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a b s t r a c t

The purpose of this work is to develop advanced numerical tools for modeling two-way fully nonlinear

interactions of ocean surface waves (irregular waves in the general situation) with submerged

structures undergoing large amplitude motion, that could represent Wave Energy Converters (WECs).

In our modeling approach, an existing two-dimensional Numerical Wave Tank (NWT), based on

potential flow theory, is extended to include a submerged horizontal cylinder of arbitrary cross-section.

The mathematical problem and related numerical solution are first introduced. Then, conservation of

volume and conservation of energy are checked, respectively, in the case of a circular cylinder in a

prescribed large amplitude motion and in the case of a circular cylinder in a free motion. Interactions

between waves and a submerged circular cylinder computed by the model are then compared to

mathematical solutions for two situations: a cylinder in prescribed motion and a freely moving

cylinder.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years there has been a renewed interest in using
ocean renewable energy and, in particular, wave energy. To do so,
many types of Wave Energy Converters (WECs) have been
proposed, and some were constructed and tested. The so-called
point-absorbers are a class of WECs that harvest the wave-
induced motion of oscillating submerged bodies (see, e.g., the
CETO system [1]). Such bodies can be located quite close to the
free surface and hence may undergo large amplitude motion. In
these situations numerical models based on assuming small
amplitude motions, either of the free surface elevation, the body
dynamics, or both, may not properly represent the dynamics of
the coupled system. In the present study, we develop and
implement a numerical model, solving two-way nonlinear
wave–body interactions, which could then be applied to simulat-
ing WEC behavior in real (irregular) sea-states. As a first step in
this project, we implement and validate a two-dimensional (2D)
model for a horizontal submerged cylinder of arbitrary cross-
section. Future work will report on the three-dimensional imple-
mentation of this model and its application to more realistic
submerged bodies.
ll rights reserved.
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Many papers have been dedicated to the analytical, numerical
and experimental study of the nonlinear response of submerged
circular cylinders. Chaplin [2], for instance, experimentally stu-
died in a wave tank the influence of the Keulegan–Carpenter
number on the nonlinear wave force applied to a fixed submerged
cylinder. More recently, Wu [3] formulated a mathematical model
to calculate the forces exerted on a submerged cylinder under-
going large-amplitude motions. In [3], the no-flow boundary
condition on the submerged body was satisfied on its instanta-
neous position, while the free surface condition was linearized.
The solution for the velocity potential is expressed in terms of a
multipole expansion. In particular, Wu obtained results for a
circular cylinder in prescribed motion in a wave field: purely
vertical motion and clock-wise circular motion [3]. Such studies
were later used to validate results of numerical models based on
potential flow theory. Among others, Cointe [4] compared numer-
ical results from his Fully Nonlinear Potential FLow (FNPF) model
to Chaplin’s experiments. Kent and Choi [5] used a High-Order
Spectral Method (HOS) and compared their results to both Wu’s
theory and Chaplin’s experiments. Koo and Kim [6,7] used a 2D
Numerical Wave Tank (NWT) to study fully nonlinear wave–body
interactions for various surface piercing bodies. They used the
method of the acceleration potential introduced by Tanizawa [8]
to compute the time derivative of the potential @f=@t (this is
detailed later). This method has also been applied by Sung and
Choi [9] to compute the nonlinear radiation of water waves by a
surface piercing body and by Yim and Tanizawa [10], who
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Fig. 1. Sketch of computational domain O of 2D-NWT, and its boundaries.
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compared results from their 2D-FNPF model to experiments
performed on a moored submerged sphere, subjected to waves.
In their 2DV simulations, the sphere is converted to an equivalent
horizontal cylinder. Other numerical tools based on the Finite
Element Method (FEM) to solve the Navier–Stokes equations were
used for example by Tavassoli and Kim [11,12] to analyze the
interactions between nonlinear waves and a circular cylinder in a
viscous 2D-NWT.

The numerical simulations reported here are also performed
using a 2D-FNPF model, which is an extension of Grilli et al.’s
Boundary Element Model (BEM) code, developed over the past 20
years to simulate processes of wave generation, propagation and
interaction with structures, and dissipation through breaking or
absorption in a numerical beach (e.g., [13–15]). The latter pro-
cesses take place both in the field and laboratory tanks; this has
led such models to be referred to as Numerical Wave Tanks
(NWTs). Specifically, we use the NWT to simulate strongly non-
linear interactions (i.e., induced motions and forces) between
wave-induced flows and a submerged body representing a WEC
section, slackly moored on the ocean bottom. To achieve high
accuracy of the solution and thus to perform long term simula-
tions without need for smoothing or filtering of the solution, we
use higher order boundary elements and very accurate numerical
integration methods. An absorbing beach combining an ‘‘absorb-
ing pressure’’ on the free surface and a lateral absorbing piston
wavemaker allows to achieve negligible reflection in the NWT.
Various ways of generating waves are available, including flap or
piston wavemakers, and exact nonlinear waves (both periodic
streamfunction waves, and solitary waves). Wavemakers can also
be used to generate nonlinear random waves, based on a specified
energy spectrum. A feedback control loop allows to iteratively
modify the wavemaker stroke spectrum to obtain an accurate
realization of the target wave spectrum. While random waves can
be generated, the present work, which is aimed at establishing the
overall properties of convergence and accuracy of the model,
focuses on nonlinear interactions of a cylindrical structure with
monochromatic periodic waves.

Second-order Taylor series expansions, expressed in an Euler-
ian–Lagrangian formulation, are used to update the free surface
potential and elevation to the next time step, as well as the
position of the absorbing wavemaker at the far end of the NWT.
This requires solving two BEM problems at each time step, one for
the potential and one for its time derivative (the latter allows for a
straightforward calculation of pressure on all boundaries, includ-
ing on the submerged structure/WEC). In the case of freely
moving bodies, the specification of the time derivative of the
potential on the body surface, requires solving an additional
Boundary Integral Equation (BIE). This is done using the so-called
implicit method introduced by Van Daalen [16], which is similar to
the acceleration potential method of Tanizawa [8]. This method is
very effective since both body motion and adjacent fluid velocity
are simultaneously solved [8,6].

In the remainder of this paper, we first present in Section 2 the
mathematical formulation of the model and then in Section 3 its
numerical implementation. This is followed in Section 4 by a
comprehensive assessment of the model convergence and accu-
racy, by analyzing errors on energy and mass conservation for a
series of applications, as compared to a reference solution. Section
5 presents more realistic simulations, where numerical results are
compared to theoretical results.
2. Mathematical formulation

Equations for the two-dimensional FNPF model are briefly
presented in the following (see [13–15,17] for details).
2.1. Hydrodynamic model

The velocity potential fðx,tÞ is used to describe the irrotational
flow of an inviscid fluid in the vertical plane (x,z) and the velocity
is defined by u� ðu,wÞ ¼rf. Mass conservation in the fluid
domain OðtÞ, with boundary GðtÞ, is expressed as a Laplace’s
equation for the potential (Fig. 1)

Df¼ 0 in OðtÞ ð1Þ

From this equation, a second Laplace’s equation is easily
derived for the time derivative of the potential ft � @f=@t

Dft ¼ 0 in OðtÞ ð2Þ

As will appear later, accurate values of ft are needed both to
compute second-order terms in the time-integration of the free
surface boundary geometry and potential, and for specifying
boundary conditions on submerged moving bodies. In the former,
using ft and its spatial derivatives ensures a higher accuracy and
stability, thereby eliminating the need for filtering or smoothing
on the free surface. In the latter, ft allows computing the pressure
p along the body boundary GcðtÞ, which depends on ft . As will be
detailed later, this is key to dealing with freely moving bodies
with high amplitude motion. As reported by several authors (e.g.,
[4,6]), using backward finite difference schemes to compute ft is
not sufficiently accurate and leads to numerical instabilities.
The solution of Laplace’s equations (1) and (2) requires well-
posed Dirichlet–Neumann boundary conditions, which are
detailed in the next subsections. Note, for simplicity, in the
following, all partial derivatives of the potential will be indicated
by subscripts. For example, fn will stand for @f=@n�rf � n and
ftn for @2f=@t@n.

2.2. Free surface boundary conditions

On the free surface Gf ðtÞ, f satisfies the kinematic and
dynamic boundary conditions

Dr

Dt
¼

@

@t
þu � r

� �
r¼ u¼rf on Gf ðtÞ ð3Þ

Df
Dt
¼�gzþ

1

2
rf � rf�

pa

r on Gf ðtÞ ð4Þ

respectively, with r ¼ ðx,zÞ, the position vector on the free surface,
g the gravitational acceleration, z the vertical coordinate, pa the
atmospheric pressure at the free surface, and r the fluid density.
Using Eqs. (3) and (4) to integrate in time the free surface position
and the free surface potential ff , a Dirichlet boundary condition
on Gf ðtÞ can be specified for the Laplace problem (1) for f

f¼ff on Gf ðtÞ ð5Þ

Once the latter is solved, Eq. (4) yields a Dirichlet boundary
condition on Gf ðtÞ for the Laplace problem (2) for ft

ft ¼ff
t ¼�gz�

1

2
rf � rf�

pa

r
on Gf ðtÞ ð6Þ
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2.3. Bottom and lateral boundary conditions

Along the stationary bottom Gb, a no-flow condition is pre-
scribed as a homogeneous Neumann condition for both problems
for f and ft

fn ¼ 0 and ftn ¼ 0 on Gb ð7Þ

On the leftward boundary of the NWT, Gr1, periodic or
irregular waves are generated by an oscillating piston or flap
wavemaker. An exact wave generation for periodic progressive
waves, based on the stream-function wave theory, can also be
specified, together with a zero-mass flux condition [15]. On the
rightward side of the tank, an absorbing beach (AB) is implemen-
ted to reduce wave reflection from the far end boundary Gr2. More
precisely, an artificial counteracting pressure is applied over a
given distance in the dynamic free surface condition (Eq. (4)),
which creates a negative work against incident waves. In addition,
a piston-like absorbing boundary condition, first introduced by
Clément [18], is specified on boundary Gr2. These methods of
generation and absorption of waves lead to Dirichlet or Neumann
boundary conditions for the two Laplace problems that will not be
detailed in the present article. For more information, see Grilli and
Horrillo [15].

2.4. Body boundary conditions

The 2D-NWT originally developed by Grilli et al. was modified
to include totally submerged rigid bodies, under the free surface.
Two situations were successively considered, the case of a body:
(i) in prescribed motion (including the case of a fixed body) and
(ii) undergoing ‘‘free’’ motion (under the effects of various forces
applied to it). Boundary conditions for each case are detailed next.

2.4.1. Body in prescribed motion

When the body motion is specified, the boundary condition on
the body surface is simply expressed as a Neumann condition for
the potential

fn ¼ _x � n on GcðtÞ ð8Þ

where _x is the velocity for points on the body boundary, which is
known when the motion of the body is prescribed.

Another Neumann condition for ftn is specified on the body
boundary, to solve for ft . Following Cointe [4], Grilli and Svend-
sen [17], Van Daalen [16], or Tanizawa [8], this reads as

ftn ¼ €x � nþnðxÞ on GcðtÞ ð9Þ

with n, a local quantity defined at point x of the body boundary
GcðtÞ, expressed here for 2D problems as

nðxÞ ¼ ð _x � s�fsÞ
_yG�

1

R
fsþfsn

� �
_x � sþ fss�

1

R
fn

� �
_x � n ð10Þ

where 1/R is the local curvature of the boundary, n and s are the
local normal and tangential vectors, €x and _yG are the body
acceleration and angular velocity with respect to the center of
mass G, respectively. Boundary conditions (Eqs. (8) and (9)) are
similar to the boundary conditions specified for the generation of
waves by a flap-type wavemaker [19,15]. Various results will be
presented in Sections 4.1 and 5.1, for a submerged circular
cylinder in forced vertical motion.

2.4.2. Freely moving body

This is the case of a loosely tethered or slackly moored
submerged body subjected to wave action. In this case, the body
kinematics needed in Eqs. (8)–(10) is not a priori known. Hence, _x,
€x and _hG must be computed by solving a coupled fluid–structure
interaction problem, in which equations for the fluid and body
motion are simultaneously solved. In this case, Eq. (9) also cannot
be directly used as an explicit boundary condition to solve the
Laplace problem for ft , but first needs to be formulated differently.

Assuming a body of mass M and moment of inertia I about its
center of mass G, the dynamic equations governing body motion
read as

M €xG ¼

Z
Gc

pn dGþMgþFext ð11Þ

I €hG ¼

Z
Gc

pðr � nÞ dGþMext ð12Þ

where €xG is the body center of mass acceleration, Fext is the
resultant of applied external forces, which essentially damp body
motion (e.g., viscous drag, mooring and power take-off), Mext the
resulting moment of those forces about the center of mass, and r
is the position of a point on the body boundary with respect to the
center of mass. Finally, in these equations, pressure p along the
body boundary is given by the (nonlinear) Bernoulli equation

p¼�rðftþ
1
2rf � rfþgzÞ ð13Þ

The main difficulty for computing this pressure is that both ft

and ftn are unknown at any given time along GcðtÞ, since these
depend on body motion. Several strategies have been proposed to
overcome this difficulty: (i) a mode decomposition method first
proposed by Vinje and Brevig [20] and then used by, e.g., Cointe
[4] and Koo and Kim [6]; (ii) the iterative method of Sen [21] and
Cao et al. [22]; (iii) the indirect method of Wu and Eatock-Taylor
[23]; and (iv) the implicit method of Van Daalen [16] and
Tanizawa [8].

The implicit method is selected here, as it does not require
iterations and there is no need to introduce any artificial poten-
tial. The principle of it is to express an additional relation between
ft and ftn along GcðtÞ, on the basis of the rigid body kinematics,
which provides a relationship between €x, €xG and €hG

€x ¼ €xGþ
€hG � rðxÞþ _hG � ð

_hG � rðxÞÞ ð14Þ

Replacing €x from Eq. (14) into Eq. (9), and p from Eq. (13) in
Eqs. (11) and (12), Van Daalen and Tanizawa both derived a
similar BIE on GcðtÞ

ftnðxÞþ
Z
Gc

Kðx,nÞftðnÞ dGn ¼ gðxÞ on GcðtÞ ð15Þ

in which the kernel function Kðx,nÞ is regular and symmetric and
only depends on the rigid body geometry (i.e., is valid for all
times)

Kðx,nÞ ¼
1

M
nðxÞ � nðnÞþ

1

I
rðxÞ � nðxÞð Þ � ðrðnÞ � nðnÞÞ ð16Þ

and

gðxÞ ¼ �
Z
Gc

1

2
rfðnÞ � rfðnÞþgzðnÞ

� �
Kðx,nÞ dGn

�ð _hG �
_hGÞrðxÞ � nðxÞþnðxÞþg � nðxÞ

�
1

M
Fext � nðxÞþ

1

I
Mext � ðrðxÞ � nðxÞÞ ð17Þ

Eqs. (11)–(17) are the governing equations off a freely moving
body, totally of partially submerged under the free surface.

2.5. Intermediate conclusions

Whether the submerged body undergoes a specified or free
motion, the Laplace problem for f has complete boundary
conditions, using Eq. (5), (7) and (8) on Gf ðtÞ, Gb and GcðtÞ,
respectively. Details of boundary conditions used for wave gen-
eration and absorption on Gr1 and Gr2 can be found in [15]. When
the motion of the submerged body is specified, the Laplace
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problem for ft has complete boundary conditions, using Eqs. (6),
(7) and (9) on Gf ðtÞ, Gb and GcðtÞ, respectively. However, when the
body is freely moving, Eq. (9) cannot be used on GcðtÞ. Instead, the
BIE (15) is used, which yields a mathematically well-posed
Laplace problem for ft .
3. Numerical implementation

Both Laplace problems, discussed above, are solved at any
given time t using a BEM in domain geometry OðtÞ. Given such a
solution, both domain geometry and boundary conditions are
then updated to time tþDt, where Dt denotes a small time step.
Specifically, time updating involves:
�
 for the fluid: the free surface elevation and potential, and the
lateral boundaries geometry and kinematics (e.g., generating
and absorbing wavemakers),

�
 for the rigid submerged body: the position (defined by that of

its center of mass and angle of rotation around the latter) and
velocity of BEM nodes distributed along its boundary.

The updated positions of various boundaries thus define a new
geometry OðtþDtÞ for the fluid domain. The three next subsec-
tions briefly describe the numerical solution of the Laplace
problems, the time updating of the free surface, and that of the
freely moving body.

3.1. Numerical solution of Laplace problems for f and ft

Green’s second identity is applied to transform Eqs. (1) and (2)
into BIEs, which are solved by a BEM. Thus, for a set of N

discretization nodes xl on boundary G

aðxlÞuðxlÞ ¼

Z
Gn

@u

@n
G�u

@G

@n

� �
dGþ

Z
Gd

@u

@n
G�u

@G

@n

� �
dG, l¼ 1, . . . ,N

ð18Þ

with u denoting either the unknown f or ft values, and u,@u=@n,
values prescribed by the boundary conditions. Gn refers to all
boundary sections where @u=@n is specified (Neumann condi-
tions), Gd to all boundary sections where u is specified (Dirichlet
conditions), and aðxlÞ is a geometric coefficient. We denote by
G� Gðx,xlÞ the free space Green’s function of Laplace’s equation in
2D

G¼�
1

2p
ln r

@G

@n
¼�

1

2p
r � n

r2
ð19Þ

with r¼ 9r9¼ 9x�xl9 the distance from the integration point x to
the collocation point xl. Eq. (18) are then solved by the BEM,
successively for f and ft . To do so, various integrals are
discretized by defining M higher order elements to interpolate
in between discretization nodes. In the present applications,
quadratic isoparametric elements are used on lateral, bottom,
and body boundaries. Cubic elements are used on the free surface.
In order to ensure continuity of the surface slope, in these so-
called Mixed Cubic Interpolation (MCI) elements, geometry is
modeled by cubic splines and field variables are interpolated
between each pair of nodes, using the mid-section of a four-node
‘‘sliding’’ isoparametric element. Expressions of BEM integrals
(regular, singular, quasi-singular) are given in Grilli et al. [13],
Grilli and Svendsen [17], and Grilli and Subramanya [24,14], for
isoparametric and MCI elements.

We now consider the specific implementation of the solution
for the two Laplace problems, depending on the type of motion of
the submerged body. The body boundary GcðtÞ acts as a moving
boundary akin to a wavemaker, within the computational domain
O, whose motion at each time step is either known from a
specified motion or unknown for a freely moving body.

3.1.1. Body in prescribed motion

In this case, Neumann boundary conditions are explicitly
specified at each time step, along the body boundary GcðtÞ, for
both Laplace problems for f and ft (see, Eqs. (8) and (9)). For
each problem, the set of discretized BIEs (Eq. (18)) yields a linear
algebraic system of equations of dimension N � N, whose solution
(here, using Khaletski’s direct elimination technique [13]), pro-
vides (f, fn) and (ft , ftn) on the entire boundary. Based on these,
the free surface position and potential are time-updated to the
next time step (this is detailed in the next section). The body
boundary position and velocity are then simultaneously time-
updated, based on the known prescribed motion.

3.1.2. Freely moving body

In this case, both the position and velocity of nodes on the
body boundary GcðtÞ at current time t are assumed to be known
from time-updating values from the previous time step. The
Neumann boundary condition (8) on GcðtÞ for the first BIEs on
(f, fn) is thus explicitly known, and this first problem is solved as
for the prescribed motion case. However, both ft and ftn, which
are required for the Neumann condition of the second BIE for
ðft ,ftnÞ, remain unknown along GcðtÞ. As detailed in Section 2.4.2,
a second BIE (15) is added to the original BIE (18) for (ft , ftn) so
that the number of equations equals the number of unknowns.
This new system of BIEs yields an algebraic system of ðNþNcÞ

linear discretized equations with ðNþNcÞ unknowns, where Nc is
the number of nodes on the body boundary GcðtÞ. This system is
solved using the same direct Khaletski elimination technique. In
most cases, for bodies with relatively simple geometry, Nc is no
more than 10% of N so that the extra computational cost incurred
by solving this larger linear system is quite marginal. As for the
case of a prescribed motion, both the free surface position and
potential can then be time-updated. This is detailed in the two
following sections.

Finally, knowing ft along GcðtÞ makes it possible computing
the pressure p using Eq. (13), which through Eqs. (11) and (12)
yields the body center of mass accelerations €xG and €yG (taking
into account all other externally applied forces and moments).
These can be integrated in time to yield the position and velocity
of the body boundary nodes at the next time step.

3.2. Time-updating of the free surface geometry and kinematics

Free-surface geometry and potential are explicitly time-
updated based on two second-order Taylor series expansions,
expressed in terms of a time step Dt and of the successive
Lagrangian time derivative D=Dt, of f and r (see, e.g., [13])

rðtþDtÞ ¼ rðtÞþDt
Dr

Dt
ðtÞþ

Dt2

2

D2r

Dt2
ðtÞ

fðtþDtÞ ¼fðtÞþDt
Df
Dt
ðtÞþ

Dt2

2

D2f
Dt2
ðtÞ ð20Þ

First-order coefficients in these series are identical to the free
surface conditions (3) and (4), in which f and fn are obtained
from the solution of the BIE for (f, fn) at time t. Second-order
coefficients are expressed as D=Dt of Eqs. (3) and (4), and
calculated using, additionally, the solution of the second BIE for
(ft , ftn), for which boundary conditions are obtained from the
solution of the first problem, and also from the treatment of the
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submerged body detailed before. Detailed expressions for the
Taylor series are given in Grilli et al. [13]. In our simulations, the
time step Dt is adjusted at each iteration, depending on an
optimal Courant number C0 (chosen about 0.45 based on [17])
and the minimal distance Drmin between two nodes on the free
surface, as

Dt¼ C0
Drminffiffiffiffiffiffi

gd
p ð21Þ

where d is the local water depth. The accuracy and stability of this
explicit scheme was found so high that no filtering or smoothing
was needed on the free surface, even after thousands of time
steps. More details about the stability and convergence of the
time integration scheme of the hydrodynamic solver, as well as a
detailed review of 2D applications can be found in [19].

3.3. Time-updating of a freely moving body position and kinematics

To update the position and velocity of the body center of mass
to the next time step, Eqs. (11) and (12) are time-integrated based
on a Newmark scheme [25], which was retained among a series of
methods because of its accuracy and stability. This scheme reads,
for the case of Eq. (11)

_xðtþDtÞ ¼ _xðtÞþDt½ð1�gÞ €xðtÞþg €xðtþDtÞ�

xðtþDtÞ ¼ xðtÞþDt _xðtÞþDt2½ð12�bÞ €xðtÞþb €xðtþDtÞ� ð22Þ

where parameters were selected as g¼ 1=2 and b¼ 1=4, corre-
sponding to the so-called average acceleration method, which is
unconditionally stable for linear systems. As €xðtþDtÞ is unknown,
this scheme is implicit and iterations are required. A predictor–
corrector loop is used to converge to the value of the hydro-
dynamic pressure force at the next time step, using as an initial
value a fourth-order polynomial extrapolation based on quanti-
ties calculated at the five previous time steps. If we define the
relative difference between two successive sub-iterations, i�1
and i, of the hydrodynamic pressure force FpðtþDtÞ at the next
time step as

EF ðtÞ ¼
F i

pðtþDtÞ�F i�1
p ðtþDtÞ

F i�1
p ðtþDtÞ

					
					 ð23Þ

a 10�6 convergence is generally obtained after two sub-iterations.
An example of the required number Ni of sub-iterations for the
convergence of the hydrodynamic pressure force will be pre-
sented in the next section for a numerical application (see Fig. 8).
d = 1 m

2A

L = 4

−4λ/3 −2λ/3

z

Fig. 2. Sketch of problem geometry for a cylinder of radius R¼0.1 m in forced heaving
4. Energy and volume conservation

In this section, we assess the convergence and accuracy of the
2D-NWT results, for a submerged cylinder in a: (i) forced heaving
motion in a water volume initially at rest or (ii) free heaving
motion in waves. In case (i) conservation of the fluid volume is
checked at each time step, whereas in case (ii) conservation of
both cylinder energy and fluid energy, and conservation of fluid
volume are checked for the coupled computations detailed above.

4.1. A cylinder in a specified heaving motion

A cylinder of radius R¼0.1 m is initially submerged at a
position zc ¼ z0 under the free surface at rest, in the middle of a
2D-NWT of depth d¼ 10R¼ 1 m with lateral reflective vertical
walls (Fig. 2). The cylinder is gradually accelerated into periodic
heave (i.e., vertical) motion of amplitude A¼R and period T,
centered on its initial position zc. The motion of the cylinder
generates symmetric waves of wavelength l, moving in both
leftward and rightward directions. The total length of the wave
tank is taken to L¼ 4l with the cylinder located at mid length
xc ¼ L=2.

Four cases were successively computed, for two submergence
depths z0 ¼�5R¼�0:5 m and z0 ¼�4R¼�0:4 m, and two peri-
ods of oscillation T¼0.5 and 0.8 s, corresponding to linear wave-
lengths l¼ 0:39 and 1.00 m, respectively, based on the linear
dispersion relationship

l¼
gT2

2p tanh
2pd

l

� �
ð24Þ

All simulations were conducted over a duration of 40 periods
of oscillation. For a given wavelength, as the mean elevation of
the cylinder comes closer to the free surface (z0 gets closer to
zero), the height of generated waves increased and nonlinear
effects became more significant. Note that z0 was kept sufficiently
low to prevent waves from overturning over the cylinder and the
cylinder from piercing the free surface. Regridding to equal node
spacing on the free surface only was applied at every time step.

Fig. 3 first shows the computed free surface elevation at two
numerical gages located at horizontal distances xg ¼ 2l=3 and
4l=3 from the axis of the cylinder (Fig. 2), for two submergence
depths of the cylinder, and the period T¼0.5 s. Symmetric waves
generated by the cylinder propagate towards each extremity of
the tank. After reflection on sidewalls, reflected and incident
waves interact, resulting in a growing wave amplitude in some
R = 0.1 m

z0

λ

2λ/3 4λ/3

x

motion of amplitude A¼R and period T, in water of depth d¼1 m (not at scale).
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local areas of the tank, as clearly seen in Fig. 3 showing the wave
records at both gages. As expected, nonlinear effects become
more important when the cylinder is closer to the free surface
ðz0 ¼�0:4 mÞ. The local wave steepness is defined as H=l, H being
the difference between two successive maximum and minimum
of the position of the free surface at a defined location.
For instance, steepness at the gages grows from 1.7% after
6 periods of oscillation to 5.1% after 35 periods of oscillation, for
z0 ¼�0:4 m.

The effect of the free surface spatial discretization step Dx on
volume conservation is assessed next. Considering an initial fluid
volume V0, the instantaneous relative absolute error on volume
Fig. 3. Case of Fig. 2. Nondimensional free surface elevation (with respect to the

amplitude of oscillation A of the cylinder) as a function of nondimensional time,

computed at numerical gages located at xg ¼ 2l=3 and 4l=3 from the cylinder, for

two submergence depths z0 of the cylinder: �0.5 m and �0.4 m. The forced heave

amplitude is A¼0.1 and period T¼0.5 s.

Fig. 4. Case of Fig. 2. Error on volume conservation in the computational domain O, for

results for four spatial free surface discretization steps Dx¼ l=Nf are plotted: Nf¼15 ð
conservation is defined as

EvðtÞ ¼
9VðtÞ�V09

V0
ð25Þ

Fig. 4 shows numerical results for each of the four cases, when
successively using a number of BEM nodes per wavelength on the
free surface Gf ðtÞ: Nf ¼ l=Dx¼ 15;25,50;75, from coarse to fine.
We see that the volume error slightly grows with time in each
computation, but its maximum value stays at an acceptable level,
of less than 0.01%, in all cases for T¼0.5 s and for the two finest
discretization steps for T¼0.8 s. Fig. 5 summarizes these results
by plotting the mean volume error of Fig. 4, after 40 periods of
heave oscillations, as a function of the nondimensional spatial
discretization step on the free surface. Each curve in the figure has
a slope of about 2.7, which shows that convergence of results with
spatial discretization is nearly third-order.
Fig. 5. Case of Fig. 2. Mean volume error after 40 periods of heave oscillation, for

T¼0.5 s and T¼0.8 s and two cylinder submergence depths, as a function of the

nondimensional discretization step 1=Nf ¼Dx=l.
4.2. A freely heaving cylinder

As sketched in Fig. 6, we now consider a neutrally buoyant
cylinder of radius R¼0.1 m and mass M¼ rpR2 per unit length,
anchored to the bottom of the tank by a vertical spring of stiffness
k0, which is chosen so that the cylinder oscillation period is
T¼1.125 s. The water depth is d¼ 10R¼ 1 m. The cylinder can
two cylinder submergence depths z0 and two periods of oscillation T. For each case,

� � �Þ, Nf¼25 (- - -), Nf¼50 (. . .), Nf¼75 (—).



R = 0.1 m

d = 1 m

A = R z0

L = 4λ

k0 = 4π 2 M
T 2

Fig. 6. Sketch of problem geometry for a freely heaving cylinder of radius R¼0.1 m, following an initial vertical displacement A¼R, in water of depth d¼1 m. The cylinder

is anchored to the bottom of the tank by a spring of stiffness k0 (not at scale).
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only move vertically and has its initial equilibrium position at
depth zeq under the free surface at rest. Spring extension is zero at
the equilibrium position of the cylinder zeq. The length of the tank
is set to L¼4 m, similar to the previous problem of forced motion.

At t¼0, the cylinder is pulled up from its equilibrium position
by a distance A¼R, and released with a zero initial velocity. The
cylinder then freely oscillates vertically in heave, around zeq,
under the combined action of the hydrodynamic forces from
generated waves and of the spring restoring force. Upon release
the initial elastic energy of the cylinder/spring system is gradually
transferred to the wave motion caused by the cylinder oscilla-
tions; the cylinder initially generates symmetric waves, which
propagate in both directions away from the cylinder. After
reflecting off the sidewalls and propagating back to the cylinder
location, these waves transfer part of their energy back to the
cylinder.

In the following, to assess the accuracy and convergence of
computational results, we derive two energy balance equations,
one for the cylinder and one for the surrounding fluid. We first
define the body mechanical energy Ec(t) as the sum of its elastic
and kinetic energy

EcðtÞ ¼ 1
2 k0ðzcðtÞ�zeqÞ

2
þ1

2M _zcðtÞ
2

ð26Þ

where zc stands for the elevation of the center of mass of the cylinder.
Due to the neutral buoyancy of the cylinder, its weight is balanced by
the hydrostatic pressure force throughout its motion, and the varia-
tion of potential energy of the cylinder is well balanced by the work
of the vertical hydrostatic pressure force. As a consequence, the
variation of body mechanical energy is only due to the work of the
vertical hydrodynamic pressure force. Hence, the body energy bal-
ance equation reads as

DEcðtÞ ¼WðtÞ ð27Þ

where DEcðtÞ ¼ EcðtÞ�Ecð0Þ is the mechanical body energy variation
with respect to the initial instant, and Ecð0Þ ¼ 1

2k0A2 is the initial
cylinder elastic energy. W(t) is the work of the vertical hydrodynamic
pressure force Fz from the initial instant, which writes

WðtÞ ¼

Z t

0
Fz _zc dt ð28Þ

The fluid mechanical energy is expressed as the sum of its
potential and kinetic energy

Ef ðtÞ ¼
1

2
rg

Z
GðtÞ
ðzþdÞ2 dsþ

1

2
r
Z
GðtÞ

f
@f
@n

ds ð29Þ

Similar to the cylinder mechanical energy variation (Eq. (27)),
the fluid mechanical energy, as defined by Eq. (29), varies with
the work done by the cylinder on the fluid, which reads as

DEf ðtÞ ¼ �WðtÞ ð30Þ

with DEf ðtÞ ¼ Ef ðtÞ�Ef ð0Þ. We numerically verify these two energy
conservation principles (Eqs. (27) and (30)) by considering two
cases, with equilibrium depths zeq ¼�4R¼�0:4 m and zeq ¼�3R

¼�0:3 m. Denoting Ec0 ¼ Ecðt¼ 0Þ the body initial energy, and
Ef 0 ¼ Ef ðt¼ 0Þ the fluid initial energy just before releasing the
cylinder, the relative errors Eec and Eef on body and fluid energy
conservation, respectively, are expressed as

EecðtÞ ¼
DEcðtÞ�W

Ec0
ð31Þ

Eef ðtÞ ¼
DEf ðtÞþW

Ef 0
ð32Þ

The relative error Ev on fluid volume conservation is also
defined here as

EvðtÞ ¼
VðtÞ�V0

V0
ð33Þ

For the two tested submergence depths, Fig. 7 shows time series
of the vertical position of the cylinder, the fluid and cylinder
mechanical energy variations with reference to their initial values
at t¼0, the relative errors in cylinder energy conservation and in fluid
energy conservation, as a function of nondimensional time t/T. Based
on these results, we can summarize the cylinder behavior as follows.
Given its initial energy, upon release, the cylinder first oscillates in
heave around its equilibrium depth, up to t=T � 7 for zeq ¼�0:4 m
and t=T � 5 for zeq ¼�0:3 m. During this time, a transfer of energy
occurs from the cylinder to the fluid, as seen in Fig. 7 in both the
increasing fluid energy and decreasing cylinder energy. This is the
time interval during which symmetric waves are generated, which
propagate towards the tank sidewalls. When these waves reflect back
to the cylinder, its amplitude of motion starts increasing, up to
reaching a value close but slightly lower than its initial amplitude A.
This second phase, between t=T � 7 and t=T � 12 for zeq ¼�0:4 m,
and t=T � 5 and t=T � 9 for zeq ¼�0:3 m, corresponds to a transfer of
energy from the fluid to the cylinder. A new train of waves is then
generated, corresponding to energy being transferred back to the
fluid, and so forth. At least four full cycles of this dynamics can be
seen in Fig. 7, whose periodicity depends on the submergence depth
(about 12T for zeq ¼�0:4 m and 9T for zeq ¼�0:3 m). In both cases,
the error on cylinder energy conservation Eec is less than 	 0:5%, and
this error is larger near the maximum amplitude of the cylinder. The
error Eef on fluid energy conservation is less than 10�5 for
zeq ¼�0:4 m and less than 10�3 for zeq ¼�0:3 m, due to larger



Fig. 7. Time series of nondimensional vertical position of the cylinder from equilibrium depth (upper row), the fluid and cylinder mechanical energy variations from initial

instant (second row), the relative error in the cylinder energy conservation (third row) and the relative error in fluid energy conservation (lower row), as a function of

nondimensional time t/T. In the BEM, 60 nodes are used on the cylinder boundary and Nf¼50 nodes per wavelength on the free surface. Results for the case on Fig. 6, for

submergence depth zeq ¼�0:4 m (left column) and zeq ¼�0:3 m (right column).
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waves being generated by the cylinder close to the free surface at rest,
for the same initial heave amplitude.

Fig. 8 shows, for the same two submergence cases, the number
Ni of sub-iterations required to reach convergence in the pre-
dictor–corrector loop of the Newmark scheme, used to calculate
the hydrodynamic pressure force at the next iteration (see Section
3.3). Convergence is considered to be reached when the relative
change between two iterations is less than 10�6. The figure also
shows the actual convergence error EF , which in general is much
less than this threshold. Only 1 or 2 sub-iterations are typically
needed to achieve convergence.

Finally, Figs. 9 and 10 show time series of cylinder energy, fluid
energy and fluid volume conservation errors Eec , Eef and Ev, for
three spatial discretization steps on the free surface boundary:
Nf¼25, 50, 75, and for the two submergence depths of the
cylinder. The error Eec on body energy conservation is in phase
with the cylinder vertical displacement and is maximum at
the highest heave amplitude, while no long-term trend clearly
appears. The error Eef on fluid energy conservation seems how-
ever to progressively deteriorate with time.

Refining the mesh on the free surface clearly improves both
the accuracy of the body dynamics and the accuracy of the flow
solution. The figures also show a good correlation between Eef and
Ev, which indicates that numerical errors on the fluid part are
mainly caused by nonlinear wave effects at the free surface
boundary (wave–wave interactions, reflection on sidewalls and
potential wave breaking).
5. Comparison with theoretical results

5.1. A submerged cylinder in specified heaving motion

Wu [3] analytically solved the wave radiation problem for a
submerged circular cylinder of radius R, in forced heaving motion
in still water of infinite depth. The cylinder boundary condition



Fig. 8. Time series of the number Ni of sub-iterations required to achieve convergence of the body hydrodynamic pressure force (upper row), and relative error EF on the

latter at convergence (lower row); the 10�6 convergence threshold is marked on the figure (- - -). Results for the case on Fig. 6, for submergence depth zeq ¼�0:4 m (left

column) and zeq ¼�0:3 m (right column).

Fig. 9. From top to bottom, time series of cylinder energy error, fluid energy error and fluid volume conservation error. In each column are shown the numerical relative

errors for three spatial discretization steps on the free surface boundary: Nf¼25 (left column), Nf¼50 (central column), and Nf¼75 (right column). Results for the case on

Fig. 6, for submergence depth zeq ¼�0:4 m.
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was satisfied at its instantaneous position, allowing for large
amplitude motion, while the free surface conditions were linear-
ized. The wavenumber of generated waves was thus assumed
to satisfy the linear dispersion relationship in infinite depth
k¼o2=g. Wu expressed the radiated wave potential as a multi-
pole expansion and computed the vertical hydrodynamic force
exerted on the cylinder, assuming a purely vertical motion, for
two nondimensional wavenumbers, kR¼0.1 and 1.0, and eight
nondimensional amplitudes of motion A/R. The nondimensional
vertical force was expanded in a Fourier series as

Fz

rApR2o2
¼ Fð0Þz þ

X
nZ1

FðnÞz sinðnotþcðnÞÞ ð34Þ



Fig. 10. Similar results as Fig. 9, but for the submergence depth zeq ¼�0:3 m.

Fig. 11. Forced heaving motion of a cylinder of radius R¼0.1 m in depth d¼3 m.

Successive snapshots of waves generated at t=T ¼ 2:75 ðFÞ, 2:99 ð- - -Þ, 3:10 ( � � � )

for an amplitude A=R¼ 1:75, and kR¼0.1 (period T¼2.01 s).
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We ran numerical simulations for all of Wu’s cases, in a NWT
of water depth d¼3 m and length L¼20 m. A cylinder of radius
R¼0.1 m was placed at mid-length, 10 m away from the leftward
boundary, and submerged at zc ¼�3R¼�0:3 m under the undis-
turbed free surface (mean position). The cylinder was subjected to
forced heaving oscillations of angular frequency o (or period
T ¼ 2p=o) and amplitude A. A two period ramp-up was specified
to gradually reach steady-state and prevent instabilities that
could occur for an impulsive start. Simulations last over a few
periods of oscillation and are stopped before reflection appears.

The hypothesis of infinite depth made by Wu was approxi-
mately verified in our simulations, for the first frequency of
oscillations kR¼0.1, k¼1 m�1, T¼2.01 s ðkd¼ 3CpÞ and for the
second one kR¼1.0, k¼10 m�1, T¼0.63 s (kd¼30). For both
frequencies, 200 nodes were used on the free surface and 80 on
the cylinder, in the BEM. Simulations lasted for about 10 periods,
starting from a free-surface at rest. In the model, as before, the
cylinder motion generated symmetric waves that propagated in
both leftward and rightward directions (Fig. 11).

To compare our results with Wu’s results, a Fourier transform
was applied to the time series of computed vertical pressure
force, as defined in Eq. (34), i.e., in nondimensional form, for the
last period of simulation. This comparison is shown in Fig. 12, for
the zeroth (mean), first, and second harmonics of this force. The
agreement with Wu’s results is excellent for small amplitudes of
motion, but less so for the larger amplitudes. For A=R41, the
cylinder is moving quite close to the free surface and nonlinear
effects play a more significant role; hence, Wu’s model is
expected to be increasingly in error, while our BEM model, which
solves FNPF equations, stays accurate throughout. This may
explain the discrepancies observed for the larger amplitudes.
For the first frequency (kR¼0.1), the mean vertical force and the
first and second harmonics increase with the amplitude of
motion. By contrast, for the larger frequency (kR¼1), only the
second harmonic is growing with the amplitude while the mean
vertical force is negative, and increasingly so, and the first
harmonic is decreasing, with increasing amplitude.

5.2. A freely moving submerged cylinder

In Section 4, we verified that provided the BEM discretization
is fine enough, very small errors on volume and energy conserva-
tion can be achieved, even for long computational times,
in situations where the submerged cylinder is freely heaving in
the wave tank and waves reflect off the sidewalls. This is a very
important result for modeling WECs and accurately predicting the
efficiency of WECs undergoing large amplitude motions.

In this section, we study the ability of our model to reproduce
the behavior of an idealized WEC: the so-called ‘‘Bristol cylinder’’,
introduced and studied in the late 1970s (e.g., [26,27]). This case
will serve as a more demanding and realistic test case of our
model’s predictive capabilities. Thus, we compute the wave-
induced motion of a submerged circular cylinder, and compare
numerical results to the first-order (linear) solution of Evans et al.
[27]. Assuming a mass M per unit length, the wave-induced
motion x of the cylinder center of mass, from its initial resting



Fig. 12. Case of Fig. 11. Nondimensional zeroth-order (mean), first and second harmonics of the vertical force. BEM/NWT results compared to Wu’s semi-linear theory for

various amplitudes of body motion A/R and for two frequencies of oscillation (kR¼0.1 and kR¼1).

Fig. 13. ‘‘Bristol cylinder’’ case for H=l¼ 0:05% and kR¼0.51. Computed location

of the cylinder center as a function of time ð� � �Þ, compared to the circular path

predicted by Evans et al.’s [27] linear theory (—).
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position xini, is governed by

M €x ¼ FhþMg�d0 _x�k0ðx�xiniÞ ð35Þ

where Fh is the wave-induced hydrodynamic force and (k0, d0) are
the spring stiffness and damping coefficient, respectively, selected
identical in the x and z directions, and specified as a function of a
‘‘tuning’’ angular frequency o0 ¼ 2pf 0 as

k0 ¼ fMþaiiðo0Þgo2
0 ð36Þ

d0 ¼ biiðo0Þ ð37Þ

with aiiðo0Þ and biiðo0Þ the (linear) added mass and radiative
damping, respectively, for the submerged cylinder at the tuning
frequency in infinite water depth. Evans et al. showed that, under
such conditions and within the linear approximation, the tuned
cylinder describes a circle of radius C under the action of regular
waves of angular frequency o and amplitude A

C

A

� �2

¼
rg2biiðoÞ=o

f½k0�o2ðMþaiiðoÞÞ�2þo2ðd0þbiiðoÞÞ2g
ð38Þ

where aiiðoÞ and biiðoÞ are the (linear) added-mass and radiative
damping at frequency o, respectively.

We simulated one of the configurations studied by Evans et al.
[27], namely a neutrally buoyant circular cylinder of radius
R¼0.05 m, whose center is initially at a submergence depth
zc ¼�1:25R¼�0:0625 m (i.e., there is 0.75R¼1.25 cm of water
above the cylinder). The ‘‘tuning’’ angular frequency is
o0 ¼ 10 rad=s (kR¼0.51). To realistically compare model results
with Evans et al.’s linear theory, we considered a low wave
steepness H=l¼ 0:05%, and successively ran the model for 12
incident wave frequencies, spread over the interval [0.71 Hz;
2.73 Hz] (ie kR varying from 0.1 to 1.5). The tank depth d was
adaptively set for each frequency in order to largely satisfy the
infinite depth condition ðkd� 25Þ. An absorbing beach was speci-
fied at the end of the tank, over four times the wavelength, to
reduce from spurious reflection.

Fig. 13 shows the cylinder trajectory computed for kR¼0.51
and a small wave steepness H=l¼ 0:05%. We see that, once
steady state is reached, the center of the cylinder describes a
stable trajectory around its initial position (corresponding to its
equilibrium position). This eventual trajectory is very close to the
circular path predicted by the linear theory.

Fig. 14 shows a very good agreement between the mean
nondimensional radius of the computed trajectory C/A, as a
function of kR, and the prediction of Evans et al.’s linear theory,
i.e., Eq. (38).

Unlike in Evans et al.’s linear theory, the cylinder trajectory
computed in the NWT is not perfectly circular. Fig. 15 plots the
eccentricity e of the trajectory, defined as

e¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Cmin

Cmax

� �2
s

ð39Þ

where Cmin and Cmax are the minimum and maximum amplitudes
of the cylinder center trajectory over one period T, respectively.
A perfectly circular path would yield a zero eccentricity. As
before, the nonlinear NWT results are close to Evans et al.’s zero



Fig. 14. ‘‘Bristol cylinder’’ case. Mean computed radius of the cylinder trajectory

as a function of kR, for a wave amplitude H=l¼ 0:05% (–o–) compared to the

prediction of Evans et al.’s [27] linear theory (- - -).

Fig. 15. Same case and symbols as in Fig. 14. Computed eccentricity of the

trajectory as a function of kR, for H=l¼ 0:05% (–o–), compared to Evans et al.’s

[27] linear theory (- - -).
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eccentricity for the small value of wave steepness H=l, without
however obtaining a perfectly circular path. In these computa-
tions, eccentricity increases as kR decreases and it reaches a
maximum of 14% for the lowest simulated frequency (f¼0.71 Hz,
kR¼0.10). This might be due to a lack of resolution on the free
surface, simulations with very high resolution being time-con-
suming, especially for longer waves. Note however that a 14%
eccentricity corresponds to a small difference of radii (Cmin=

Cmax � 0:99, so, quite close to the expected circular theoretical
trajectory). The eccentricity of the trajectory is seen to reach a
minimum (e¼ 2:1%; Cmin=Cmax � 0:999) near the cylinder tuning
frequency (kR¼0.51).
6. Conclusions

We presented a fully nonlinear numerical model, a 2D-NWT,
based on potential flow theory, of wave–body interactions for a
submerged body (typically cylindrical). The NWT uses a High-
Order Boundary Element Method (HOBEM) to solve for two
Laplace problems, for the potential and its time derivative,
supplemented by nonlinear free surface boundary conditions.
Specific boundary conditions for both problems were presented,
with a focus on the submerged body boundary condition, whose
expression depends on its type of motion (i.e., prescribed or
‘‘free’’). In the case of a freely moving body, the fluid–body
coupling is based on the implicit method proposed by Van Daalen
[16], also called the method of the acceleration potential by
Tanizawa [8]. This method yields an additional Boundary Integral
Equation, which expresses the dynamic equilibrium between the
fluid and the body. Time updating of the free surface boundary
conditions, expressed in a Lagrangian formulation, is based on
using two second-order Taylor series expansions, for the potential
and the geometry. This scheme is found to be very stable and
accurate, and does not require any filtering or smoothing of the
free surface. The position and velocity of the body are updated in
time using a predictor–corrector algorithm, based on a Newmark
scheme with parameters g¼ 1=2 and b¼ 1=4 (so-called average
acceleration method).

The model accuracy was checked by verifying the fluid volume
and energy conservations, for two cases with a heaving sub-
merged cylinder describing large amplitude motions in a tank of
limited dimensions. Volume conservation was first checked, for a
submerged heaving cylinder in a prescribed motion of large
amplitude. Conservation of the cylinder energy and conservation
of the fluid energy were then checked, for a freely moving
submerged cylinder subjected to a vertical restoring force. In
both cases, refining the discretization step between two nodes on
the free surface increased the global accuracy of the simulations,
which verifies the model convergence. We found that high
accuracy could be achieved in the model, with a reasonable
discretization. For instance, a free surface discretization of 50
nodes per wavelength with a cylinder immersed at zeq ¼�3R

leads to relative errors of Oð10�3
Þ on the conservation of cylinder

energy, Oð10�4
Þ on the conservation of fluid energy and Oð10�4

Þ

on the conservation of fluid volume. The fluid energy and volume
conservation errors significantly decrease when considering a
cylinder submerged deeper under the free surface, due to smaller
waves being generated by the cylinder motion.

Numerical results were also compared to analytical formula-
tions based on linear or semi-linear theory for two cases. In the
first case, with a submerged horizontal cylinder in forced heaving
motion of large amplitude in still water, results agreed well with
Wu’s semi-linear theory [3]. In the second case, with a freely
moving cylinder in waves of low nonlinearity, results agreed very
well with Evans et al.’s linear theory [26]. In both cases, as
expected, a better agreement was observed between the non-
linear model and the linear theories, for the smallest amplitudes
of motion of the cylinder and for waves with low steepness,
corresponding to situations where nonlinear effects are moderate
to negligible.
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