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Résumé

Ce papier présente les développements récents d’un canal à houle numérique. Dans
ce modèle potentiel et complètement non-linéaire, utilisant un schéma d’avance en temps
semi-lagrangien pour la surface libre, l’équation de Laplace sur le potentiel est résolue
par la méthode des éléments de frontières à chaque pas de temps. L’utilisation pratique
de ce type de modèle étant limitée par les temps de calcul, une méthode de multipôles
rapide est utilisée et implémentée en mode parallèle. Elle montre une bonne scalabilité
pour des nombres d’inconnues de 103 à 105 et sur plusieurs centaines de processeurs.
L’intégration adaptative permet une résolution des vitesses dans le domaine fluide, y
compris à proximité des parois. Le modèle est validé par une comparaison des efforts sur
un cylindre vertical en interaction avec les vagues, et le sillage proche d’un profil NACA.

Summary

We present recent improvements in computational performance and capabilities of a
numerical wave tank for fully nonlinear potential flows. This approach is based on the
boundary element solution of the Laplace equation, and advanced in time with a mixed
Eulerian-Lagrangian method. As computational time is a main limitation of this method,
the fast multipole method is applied, in parallel, and is shown to scale well to 103–
105 unknowns and hundreds of processors. In addition, internal velocities are computed
efficiently in the same manner, which can be used for coupling to other models. In order
to validate the approach for engineering applications, higher-harmonic wave forces on a
vertical cylinder are considered as compared to experiments, as well as preliminary work
with moving coordinate systems considering the wakes caused by a surface-piercing foil.
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I – Introduction

Boundary integral methods have seen extensive use for wave-structure interaction pro-
blems since the work of Longuet-Higgins and Cokelet [16]. Although for small amplitude
waves and linear motions there exist many models which produce practical engineering
results, there are still many cases where nonlinear effects are important, and fully nonli-
near potential flow models, when efficient, can be useful. The standard approach involves
solving the Laplace equation for the velocity potential at each time step (and optionally
for the time-derivative of the velocity potential), and then updating the mesh and free
surface boundary conditions with a mixed Eulerian-Lagrangian approach.

We consider here a model based on the same approach as the wave model of Grilli et
al. [7], which has been successful at modeling many wave phenomena, including landslide-
generated tsunami, rogue waves, and the initiation of wave breaking caused by bathymetry.
For the types of applications considered, Grilli et al. were able to consider structured grids,
which enabled simpler approaches for setting up high-order (cubic) elements. In order
to more easily tackle more complex grids and surface-piercing fixed or floating bodies, a
variation has been developed in recent years [11] using unstructured meshes. Additionally,
the model efficiency was improved by using the Fast Multipole Method (FMM [6]) working
in parallel for larger grids [12]. The model was initially validated for wave propagation
as well as radiation and diffraction from vertical cylinders and more recent improvements
have been made to improve the accuracy of these results. For example, when computing
the internal solution within the domain, which is required for coupling to other models,
the numerical integration of the boundary integrals has high errors for points near the
domain boundary, such as the free-surface or rigid bodies. Adaptively subdividing the
elements in this case, we are able to maintain the accuracy of the solution throughout the
domain. These advances also allow for higher-accuracy near corners and for considering
elements with higher aspect ratios.

For other applications such as the wake of a ship, it is necessary to consider a moving
coordinate system, as in Beck and Scorpio [1]. To validate such simulations, we compare
results with experimental data, such as that of Metcalf et al. [18] for flow past a vertical
surface-piercing NACA 0024 foil at moderate Froude numbers. Application of these im-
provements to study wave impact on offshore structures (e.g., gravity-based foundations,
floating platforms for wind-turbines), and more advanced demonstrations of the model
will be presented at the conference.

Wavemaker

Body
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Figure 1 – Definition sketch of NWT computational domain for wave interaction with
a rigid body (length L by width w by depth h). No-flow conditions are specified on
lateral and bottom boundaries ; waves are generated on the leftward boundary (Neumann
boundary condition for known velocity and acceleration) and are damped on the far end
of the NWT over an absorbing beach (AB) of length LAB.
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II – Methods

For an incompressible inviscid fluid with irrotational motion, mass conservation implies
Laplace’s equation for the velocity potential φ,

∇2φ = 0 in D (1)

u = ∇φ in D (2)

with u the flow velocity in domain D (e.g., Fig. 1). If we use a semi-Lagrangian approach on
the free-surface where points are fixed in the horizontal direction, the material derivative
for a point following the free-surface would be :

δ

δt
=

∂

∂t
+
∂η

∂t

∂

∂z
(3)

where η denotes the vertical position of the free surface. From this, we can fully express
the kinematic and dynamic free surface boundary conditions in Cartesian coordinates, in
a reference frame that is potentially moving in the x-direction at a speed, U(t), as :

δη

δt
=
∂φ

∂z
− ∂φ

∂x

∂η
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− ∂φ

∂y
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∂x
(4)

δφ

δt
= −gη − 1
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∇φ · ∇φ+

∂η

∂t

∂φ

∂z
− U(t)

∂φ

∂z
(5)

with g the gravitational acceleration, z the vertical coordinate, p the fluid pressure (assu-
med to be zero on the free surface), and ρ the fluid density. We note that (∂η/∂x, ∂η/∂y)
can be expressed as a function of the outward normal vector on the boundary, n =
(nx, ny, nz), as (−nx/nz,−ny/nz).

On fixed, submerged, or surface-piercing bodies, the boundary condition is simply a
no-flow condition on the body boundary (or hull) Γh, whereas for bodies moving relative
to the coordinate system, with fixed or free motion, which are not considered in this paper,
the boundary condition expresses that the normal flow velocity matches that of the rigid
body projected on the local normal direction. Numerically damping waves exiting at the
edge of the domain is handled by adding a term −ν(x)η and −ν(x)φ to the right side of
Eq. 4 and 5, respectively, where ν = 0 for all of the domain except for points x ≥ xAB,

where ν(x) = ν0

(
x−xAB

LAB

)2
.

Hydrodynamic forces and moments acting on the rigid body are computed by inte-
grating the hydrodynamic pressure. This requires calculating the time derivative of the
potential at each time step, which also satisfies Laplace’s equation ; here, as in Grilli et
al.’s NWT [7], ∂φ/∂t is also computed with a BEM. For freely moving bodies, however,
both BEMs for the potential and its time derivative are coupled through the unknown
body motion, which requires implementing special procedures (see, e.g., Guerber et al. [10]
for a review and details).

II – 1 BEM solution of the Laplace equation

As indicated above, Laplace’s Eq. 1 is solved as a BIE expressed at each collocation
point xi (or [xi, yi, zi] for i = 1, . . . , N),

α(xi)φ(xi) =

∫ [
∂φ

∂n
(x)G(x,xi)− φ(x)

∂G

∂n
(x,xi)

]
dΓ (6)
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where G is the free space Green’s function based on the distance to the target point i,
ri = ‖xi − x‖, α is the exterior solid angle made by the boundary at a collocation point
i (e.g., for a smooth boundary this would be 2π), and n points in the direction of the
local outwards normal vector to the boundary. In 3D, the free space Green’s function of
Laplace’s equation and its normal derivative read :

G(x,xi) =
1

4π‖ri‖
(7)

∂G

∂n
(x,xi) = − 1

4π

ri · n
‖ri‖3

(8)

Solving Eq. 6 with a BEM discretization requires : (i) integrating complicated integral
kernels over individual boundary elements, which become singular when ri → 0 ; and
(ii) solving the resulting (typically N by N) linear system of algebraic equations. The
BEM integrals are performed over each triangular element using Dunavant’s [4] rules, and
quadrangular elements with a tensor product of Gauss integration. For linear triangular
elements, singular integrals can then be analytically integrated. Although analytical so-
lutions of non-singular integrals are known for linear triangular elements, to allow for a
more straightforward extension of the existing formulation of the NWT to higher-order
elements in future work (e.g., [7]), we compute these integrals numerically. The coefficients
α in the BIE are found by applying the rigid mode method (e.g., [9]), which expresses that
for a Dirichlet problem with φ = 1 specified over the entire boundary of domain D, the
discretized BIE must yield ∂φ/∂n = 0 ; the α coefficients are then found as the residuals
of this Dirichlet problem. The solution of the BEM discretized algebraic system is then
solved with BiCGSTAB, a Krylov iterative solver.

In the nonsingular integrals, as the free space Green’s function Eq. 7 varies rapidly
when a point is close to the element being considered (i.e., ri → 0), an adaptive integration
approach is used, both for collocation points belonging to the boundary discretization or
for internal points. The method used is quite similar to that described by Grilli et al. [7] for
the same purpose, but here we consider a simpler distance criterion : when the point under
consideration is closer to the center of the element than twice the maximum element edge
length, the element is recursively divided into four smaller elements, and this recursive
process is done up to 16 times. For instance, if we consider the solution of the flow past a
cylinder with a known theoretical boundary solution and compute the velocity potential
for points very near the body boundary, the error is found to be quite significant for those,
but becomes small when an adaptive subdivision is used.

In the FMM, the free space Green’s function is approximated for “distant” points by
a truncated (order P ) multipole expansion.

G(x,xi) ≈
mx+my+mz=P∑
mx=my=mz=0

(x− xi)mx(y − yi)my(z − zi)mz

mx!my!mz!

[(
∂

∂x

)mx
(
∂

∂y

)my
(
∂

∂z

)mz

G(x,xi)

]
(9)

In this approach, both interactions (e.g., Fig. 2) that are “distant enough” are neglected
(yielding a sparse matrix ; e.g. Fig. 3) and the full system matrix of the BIE does not have
to be assembled, which is typically the most time consuming part of the NWT, as it has
a O(N2) complexity. More specifically, to decide how to approximate (or even neglect)
interactions, the FMM uses a divide-and-conquer strategy based on the distance between
two points which is detailed in Fig. 2. Importantly, by assigning intermediate points
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Figure 2 – The BEM problem can be considered as the interaction of many elements
(triangles, above) and nodes (circles), independent of the mesh information. Given a
partitioning of the grid, the BEM coefficients between a group of elements and nodes are
computed with the FMM approximation when the center xJ of the group of elements and
the center xI of a group of nodes are far from each other, relative to the size of each group,
RI and RJ , comparing this relative distance, ‖xI − xJ‖/(RI + RJ), against a multipole
acceptance criterion, θ, resulting in : (a) local computations where all interactions are
computed by P2P (traditional BEM) ; (b) distant computations where all interactions are
computed by multipole approximation, through P2M, M2L, and L2P operations.

(e.g., the centers of groups of nodes or elements of the boundary mesh) and applying the
binomial theorem, we are able to manipulate multipole coefficients that only need to be
computed once, instead of directly evaluating the BIE between each element and node.

Thus, in the FMM algorithm, for a cell (i.e. group) CJ containing a list of elements j,
with a cell center xJ , we first construct the coefficients of the multipole series Mmx,my ,mz

(0 ≤ mx + my + mz ≤ P ) of order P for all elements j (P2M) in the cell, based on
introducing Eq. 9 into the BIE (Eq. 6), as,

Mmx,my ,mz(xJ) =
∑

j:xj∈CJ

1

mx!my!mz!

∫ ([
(xJ − x)mx(yJ − y)my(zJ − z)mz

]∂φ
∂n

− ∂

∂nx

[
(xJ − x)mx(yJ − y)my(zJ − z)mz

]
φ

− ∂

∂ny

[
(xJ − x)mx(yJ − y)my(zJ − z)mz

]
φ

− ∂

∂nz

[
(xJ − x)mx(yJ − y)my(zJ − z)mz

]
φ
)
dΓj (10)

Next, these multipole expansions are transformed into local expansions which correspond
to the coefficients of a polynomial which approximates the BIE of a distant region. This
is called the multipole to local (M2L) operator :

Lkx,ky ,kz(xI) =

mx=P−kx
my=P−ky
mz=P−kz∑

mx=my=mz=0

[(
∂

∂x

)mx+kx ( ∂

∂y

)my+ky ( ∂

∂z

)mz+kz

G(xI ,xJ)

]
Mmx,my ,mz(xJ) (11)
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(a)

(b)

Figure 3 – (a) Typical domain for BEM calculations ; and (b) local system matrix struc-
ture, showing the non-zero values computed in the assembly phase of the Laplace solver,
with values in red and blue corresponding to that computed on the first and second
processors, for a problem split into two.

Finally, this local expansion (L2P) is evaluated as :

Φ(xi) =

kx+ky+kz=P∑
kx=ky=kz=0

(xi − xI)kx(yi − yI)ky(zi − zI)kz
kx!ky!kz!

Lkx,ky ,kz(xI) (12)

BEM coefficients are computed with the FMM approximation when cells of boundary
elements, with center xJ and cell radius RJ , and cells of observation points, with center
xI and cell radius RI , are far from each other, based on a multipole acceptance criterion,
‖xI − xJ‖/(RI +RJ) > θ (Fig. 2). The resulting error is thus O(θP ).

In our model, we use the ExaFMM library [22], which computes all FMM interactions
with a nearly order N scaling and has an efficient parallel implementation. Calculating
interactions with Eq. 10 is in fact the only modification we make to the existing FMM
algorithm, and this only requires integrating a polynomial expression on a BEM element.

III – Applications

III – 1 Scaling of Laplace solver

Typically, the computational time of the FMM scales as O(N), and is faster than a
direct calculations (which require O(N2) time with the best iterative solver) for problem
sizes more than a few thousand unknowns. Several variations of the parallel FMM have
been developed [22], but they generally rely on domain decomposition, where each proces-
sor first applies the FMM on some region of space, and then the results being combined.
While this permits good scaling to hundreds of processors for a billion unknowns [23],
for boundary element problems that require high accuracy, where one might have 105

unknowns and 102 processors, the approach described above, referred to as single-level
FMM, can scale much more efficiently. This was shown by Waltz et al. [21] who compared
it with many other parallelization attempts of the FMM-BEM and is due to the fact that
while the number of unknowns is large enough for the FMM to be efficient, the number
of unknowns per processor is low.

As the NWT domain moves at each time step, and the performance of the FMM de-
pends on the geometry of the problem, to study more precisely the scaling of its numerical
solution, we consider the two main phases of an iterative solver : (sparse) matrix assembly
of the local system (e.g., Fig. 3), and a matrix-vector product that involves the FMM. We
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Figure 4 – FMM-BEM scaling of the assembly and matrix-vector products used in
the iterative solution of the Laplace equation for a mesh with quadrangular elements
and 79,202 nodes, with varying number of CPUs, M . The grid is partitioned into 1,024
subdomains, with θ = 0.4 and a 15th order FMM expansion ; 100 integration points were
used on each element.

do not consider the entire solver at once, as the number of iterations changes slightly with
problem geometry and size, but is not affected by the parallelization ; typically around
100 iterations are required to converge to a solution, however.

If we take a quadrangular grid of 79,202 nodes, with dimensions 4.0× 2.0× 0.5 (cor-
responding to a box of dimensions similar to that found in a wave propagation problem ;
e.g., Fig. 3a), partitioned into 1,024 subdomains, we are able to show good scaling up to
M = 128 processors (Fig. 4). Further study of the individual routines shows that each
routine scales well with the division of computations between different processes, but
eventually the amount of communication between processors penalizes the computational
time for the matrix-vector product computations and the scaling with M deteriorates.

III – 2 Internal velocities

Based on the boundary integral equation (Eq. 6), which directly computes the velocity
potential, we can write a similar BIE for the internal velocity :

u = ∇φ(xi) =

∫ [
∂φ

∂n
(x)Q(x,xi)− φ(x)

∂Q

∂n
(x,xi)

]
dΓ (13)

where we have :

Q(x,xi) =
r

4π‖ri‖3
(14)

∂Q

∂n
(x,xi) = − 1

4π

n− 3(ri · n)(r/‖r‖2)
‖ri‖3

(15)

which can be solved with the same method as used for the boundary solution.
One application of the computation of internal velocities from this NWT can be seen

in certain types of model coupling (e.g., Harris and Grilli [13]). In order to verify that
the solution produced is accurate, let us consider the flow around a Karman-Trefftz foil.
In two dimensions (2D) the solution can be analytically expressed based on a conformal
mapping :

Z = nλ
(1 + λ

z
)n + (1− λ

z
)n

(1 + λ
z
)n − (1− λ

z
)n

(16)
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which maps a cylinder of radius r centered at s on the horizontal axis x to a symmetric
foil, where n = 2−β/π, with β the angle at the trailing edge, and λ = r+s ; selecting r = 1
and the foil center at s = −0.045 we have β = 8o. We consider a rectangular domain, with
extension −100 < x < 100, −100 < y < 100, and solves this 2D flow in three dimensions
in our model, using a transverse direction extending from, −15 < z < 0. Discretizing this
domain with 15,488 quadrangular elements, and using 15th-order multipole expansions,
we computed the internal velocity with Eq. 13 at 10,000 points located near the foil
surface. Comparing the numerical results to the analytical solution we found maximum
errors in velocity of 0.45%, occurring at the very tip of the foil on the boundary, and a
L2-error of 10−6 over the entire internal points (Fig. 5).

Figure 5 – Errors of velocities computed for flow around a Karman-Trefftz foil, using a
grid of 15488 quadrangular elements.

III – 3 Wave-structure interaction

For time dependent problems such as wave-structure interaction, at any given time,
the BEM solution provides both the velocity potential and its normal derivative on the
computational domain boundary, as discrete values at the N (collocation) points of the
grid. This solution (both geometry and boundary condition) is then advanced in time on
the free surface by integrating the free surface boundary conditions, Eq. 4 and 5. Similar
to Grilli et al. [9, 7], this in done using two explicit second-order Taylor series expansions
for the boundary geometry and potential. Some quantities in these expansions (such as
the velocity) require computing derivatives of the solution along the free surface mesh. For
a given boundary point, this is done by averaging the values of the derivatives computed
in all intersecting neighboring elements.

As an example, we consider the interaction of deep water nonlinear periodic waves
with a bottom-mounted vertical cylinder, as tested by Huseby and Grue [14] in their
laboratory experiments. They generated incident waves by a piston wavemaker and placed
the cylinder sufficiently far from it for the hydrodynamic force to be accurately measured,
before spurious waves arrived (i.e., re-reflected by the wavemaker). In the NWT, similar to
other authors [5, 19], we specify incident nonlinear periodic waves (as in other applications
above), rather than model wave generation by the wavemaker itself. We simulate a range
of wave steepness kA, for a cylinder of radius R, such that kR = 0.245 (Fig. 7), where
waves have an amplitude A, a wavenumber k = 2π/λ, with λ is the wavelength. Similar
to Grilli and Horrillo’s [8] 2D-NWT, fully nonlinear periodic waves are generated in the
3D-FNPF-NWT by specifying their kinematics on the NWT’s leftward boundary (Fig.
1), based on the streamfunction wave theory [3]. As in [8], these are generated over an
opposite current with a velocity that is iteratively computed to create waves with a period-
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Figure 6 – Snapshot of wave diffraction around bottom-mounted cylinder, computed
in the present NWT, after achieving a quasi-steady state (t > 6T ). Incident waves are
(zero-mass-flux) streamfunction waves in deep water, with kA = 0.15 and kR = 0.245.

averaged zero-mass-flux ; this allows creating the equivalent of an impermeable wavemaker
boundary and keeping the mean NWT volume constant (except for numerical errors).

In the NWT, the computational domain is similar to that shown in Fig. 1, with
dimensions 4.04λ × 0.93λ × 0.5λ, a one-wavelength long AB, and a discretization with
N = 23, 827 collocation nodes and M = 47, 686 triangular elements (Fig. 6) ; 8 wave
periods are simulated. Note, the NWT depth does not exactly correspond to that in
experiments, but since deep water incident waves are modeled, this should not affect the
force computation. When simulations reach a quasi-steady state, for t > 6T , we compute
the horizontal force f(t) acting on the cylinder, and compare the amplitudes of its first
three harmonics, for t/T = 6 to 8, to those of the experimentally measured force.

Fig. 7 shows a good agreement of numerical results with experiments, particularly for
the first and third harmonics, with larger errors for the second harmonics, although the
expected trend with kA is observed. The discrepancy in the second-order harmonics was
also found in other numerical results (e.g., [5]).

III – 4 Flow past a surface-piercing foil

Next we consider the flow past a vertical surface-piercing NACA 0024 foil advancing
with velocity U , at moderate Froude numbers Fr = 0.19 and 0.37, and compare numerical
results with the experimental data of Metcalf et al. [18]. In the NWT we computed the flow
past moving bodies, such as ships, in a relative axes, i.e., as a current moving past the bo-
dies. This requires adjusting the free-surface boundary conditions Eqs. 4 and 5 to include
the change of reference frame ; here we assumed a velocity ramp-up, U(t) = U0 tanh t,
which gradually reaches a steady-state flow with uniform velocity U0 in the x direction.
Due to instabilities found when applying the second-order Taylor series integration for
time-stepping, we follow the work of Buchmann [2] and consider an explicit-implicit Euler
time-stepping scheme, similar to that used in the industrial code Aegir [15], where the
kinematic free surface condition is satisfied through an explicit Euler time stepping, and
the dynamic free surface condition is satisfied through an implicit Euler time stepping.

Further, as described in other NWTs (e.g. [20]), it was found that small instabilities
occurred at the waterline, so we applied a simple smoothing algorithm to the free-surface
at each time step. Considering the primitive filtering applied, we results shown in Fig. 8
for the free surface elevation appear reasonable as compared to experiments. The largest
differences are seen in the area of the wake observed in experiments, which result from
turbulent effects not represented in the potential flow model. Notably, small breaking
waves appear for the largest Froude number (Fr = 0.37) that need to be damped ; the
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Figure 7 – Nondimensional amplitude of first- through third-order harmonic of the hori-
zontal hydrodynamic force f(t) applied to a bottom-mounted cylinder of radius R, com-
puted for deep water periodic waves of wavenumber k, for different wave steepnesses kA,
for kR = 0.245, in : (◦) Huseby and Grue’s [14] experiments ; and (•) the present NWT.

inclusion of a smoothing of the velocity potential and free-surface elevation enables the
model to produce reasonable wave profiles as well as pressures on the foil, but the strength
of the damping needs to be calibrated using some physical criterion. Presently however
ad hoc values are applied, resulting in too much damping of short waves and the wake far
from the body, but too little damping at larger Froude numbers.

IV – Summary

In this paper, we detailed and illustrated recent advances in the implementation of
a numerical wave tank (NWT), which efficiently solves fully nonlinear potential flows
(FNPFs) using a FMM-BEM ; in particular regarding scaling of the numerical solution
with problem size N and number of processors M in a parallel implementation. We pre-
sented results for simple flows past a submerged foil and wave-structure interaction (for
fixed and moving surface piercing bodies). Internal velocities are efficiently computed by
applying the same FMM-BEM approach, which could be used as part of the coupling of
the NWT to other (e.g., Navier-Stokes) models in a perturbation approach solving the
complete problem ; this is the object of a companion paper at the conference (O’Reilly et
al.). By extending the NWT formulation to a moving coordinate systems and (later) to
arbitrary geometries, we will be able to handle a more complex variety of applications of
particular interest to Naval Hydrodynamics and ocean engineering. Specifically, although
present results were obtained only for linear elements, the overall method is in the pro-
cess of being extended to higher-order elements (e.g. [17]), which can be achieved without
fundamental changes in the NWT formulation. Further examples and more recent results
will be shown at the conference.
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Figure 8 – Comparison of experimental data from Metcalf et al. and NWT results for
free-surface elevation produced by a surface-piercing vertical NACA 0024 foil moving at
different Froude numbers (Fr = 0.19 (left) ; 0.37 (right)).
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