of the instability of an
underwater slope, made of porous sediment, caused by the com-
bination of seismically induced: (a) horizontal accelerations, that
may cause inertia forces exceeding the shear strength of thesed-
iment; and (b) oscillatory excess pore pressures that may cause a
reduction or a total disapearance of shear strength. Some under-
water landslides may in turn be tsunamigenic, but this aspect is
beyond the scope of this work. Pore pressure build-up is strongly
dependent upon dynamic flow propagation in the “micro-channel”
network forming the sediment matrix, a process that is poorly un-
derstood and usually represented by an ad hoc (macroscopic)con-
stitutive law. Using such constitutive laws, Navier-Stokes solvers
with multiple-fluid representation have been used to simulate un-
derwater landslides and tsunami generaiton (e.g., [1]). The novel
approach presented here combines standard large-scale model-
ing and experiments, with new small-scale microfluidics experi-
ments and numerical modeling. Large-scale modeling of under-
water slope failure was studied in earlier work, using a state-of-
the-art continuum modeling finite difference program (FLAC � ;
[7]). Macroscopic laboratory experiments (cyclic triaxial tests)
were also performed in earlier work, for both natural and ideal-
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ized (glass spheres) sediment samples, under controlled oscilla-
tory pressure loading leading to soil liquefaction [16].

In this paper, we detail novel microfluidic experiments and
their modeling. Mini-channels were fabricated and tested at URI
for flow properties, in a newly designed aparatus (Fig. 1), with the
goal of : (i) understanding and measuring the complex structure of
dynamic pressure propagation in water filled channels (for refer-
ence) but, more importantly, in water-sediment mixtures; and (ii)
to develop new macroscopic constitutive laws, relevant to the sub-
marine landslide triggering problem. The second key component
of this work was the CFD modeling of the new microfluidic ex-
periments and earlier triaxial tests, in order to both gain additional
physical insight into flow processes and use the model to perform
a broader parametric study. The CFD simulations are performed
with a model combining a pre-existing Lattice-Boltzmann model
(LBM) and a “physics engine”. The LBM, developed at TUB
[21, 29, 6, 2], simulates fluid flows by solving a simplified Boltz-
mann equation (over a lattice) that can be shown, to the limit, to
yield approximate solutions of Navier-Stokes equations. The sed-
iment grains, represented by rigid spherical particles, interacting
with each other and with the surrounding fluid, are modeled with
the PE. Details of models are given later. Results of initialLBM
simulations and of microfluidic experiments, f or academic and
less academic test cases, are presented in the following, together
with a summary of various methodologies.

Figure 1: Experimental set-up (left). Example of mini-channel
tested in the set-up, fabricated using soft lithography (right)

THE LATTICE BOLTZMANN METHOD

Many commercial CFD softwares (such as Fluent � ) solve
fluid dynamics using various forms of Navier-Stokes equations,
derived from mass, momentum and energy conservation, assum-
ing the fluid is s a continuum. In microfluidics applications,
however, one is more interested in studying phenomena from a
micro/meso-scale point-of-view. Hence, it appears more natural
to consider the fluid as a group of particles, interacting with each
other and with the surrounding medium, such as done with the
LBM, or its ancestor the lattice-gas method, developed fromthe
kinetic theory of gases. Hence, the LBM simulates compressible
fluid behavior, but converges to an incompressible solutionfor low
Mach numbers (i.e., when the fluid velocity is small comparedto
sound speed).

The primary variable of the Boltzmann equation is a particle
distribution function� � � � � � � � , which describes the (normalized)
probability to find a particle with microscopic velocity� at point� (i.e., 3D positon vector) and time� . In the LBM, one defines a
set of (� ) discrete particle velocities� 	 , and a simplified collision
operator
 (see, e.g., [26]). The resulting set of partial differential
equations governing particle distributionsand interacitons is given
by, �

� 	�
� � � 	  � � 	 � � 	 � � � � � � � � � � � 	 	 	 � � � � 	

(1)

Here, the so-called D3Q19 model [24] is used to de-
fine relationships between particles over the lattice (3 di-
mensions, 19 velocities) with the following definition of
constant microscopic velocities: � � 	 � � � � � 	 	 	 � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ,where� is a constant
(Fig. 2).

Figure 2:D3Q19 grid pattern used in LBM

Eqs. (1) are discretized by Finite Difference as,

� 	 � � � � � � � � � 	 � � � � � 	 � � � � � � � 	 � � � � � 	 	 	 � � � � �(2)

where
� � is time step,

� � � � � � is grid spacing, and the
so-called “Bhatnagar-Gross-Krook”-collision operator [3] (also
known as single-relaxation-time collision operator) is given by,

� 	 � � � �� � � 	 � �  !	 � 	
(3)

with � a microscopic relaxation time, measured in units of
� � ,

and �  !	 the equilibrium distributions, which are usually taken as
second-order polynomials of the moments, defined later follow-
ing [24]. Eqs. (2) corresponds to a two-step procedure: (i) the
distributions are modified by
 (collision step); and (ii) advected
to the corresponding neighboring grid nodes (propagation step).
Discrete moments are defined to compute the macroscopic fluid
velocity " and hydrodynamic pressure# as,

" � � � � � � �
$ � � � � �

%
	 � 	 � 	 � � � � � (4)

# � � � � � � � �& $ � � � � � � � �& %
	 � 	 � � � � � (5)



where� �& � � � � �
is the speed of sound. Using either a Chapman-

Enskog expansion [13] or an asymptotic expansion based on the
diffusive scaling [20], it can be shown that flow properties de-
fined by these moments approximate those from weakly com-
pressible Navier-Stokes equations, to the first-order in time and
second-order in space, when assuming the following relationship
between microscopic relaxation time and fluid kinematic viscosity� : � � � � � � � � � � � � � � � � � � � �

.

For the simulations described below, we use a variant of the
Multi-Relaxation Time model, which maps the distributionsbe-
fore collision to a set of well-defined moments, for which the
non-conserved higher-order moments are relaxed, with different
relaxation times, which are subject to optimization in terms of sta-
bililty and accuracy. After the collision operator is applied, these
moments are mapped back to the velocity space (i.e., the distri-
butions) where the propagation step is computed. Details can be
found in [5, 22, 6, 28].

Figure 3:Simple bounce back scheme

Figure 4:Second-order bounce-back scheme [15]

In the LBM, by nature, boundary conditions have to be di-
rectly specified on the distribution functions for the boundary
nodes, which is quite different from macroscopic CFD meth-
ods. No-slip boundary conditions are modeled with a so-called
bounce-back scheme, in which the particle distribution func-
tion “bounces” against the boundary, as shown in Fig.3, caus-
ing the mean momentum exchange to be equal to zero. This
method can be extended to non-straight as well as moving bound-
aries, by using a second-order interpolation in the bounce-back
scheme (Fig.4), identifying two different cases, depending on
whether the distance� between the boundary and the node is :
(i) � � � � 	 
 � � � 	 � � �; or (ii) � � 	 
 � � � � � 	 � � �. Formal interpolation
schemes are given in Eq. (6),

� � 	 �
 � � � � � � � � � � � � �	 � � � � � �	 � � � $  	 � 	 � �
� �&

� � � �
� � � �

� � � �
 � � �
� � � �	 � � $  	 � 	 � �

� � �& (6)

where subscript� denotes the symmetrical distribution function,
with � 
 � � � 	 . A good overview to the treatment of boundary
conditions in the LBM can be found,e.g., in [17].

Forces on a rigid submerged body are evaluated in the LBM
during the propagation, based on momentum transfer between
fluid particles and the immerse body, resulting from collisions
[23]. For a straight boundary, we have,

� � � � � � � �� � � � 	 � " � � � � �	 � � � 	 �
 � (7)

with � � the moving boundary velocity. This basic scheme can
easily be extended to non-uniform grids (see, e.g., [4]).

The efficiency and accuracy of the LBM method to solve
classic CFD problems has been demonstratde in many papers. A
study of transient laminar flows, for instance, is presentedin [14].
In addition, the method can be efficiently parallelized to benefit
from massively parallel hardware [12].

Figure 5:Flowchart for LBM-PE model coupling

RIGID BODY MODELING WITH LBM

The LBM model was applied to simulate the free fall of inter-
acting rigid spheres of identical radius (aimed at representing sed-
iment grains), in a fluid filled domain. To do so, the LBM model
was coupled to a “physics engine” (PE) that model each sphere’s
motion and interactions, based on computed flow properties (Fig.
5). The PE is a particle-based method that simulates rigid body
motions and interactions based on Newton’s second law, applied
to the spheres’ center of mass. The PE handles the contact and
collision responses between rigid bodies, depending of thebod-
ies’ relative velocity (� �  � �

�
: separating contact;� �  �

� �
: resting contact;� �  �

� �
: colliding contact). The tolerance

level of the contacts is set based on threshold values. Hydrody-
namic forces applied to the rigid spheres are calculated during
the collision part of the LBM. The spheres’ impulse responseis
then calculated using a projected Gauss-Seidel solver. Theini-
tialization of new fluid nodes created as a result of the spheres’



displacement is done by performing local collision/propagation
steps, on the newly created fluid nodes, until convergence ofthe
fluid characteristics (pressure/higher order moment) is achieved.
This approach has helped improving the forces’ accuracy andre-
ducing errors on both sphere drag force and velocity, as wellas
oscillations of various parameters during the simulations.

Practically, the PE consists in a library of C++ routines,
developed at the University of Erlangen-Nurnberg (Germany)
[11], that is coupled to the LBM model for computing spheres’
interactions and resulting changes in flow properties, in the
manner described above. The simulation of free falling spheres is
split into two phases: (i) an initialization, in which each sphere
is fixed to an initial position and the LBM model is run until
convergence of flow properties to a steady state is achieved;(ii)
each sphere is released to fall and interact with other spheres in
the cylinder, under the action of gravity.

APPLICATIONS OF LBM-PE MODEL

Flow in a circular pipe

We simulate a gravity driven laminar flow, through a slop-
ing circular pipe of radius� and angle� , by specifying volume
forces :� # � � � � $ � � � � � in the LBM. For laminar flows, Navier-
Stokes equations yield the classical axisymmetricPoiseuille flow
solution,

� � � � � � �� 	 � #� � (8)

with
	 � $ � the fluid dynamic viscosity.

The model is first run for a pipe of radius� � � 	 � � 

m, slope

angle � � � 

, and length� � � 	 � � 


m, with a fluid of density$ � � � � � �
kg/m� and kinematic viscosity� � � 	 � � � �

m
�
/s. The

Reynolds numberRe=
� � �  � � � � � � 	 � �

(with � �  � � � 	 � � � �
m/s for

� � �
from Eq. (8)) is well wihin the laminar regime.

Results are calculated for a series of increasingly refined LBM
grids sizes,

� � � 
 	 � � � �
to

� 	 � � � �
, starting from a state of rest;

in each case, time step is selected based on a CFL = 1 criterion.
Periodic boundary conditions are specified at the inlet and outlet
boundaries (i.e., fields on the inlet boundary are set equal to those
on the outlet boundary at the previous time step) and a no-slip
boundary condition is applied at the wall (second-order bounce-
back scheme). Table 1 shows relative mean, maximum, and RMS
errors of LBM results for the axial velocity� �  � at the middle
section of the pipe, compared to the theoretical value from Eq. (8),
as a function of grid size. We see that numerical results converge
to the analytic solution as grid size is reduced. A closer inspection
would show that the convergence rate is� � � � � �

, as expected
from the selected LBM scheme.

The model is then run for higher slope angles, and thus
Reynolds numbers, in order to verify that numerical errors remain
acceptable. Mean, maximum, and RMS errors are similarly
reported in Table 2, for the coarser grid size

� � � 
 	 � � � �
. We

see that numerical errors remain quite similar over a large range
of Reynolds numbers within the laminar regime,Re � 1–21.

� �
max. error RMS error mean error

5
	 � � � �

2.879 3.764 0.864
2.5

	 � � � �
1.452 1.483 0.237

1.66
	 � � � �

0.997 0.786 0.102
1.25

	 � � � �
0.754 0.556 0.063

1
	 � � � �

0.560 0.269 0.027

Table 1:Relative errors (%) of axial velocity� �  � , compared to
Eq. (8), as a function of LBM grid size forRe = 1.07.

� Re max. error RMS error mean error

1 1.07 0.560 0.270 0.027
10 10.65 0.523 0.258 0.026
20 20.97 0.523 0.256 0.026

Table 2:Relative errors (%) of axial velocity� �  � , compared to
Eq. (8), as a function of Reynolds number for

� � � 
 	 � � � �
.

Single falling sphere in a fluid

Assuming a sphere of radius� and density$ & , falling in
an unbounded Newtonian fluid of density$ � and viscosity

	
,

the balance of weight (� � � � � � � � � � $ & � ) buoyancy (� �
� � � � � � � � $ � � ) and drag (� � � � � � � $ � � � � � � � �

) forces (� �� � � ) yields a terminal velocity of,

� � � � �
� � � � � � � � � � � � �

(9)

with � � $ & � $ � . AssumingRe
� � � � � � � � �

(1) for laminar
flows, Stokes solution yields the drag coefficent for the sphere :� � � � � �

Re.

Schiller and Naumann [25] extended the latter equation to
higherRe values as,� � � � � � � � � 	 � 


Re ! " # $ � �
Re. Moreover,

for a finite width LBM domain, e.g., represented by a circularpipe
of radius� , such as used in the above application, additional cor-
rections must be made to� � values. These were given in [10] as
a perturbation expansion of% � � � � , yielding,

� � & � � �
Re

� � 	 � 

Re�  ! " # $ �

� � � 	 � 
 � 
 � % '� � � 	 � � 
 � % � � 	 � � � 
 % � � � 	 � � � � % ' � � 	 � � � � � % " � (10)

which predicts the drag force� & � � � � � � $ � � � & � � � � �
with a

95% accuracy, for% �
� 	 �

andRe �

 �

.

We run the LBM model for :� � � 	 � 

m, � � � 	 � � 


m,$ & � � � � � �
kg/m� , � � � 	 � � �

m
�
/s and$ � � � � � � �

kg/m� ;
length � � � 	 �

m was selected in order for the sphere to reach
steady state before impacting the cylinder’s bottom. No-slip
conditions are specified on the lateral boundary as well as onthe
top and bottom sides of the cylinder, as recommended in [23].A
velocity continuity boundary condition is specified on the rigid
sphere’s boundary (modified second-order bounce-back scheme



� �
Error on� � & Error on �

0.0025 0.07 16.69
0.0017 0.08 9.16
0.0013 0.15 7.90
0.001 0.06 8.88

Table 3: Relative error (%) of computed drag coefficient� � &
and fall velocity of the sphere� , as compared to theory (Eqs. (9)
and (10)) for different grid sizes andRe=0.41.

$ & Re Error on� � & Error on �
2,000 0.41 0.06 8.88
4,000 1.15 0.02 10.69
6,000 1.83 0.01 11.04
8,000 2.47 0.06 10.66
10,000 3.09 0.29 9.84

Table 4:Same errors as in Table 3, for differentRe values, with� � � � 	 � � �
.

for moving boundaries, defined in [23]). We first performed
computations in a series of increasingly refined LBM grids, with
size

� � � � 	 � � � 

to 0.001, starting from a state of rest. As

before, time step is selected based on a CFL = 1 criterion. Table 3
shows numerical errors for� � & and � as compared to Eqs. (9)
and (10), for a lowRe=0.41, as a function of mesh size. We see a
reasonable convergence of numerical results towards the expected
values. We then use

� � � � 	 � � �
to compute the drag coefficient

and fall velocity as a function ofRe (changed by varying the
sphere density). Table 4 shows a good accuracy for all selected
cases.

Figure 6: Simulation of 6 falling spheres (color scale indicates
velocity magnitude) ; (a)-(d) shows results for increasingtime.

Multiple-spheres test-cases

Having validated LBM simulations for both a Poiseuille
flow and for one single falling/settling sphere, other caseswere
performed for multiple interacting falling spheres, for which no
theoretical solution exists. Fig. 6 thus shows 4 stages of flow

Figure 7:LBM-PE simulations with 4,500 spheres in a cylindri-
cal domain, for a specified inlet velocity achievingRe = 0.1; in
(a)-(b), color reflect a pressure scale

and interactions of 6 falling spheres. Steady state is reached in
Fig. 6b and, in Fig. 6c, the 3 leading spheres are approachingthe
bottom and slow down. Hence, flow velocities increase ahead of
the 3 following spheres. In Fig. 6d, spheres impact the cylinder
bottom, rebound, and roll over each other.

Perspectives

More complex applications, which are still ongoing, will ul-
timately involve the computation of unsteady flows in a circular
(or rectangular) domain filled with a large number� (typically
10,000) of interacting spheres of varying radii� 	 , achieving a
specified porosity� , e.g., representing a porous medium in a mini-
channel. For a cylindrical domain (� � � � , for instance, we find,

� � � � �
� � � �

�%
	 � � � �	 (11)

Similar to the work in [32], we are first testing cases of a
steady flow through a sphere-filled pipe (e.g., Fig. 7), to verify
the standard Darcy law is retrieved for low porosity� . We will
then test cases with cyclic pressure loading at the pipe extremities
and/or harmonic horizontal acceleration specified as a volume
force. Such cases will yield soil liquefaction under some specific
loading.

MICROFLUIDICS EXPERIMENTS

Experiments were performed in custom fabricated mini-
channels (Fig. 1) filled with water, or with a mixture of water
and idealized sediment made of standardized glass beads of 10-
50

	
m in diameter, to both provide data for LBM-PE model val-

idation and gain physical insight into the pore pressure response
of soils, due to dynamic seismic-like loading. Two different types
of experiments were designed and performed, for which pressure
variation was measured at several gates (side channels) along the
main channel, using pressure transducers connected to a mani-
fold (Fig. 1) : (a) steady state flows were created by specifying a
constant pressure gradient between both extremitites of the mini-
channel; and (b) dynamic (essentially cyclic) pressure pulses were
generated in the mini-channel using a pump.

We only tested one channel geometry so far, but we are plan-
ning in future work to vary properties of the channel (cross-
section/length/branches), together with the frequency and ampli-
tude of the pressure variation, in order to investigate effects of



these on measurements, in relation to pore pressure generation in
soils.

In all experiments, we first use pure water and estimate
effects of the channel itself on fluid flow, essentially through
energy dissipation; this yields hydrodynamic characteristics of the
channel (e.g., friciton coefficient). We then repeat experiments
using the mixture of water and glass beads and estimate the
hydrodynamic properties of glass beads by removing the known
channel effects. Cyclic test results will be processed thisway and
we will then attempt to correlate these to triaxial test results [16]
and CFD simulations of both with the LBM-PE model.

Mini-channel and its equipment

Considerable efforts in miniaturization since the 1980s led to
the development of Micro Electro Mechanical Systems (MEMS),
such as mini- and micro-channels, and to their increasing use
in chemichal and biomedical applications. Here, we built mini-
channels by soft-lithography, which allows for a quick fabrication
of rectangular mini-channels, using the properties of polymeriza-
tion of polydimethylsiloxane (PDMS).

The mini-channel shown in Fig. 1, used in experiments
reported here, is� � 
 �

mm long, 1 mm wide, and 0.2 mm deep.
Four branches, spaced 10 mm apart, allow for pressure measure-
ments using transducers connected to 4 gates; 2 additional gates
are located at the entrance and exit of the main channel. These six
gates are connected to pressure transducers via a custom made
manifold (Fig. 1) The transducers are Honywell type stainless
steel strain gauges (non-linearity of +/- 0.1% of the full scale,
pressure range : 0–200 psi), and Omega DP25-S strain gauge
panel meters are used to digitize the pressure (Fig. 1); these are
connected to a control unit recording measurements at a specified
sampling frequency (typically 12 Hz). A pressure panel (Fig. 1)
is used to specify a constant or cyclic pressure at the channel inlet.

Experiments

Eq. (8) gives the axial flow velocity� � � � , in a circular cylin-
der of radius� , due to a specified pressure gradient, for steady
laminar flows with lowRe (Poiseuille flow). The latter is typical
in microfluidics applications dominated by viscosity. Eq. (8) can
still be used as a reference for non-circular channels by introduc-
ing the hydraulic diameter,� � � � � � �

, where
�

is the chan-
nel cross-sectional area and

�
its perimeter. We further define:

Re
� � � � � � , with � � � � �

the mean flow velocity, where
�

denotes flow rate. With these definitions, Eq. (8) yields,

� � � �  � � � � � � �
� �� � with � �  � �

�
#� � � ��� � 	 (12)

and� � � �  � � �
for a circular cross section. For Fig. 1’s channel

:
� � � 	 �

mm
�
,
� � � 	 �

mm and� � � � 	 � � �
mm.

In fluid flows through narrow pipes, changes in pressure take
place along the length of the pipe, due to both continuous anddis-
crete frictional losses. The former are due to viscous shearstress
along the pipe boundary, as in Eq. (12), while the latter are addi-
tional energy losses due to abrupt changes in the pipe geometry,
such as branching-out/inlet/outlet. Hence, the specified pressure

Figure 8: Pressure measured as a function of mean flow speed,
in Fig. 1’s channel, filled with a water-bead mixture, at gate: G1
(inlet) (� ); G2 (� ); G3 (� ); G4 (	 ); G5 (
 ). Solid lines denote
quadratic curve fits forced to (0,0);# � �

(atmosph.) at gate G6.

gradient,

�
# � � � � � # � � # � � � � , must overcome all such pressure

drops (i.e., head losses) due to energy losses, with# � the pressure
at the inlet and# � at the outlet. If the mini-channel cross-section
remains constant, for a constant flow rate, there is no changein
mean flow velocity along the pipe. Bernouilli equation can then
be used to relate the total energy loss along the channel to the
specified pressure difference,

� # � # � � # � . Assuming a hori-
zontal channel, we find,

� # � �
� $ � � � � �� � � %

	  	 � (13)

with � � the average (continuous) skin friction coefficient and 	
the � -th discrete head loss coefficient.

In mini-channel experiments with steady flows (Fig. 1), Eq.
(13) can be applied between each pair of pressure gates. Thus, us-
ing measured pressures, values of� � and 	 are first calculated as
a function of� (or more specifically as a funcion ofRe). Results
are first calculated for pure water and then for the water-beads
mixture. The channel frictional properties can thus be removed to
estimate those of the idealized saturated porous medium modeled
by the glass beads, under various types of flows.

According to Darcy’s law, in a porous medium of low per-
meability � (i.e., clays, silts), the small flow velocity is propor-
tional to the pressure gradient:

� # � � $ � � � � � � ; this applies
when Re �

�
,000 or so. For larger permeability andRe val-

ues, according to Vorchheimer equation, a quadratic term appears
:

� # � � $ � � � � � � � � � �
; this applies whenRe

� � �
,000 or so.

Eq. (10) is consistent with Darcy’s law prediction, since for small
Re : � � � � � � 1/Re � � � � ; hence, Eq. (13) yields

� # � �
for the continuous friction term. By contrast, for largeRe, the
drag coefficient of a small rigid sphere becomes constant in the
turbulent regime and Eq. (13) yields

� # � � �
for the continuous

friction term, which is consistent with Vorchheimer equation.

Fig. 8 shows the pressure# measured at gates G1-G5 as a
function of mean flow speed� , in the mini-channel of Fig. 1 filled



Figure 9:Pressure drop between inlet and outlet, as a function of
flow speed, in Fig. 1’s channel filled with a water-bead mixture :
measurements (� ); linear (—–) and quadratic (- - - -) fits.

with a water-beads mixture. G1 denotes the inlet, and pressure at
the outlet G6 is atmospheric,# " � �

. Hence, in this configuration,� # � # � � # " . We see, pressure varies linearly for low� (�� 	 � � �
m/s) and then becomes quadratic. Specificaly, Fig. 9 plots� # as a function of� and shows both linear and quadratic fits,

representative of Darcy’s and Vorchheimer’s laws, respectively.
With the former, we find� � � 	 � � � � � ' m/s (� � � � 	 � � �

), and
with the latter� � � 	 � � � � � � ' m/s (� � � � 	 � � �

). For � � � 	 � � �
m/s, the maximum observed value of the mean velocity, we have
Re = 1, indicating laminar creeping flows in all cases.

Similar experiments, run with the mini-channel filled only
with water showed, as expected, much larger velocities, varying
between� � �

and 2 m/s for the same pressure gradients as in
Fig. 8. Eq. (13) was applied to those measurements and frictional
characteristics of the mini-channel,� � � and  	 � � � � � 	 	 	 � �

,
were calculated. For the continuous friction coefficient wefound,
in particular, � � � � � � � �

Re
� � ! " �

(with � � � �
). A similar

analysis was repeated for the results of Fig. 8 obtained for the
mini-channel filled with the water-bead mixture. We thus found,� � � � � � � � � �

� � � � � � �
Re

� � ! � �
(with � � � � 	 � � �

), yielding
the continuous friction coeficient due only to the water-bead
medium as, � � �

� � � � � 
 

Re

� � ! � # , which is close to the
theoretical value expected from Darcy’s law. Additionally, the
discontinuous 	 coefficients for the water-bead filled channel
were obtained (not shown). These results, together with various
forms of Eq. (13), make it possible to predict the pressure at
gates G1-G6, without running experiments, including various
contributions to the pressure drop, Fig. 10, for instance shows
such a prediction for� � � 	 � � � � 


m/s.

CONCLUSIONS

Although computations described in the perspective section
are sill ongoing and no comparison with microfluidics results were
done so far, based on prelminary results, we believe our LBM-
PE approach is more general, consistent, and accurate than ear-
lier proposed methods, and will yield a numerical tool able to

Figure 10:Pressure at gages G1-G6, for� � � 	 � � � � 

m/s, in

Fig. 1’s channel filled with water-bead mixture : predicted con-
tinuous losses in channel (� � � ) (� ); predicted continuous losses
due to beads (� � � ) (	 ); total predicted continuous losses (� � )
(� ); predicted discrete losses due to branching ( 	 ) (
 ); total
predicted losses (� ); total measured losses (- - - -).

investigate the micro-mechanical behavior of soilds undercom-
plex seismically induced harmonic pore pressures and horizontal
accelerations.

Initial experiments performed in mini-channels filled with
an idealized sediment, for steady flows, led to promising re-
sults showing the expected fluid behaviors at the of the micro-
mechanical level. Experiments with cyclic pressure loading are
ongoing and will be similarly analyzed in order to relate macro-
scopic measured parameters, such as pressure drop, to the micro-
mechanical properties of the medium. These experiments will
both help gaining additional physical insight into pore-pressure
build-up and serve as a data set for validating the LBM-PE model,
which in turn wil be use to perform broader parametric studies.

Ultimately, all these results will contribute to developing new
macroscopic constitutive laws for predicting underwater slide
triggering.
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