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Résumé

Dans les études standards de tenue a la mer, les mouvements d’un navire supposé
rigide sont calculés en réponse a des vagues irréguliéres, correspondant a un état de mer
défini par sa hauteur significative Hj, période du maximum spectral 7, direction do-
minante 6, et type de spectre (e.g., JONSWAP). Dans ce travail, sur la base de telles
simulations de tenue & la mer, un Réseau Neuronal (RN) est configuré afin de procéder
a l'inverse : a partir des mouvements d’un navire, mesurés par exemple a l’aide d’un
systéme inertiel embarqué, ce RN estimera les parameétres de 'état de mer (H,7,). La
motivation principale de ce projet est de développer une méthode a bas cotit afin que des
remorqueurs de haute mer (destinés a transférer du cargo) puissent estimer I’état de mer
et ainsi éviter d’opérer dans des conditions dangereuses. Cependant, la méme méthode
pourrait étre appliquée a des navires génériques de haute mer, pour obtenir des mesures
locales et continues de I’état de mer & des fins scientifiques ou autres.

Summary

In standard seakeeping simulations, the rigid body motions of a ship are computed in
response to incident irregular waves, corresponding to a sea state defined by its significant
wave height H, peak spectral period 7),, dominant direction 6y, and spectrum type (e.g.,
JONSWAP). In this work, on the basis of such seakeeping simulations, a Neural Network
(NN) is trained to perform the inverse problem : given a time series of ship motions,
such as that measured with an onboard inertial system, the NN will estimate key sea
state parameters (H,,T,) based on the observed ship motions. The main rationale for
this work is to develop a low cost method for small Naval vessels to estimate local sea
state conditions in order to avoid operations in dangerous sea states, however the same
techniques could be applied in general to transiting vessels to obtain local and continuous
sea state measurements for general science purposes or other uses.



I — Introduction

In state-of-the-art naval hydrodynamics models, a ship’s rigid body motions in irregu-
lar sea-states are typically computed based on potential low theory and, rather than tack-
ling the fully nonlinear problem, which is still highly computationally costly, a linear mo-
del is used with some ad-hoc nonlinear corrections, in particular for hydrostatic restoring
forces, moments, and viscous damping of ship motions. There exist many commercial codes
based on these principles, such as AQWA (http ://osk-shiptech.com/Toolbox/AQWA), in
which potential flow equations are typically solved with a higher-order Boundary Element
Method (BEM). With such models, given the ship geometry and characteristics of mass
and inertia, one first solves up to 6 radiation problems (for up to 6 degrees-of-freedom
(dofs) : 3 translations and 3 rotations) in which the ship has a forced periodic motion
of unit amplitude; this is repeated for a large number of frequencies (w,; n =1, ..., N,),
which in each case provides the ship’s linear added mass A;;(w,) and damping B;;(w,)
matrices, respectively (with in general i, 7 = 1, ..., 6). For each of these frequencies and for
N,, incident wave directions 6,, (w = 1, ..., N,,), a series of diffraction problems are solved
with the model, assuming a unit incident wave amplitude and considering the ship is fixed,
which provides the Froude-Krylov (FK) and diffraction forces (and moment) applied to
the ship, (R} (wy), o’ (wy)), for its module and phase, respectively.

Given an irregular sea state defined by its significant wave height H,, peak spectral
period 7}, dominant direction 6y, and spectrum type (e.g., JONSWAP (JS)), the ship
instantaneous motions (;(t) are then obtained by solving differential equations expressing
momentum conservation for each of the selected dof of rigid body motion (up to 6). These
equations include mass/inertia (plus added mass/inertia), radiative and viscous damping,
hydrostatic restoring, total FK forcing, and memory terms. The latter are integrals convol-
ving the impulse response function K;(t) associated with each dof of the ship and all its
previous states of motion.

In this work, we develop a methodology, based on a pattern recognition Artificial
Intelligence (AI) method, to perform the opposite task, i.e., given a time series of ship
motions, such as measured with an onboard inertial system, the Al method should provide
an accurate estimate of key sea state parameters (H,, T,). The main rationale for this work
was to develop a low cost method for slow moving, barge-like, workboats (e.g. tug boats)
to estimate real time local sea state conditions, in order to avoid operations in dangerous
sea states. These types of workboats can encounter strong interactions when operating
closely with another vessel or floating structure, hence safe operations are highly affected
by the sea state. The same approach could also be applied to generic transiting vessels, to
obtain local and continuous sea state measurements for general science purposes or other
uses.

To perform this “sea state inversion”, a Neural Network (NN) was trained using a large
number of seakeeping simulations (i.e., simulated time series of ship motions) obtained for
a ship with known characteristics, and for many specified sea states of given parameters
(Hy,T,) originating from a specific direction (e.g., head sea). For the sake of illustrating
the methodology, the approximate characteristics of a barge-like tug boat are used in the
model, for which time domain seakeeping simulations are performed. A NN is trained
based on the output time series of the model and is then validated using times series not
used in training the model. By repeating this operation, the ability of the NN to accurately
predict the sea state is assessed. While the interrogation of the NN must be done in real
time on the physical ship, the more time consuming and computationally demanding NN
training phase can be performed a priori using the accurate ship dynamics model.
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FIGURE 1 — Approximate hull form used in the present study with approximate dimen-
sion : length L = 26.37m, draft D = 0.66 m, and beam B = 7.30 m.

II — Model Development

A time-domain seakeeping model is derived to predict the heave, pitch, and roll motion
of the vessel shown in Fig. 1, given an input wave spectrum based on specific sea state
conditions. The model follows the procedures previously successfully demonstrated in
the development of a semi-analytical model for wave energy conversion systems [3]. In
particular, the model is accelerated by using the Prony approximation method proposed
by Babarit and Clément [1]|, for computing the convolution memory terms in the ship
equations of motion. As a note, the present model assumes zero forward speed of the
vessel, however future work will adjust the model to accommodate the response of the
model to the encounter frequency of waves at forward speed.

II - 1 Equations of motion

The ship motion along each dof (heave, roll, and pitch; ¢ = 3,4,5 in the standard
definition) is modeled by a (linear or angular) momentum conservation equation, with a
mass and constant (infinite frequency) added mass inertial term, a memory term expres-
sing the linear radiative damping and transient added mass effects, nonlinear hydrostatic
restoring force, hydrostatic coupling between motions, a nonlinear viscous drag term (pro-
portional to velocity squared), and a linear excitation force, resulting from summing the
Froude-Krylov and diffraction forces for each wave frequency component (n = 1,..., N,)
in a specified JS wave spectrum of characteristics (Hy, T,), here defined as unidirectional
and incident from direction 6,,. The equation of motion for each ship dof (;(¢) (i = 3,4,5)
is then :

(My; + Aii(00)) §¢+/0 Ki(t—7) G dm+Cii(¢—n) CH‘Z Cii f(G)+bpiGilGil = (1), (1)
i

where, M;; denotes the ship mass and inertia matrix, C;;(¢; —n) the nonlinear hydrostatic
restoring force/moment (per unit displacement) with f(¢;) = ¢; for j = 3 and otherwise
f(¢;) = sin¢;, and bp; = (1/2)p Cp;Syi the nonlinear viscous damping term, with p the
fluid density, Cp; a total drag coefficient, and S,,; a relevant wetted surface area.

Given a set of wave amplitudes a,(w,) = /2E(w,)Aw, extracted from a discretized
wave frequency spectrum E(w), with discretization Aw, and random phases ¢,, € [0, 27],
the instantaneous wave surface elevation is expressed as :

No,

0(t) = Y anlwn) cos (wat + on), (2)

n=1



with the wave excitation force (including the FK and diffraction components) defined as :

No,
F(t) =) an(wn) By (wn) cos (wat + o (wn) + ¢n) (3)
n=1
Based on linear seakeeping theory, for each degree of freedom (i = 3,4,5), the impulse
response functions, K;(t), used in evaluating the memory dependent force on the vessel
can be defined based on the frequency dependent added mass and damping coefficients,
as in Egs. (1) :

Kit) = -2 /O T (A (@) — Ay (00)) w sin(ewt) dew = 2 /0 " Ba(w) cos(wt) dw,  (4)

™ s

As noted in earlier work [1, 3], the numerical solution in the time domain of the system
of coupled nonlinear integro-differential momentum equations Eqs. (1-4), governing the
ship motion in a specified sea state, is computationally demanding due to the presence of
the convolution integrals that describe the effects of the ship’s earlier states of motion on
its current motion.

To overcome this difficulty, as proposed by [1], the Prony approximation method is used
to transform the memory terms into a set of differential equations that solve for the Prony
coefficients, which are used to approximate the impulse response function, thus yielding a
larger system of ordinary differential equations (ODEs). The Prony approximation defines
the impulse response function to be approximated by a Prony series, or a series of decaying
complex exponential functions :

P
Ki(t—7) =) B, (5)
p=1

with P the selected number of complex Prony coefficients 3,; and .S, ;. The Prony coefhi-
cients are obtained by evaluating a least squares fit of the Prony function to each function
K;(t) calculated with Eq. (4), for the selected Prony coefficients. This procedure may be
evaluated for several values of a P to determine the most accurate approximation for a
given set of functions K;(t). Note that it is possible to evaluate this approximation using
either the added mass or damping form of Eq. (4), however we use the damping form of
the equation as it is found to be more accurate for short term memory effects (near ¢t = 0).
Based on this definition, for each dof, the memory term in Egs. (1) is approximated as :
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Based on Egs. (5-8), the ship motion is computed as a function of time for each dof
by solving the system of coupled second-order ODEs (1) simultaneously with 2P first-
order real ODEs (83) for the P complex Prony coefficients I,,; of each degree of freedom



1 = 3,4,5. To apply a numerical ODE solver, this system is conveniently recast into one
of coupled first-order ODEs as (i = 3,...,5;p =1, ..., P),

6=V (9)
P
. 1 .
Vi=—— {Z Bp,ilpi(Vist) + Fri(G) + bpiVilVi| — F; (t)} (10)
m; 1
Lyi = Spilyi(Vist) + Vi, (11)

Fri(G) = Cu(G —n(t)G + Z Cii 1(¢) (12)
J#

For a specified sea state (with JS spectrum F(w)), the system of ODEs (9-12) is solved
using one of Matlab’s standard ODE solvers, based on an optimized Runge-Kutta method,
for either a fixed maximum duration %,,,, or one that is equal to a specified multiple of
T, (e.g., 100). Once the solution is obtained and provided in terms of (;(t) (i = 3,4,5),
various other parameters such as ship velocity and acceleration [G(t),(;(t)], as well as
force components, can easily be computed as a function of time using the same equations

with the known solution.
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FIGURE 2 — Added mass and damping coefficients calculated for the warping tug with
AQWA (symbols) in : (a) heave; (b) roll; and (c) pitch. Lines are spline fits through data.

IIT — Application of the seakeeping model to the vessel

For the purpose of illustrating the sea state inversion methodology, the time series
of heave, roll and pitch motions, are first computed for a series of sea states, using the
approximate characteristics of the boat shown in Fig. 1.
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FIGURE 3 - (a,c) Module R; and (b,d) phase «; (i = 3,4,5) of total excitation forces
calculated as a function of angular frequency for the warping tug with AQWA in heave,
pitch, and roll, for a : (a,b) head sea at 180°, and (c,d) and oblique sea at 27°.

IIT — 1 Linear seakeeping results

The general dimensions of the vessel are length L = 26.37m, draft D = 2.43m,
and beam B = 7.30m. The density of water is assumed to be p = 1,025kg/m3. Using
the approximate geometry and mass/inertia characteristics M;; of the boat and its linear
hydrostatic restoring coefficients Cj;, linear seakeeping simulations were run using AQWA
at zero forward speed, that provided results for N, = 100 frequencies over the range
wy, € [0.185 — 5.236) rad/s (period T" = 34.0 — 1.2s respectively), and at N,, = 21 wave
incident angles 6, € [0° — 180]°, by increments of 9°. For use in the above time domain
model, data was interpolated at the desired frequencies and angles.

The results from AQWA include frequency dependent added mass coefficients A;;(w),
frequency dependent damping coefficients B;;(w), and for each direction, w, and the mo-
dule, RY(w) and phase, af(w), of the total excitation force. Fig. 2 shows examples of
linear added mass and damping values for the vessel, as a function of frequency in heave,
roll, and pitch. Fig. 3 shows the module and phase of the total excitation forces in heave,
pitch, and roll, for the case of head sea (180°) and an oblique sea, at 27°. Fig. 4 shows the
calculated heave, roll, and pitch impulse response functions, using the standard Eqgs. (4)
based on AQWA calculated B;;(w) results, together with the corresponding “Prony” curve
fit with P = 4 complex coefficients. These approximations match well with the impulse
response curves for the first few seconds of larger ship motions, where the memory term
is most important.

The sea state is represented by a unidirectional JS spectrum F(w), with parameters
(Hs, T,); in the following, the spectral peakedness parameter is set to its standard average
value, v = 3.3. Future work will consider directional seas and thus JS spectra with a
directional spreading function. Fig. 5 shows an example of a JS spectrum calculated for
H; = 2m and T, = 8s. Each sea state’s spectrum is discretized into N,, = 200 frequencies,
equally spaced over the interval where the spectrum has energy larger than 0.1% of its
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FIGURE 4 - Impulse response functions K; (i = 3,4,5) computed with Eq. 4 (black)
(using Fig. 2 data), and their Prony approximations based on Eq. (5) with P =4 (red).
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FIGURE 5 — Example of JS wave energy density spectrum for H; =2 m and 7, = 8 s.

peak value. AQWA’s results, which are known in the interval [0.185—5.236] rad /s are then
reinterpolated over the spectral frequencies. For each of these frequencies, wave amplitudes
a, are finally computed, to be used in Eqs. 2 and 3.

IIT — 2 Non-linear viscous damping

Non-linear damping terms were added to Egs. 1, as velocity squared empirical terms,
to approximate effects of vortex shedding and friction resulting from the boat motions.
Due to the box-like hull geometry, the wetted surface area for each dof was simply defined
based on the boat overall dimensions, as Sy3 = 2D(B + L), Sys = LD, S5 = BD. The
drag coefficient for each motion should normally be determined empirically through model
testing ; however, since model testing has not currently been done yet, drag coefficients
were determined using a different method.

The AQWA simulations allow for a correction to the linear damping matrix in order to
include nonlinear damping effects through equivalent linearization. The Response Ampli-
tude Operator (RAO) for each dof is then computed in AQWA, based on empirical linear
damping corrections that are tuned in order to provide typical and realistic motions for
the specific vessel geometry. The resulting RAOs utilizing the linear damping corrections



were used to tune the nonlinear damping coefficients of the current model, which does
not apply corrective linear damping terms. Future work will validate the non-linear co-
efficients based on motions of the scale model system or full physical system. The drag
coefficients were iteratively adjusted to produce similar RAO response of the tug boat to
that of the provided AQWA simulations, for a range of sample sea states. Figure 6 shows
a sample comparison of the RAO calculation of the model for a specified sea state with
H; =2 and T, = 8 s (and for t,,,, = 1007},), compared with the computed RAO from
AQWA simulations for the same sea state conditions. In this and other cases, the drag
coefficient values used for each dof were : C'p3 = 0.5, Cpy = 2.0, Cps = 2.5.

0.5 1 1.5 2 2.5 3 35
w (rad/s)

FIGURE 6 — Comparison of heave, roll and pitch RAOs from AQWA simulation (solid
lines), for the tug boat in periodic waves, with the RMS values obtained from the nonlinear
model simulations (symbols) in irregular waves generated for a JS spectrum with H, = 2

and T}, = 8 s, after tuning of non-linear drag parameters. In both cases, waves are incident
with 0y = 25 deg.

IIT — 3 Non-linear restoring force

Nonlinear restoring forces may occur in the case of large boat motions, where the
assumption of a constant restoring force coefficient C;;(0) does not hold due to changes in
the geometry of the submerged vessel. While nonlinear restoring forces may exist due to
all motions of the body, it is necessary to have an accurate model of the vessel geometry
in order to determine changes in the center of buoyancy due to roll and pitch motions.
No accurate CAD model of the tug boat geometry was available, so, only an approximate
estimate of the nonlinear heave restoring force coefficient Cs33 was derived based on simple
drawings and cross-sections of the boat. Details are left out for brevity.

Assuming the beam cross-section is rectangular at any given depth, the waterplane
area is rectangular for any given draft. Hence the nonlinear heave restoring force coefficient
was computed as a function of the vessel draft by defining the length of the waterplane
area Ly, as a function of draft according to the vessel geometry. With § = (3 —n :

18.335 + 3.096( + D) +2.797(§£ + D,p) € < 0.759 — D,,,,
Lup(€) = { 22.125 4+ 2.979(€ + D) 0.759 — Dy, < £ < 1.517 — D,,
26.3652 1.517 — D, < £ <243
(13)
with D,, = 0.66 m the vessel operating draft, and the non-linear heave restoring coefficient
reads,

033(5) = PQBpr(f) (14)
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FIGURE 7 — Time series of duration ?,,,, = 100, T,, = 800 s, of warping tug boat motions
and wave elevation computed with the nonlinear time domain seakeeping model, in irre-
gular waves generated for a JS spectrum with Hy = 2 and 7, = 8 s (waves are incident
with 6y = 25 deg) : (a) heave amplitude and surface elevation; (b/c) roll/pitch angle.

IIT — 4 Examples of warping tug motions

For the 3 dofs considered here (heave, roll, pitch) and using P = 4 complex Prony
parameters for each dof, the nonlinear time domain seakeeping model described by Egs. (9-
12) has 30 first-order coupled ODEs. This system, however, can efficiently be solved using
the Matlab ODE solver in a few seconds to simulate long time series of ship motions (e.g.,
1007}) for any given sea state. Figs. 7 show examples of time series of tug boat motions in
heave, roll and pitch, as well as the instantaneous surface elevation 7(t), for a JS spectrum
with Hy = 2 and T, = 8 s (here, waves are incident with 6, = 25 deg).

IV — NN development for sea state prediction

A Neural Network (NN) model is implemented to predict the sea state parameters
(Hs, T,) based on a time series of warping tug boat motions. Before issuing a prediction,
the NN is first trained and then validated. This is done based on a large data set of
simulated time series of tug motion for many sea states. All NN implementation and
simulations are performed using functions in Matlab’s Deep Learning Toolbox™.

IV—-1 NN model

The NN model is a Nonlinear Auto-Regressive (NAR) network with exogeneous inputs
(NARX) [2]. It is a recurrent dynamic network, with feedback connections enclosing seve-
ral layers of the network. By being auto-regressive, the NN allows variables to be regressed
also on their past values, possibly nonlinearly, together with new inputs. In addition, such
exogeneous inputs are similarly nonlinearly regressed on their past values. The NARX-NN
is conceptually represented in Fig. 8 and can simply be formulated as,

Y(t+1)=F{Y(®),Y({t—1),....Y(t—n+1),Xt,X(t—1),....X(t—n+1)} (15)

with Y a vector of target variables describing the sea state, including significant wave
height H, and peak spectral wave period T},, and X a vector of the boat motions in heave
(¢3), pitch (¢4) and roll ((5), all expressed as a function of time ¢; n is the length of the



NN Data Sets/ tmaa H, T, Nb. Sea | Nb.1s
Sea States (s) | range/step | range/step | States | time steps

Training/valid. /test. || 600 | [1-8]/0.2 | [5-11]/0.5 490 294,000

Application 60 [1-8]/0.1 | [5-11]/0.25 | 1,000 60,000

TABLE 1 — Parameters of sea states for data sets used in SSNN development and testing.

time series (i.e., number of time samples), and F is the NARX model, which relates sea
state features to target variables. The present NN model has 5 hidden layers of “neurons”
acting as both an aggregation component and a transfer function, and 2-time step delays

(Fig. 8) [2].

x(t) Hidden

Output

FIGURE 8 — Schematic of the NARX-NN functionality F for sea-state prediction.

IV — 2 NN training

The NARX-NN is trained to identify a range of sea-states on the basis of the time series
of vessel motions simulated with the nonlinear seakeeping model detailed above, for a large
number of sea states, each defined by (Hj,T,) values and represented by a JS spectrum.
The vessel is assumed to have no forward speed and all sea states are unidirectional and
incident from a constant direction #,,. For the sake of illustration, 6,, = 45 deg. is used
throughout. These assumptions will be removed in future work.

In the training phase, the NN model internal parameters (defining function F), weights
(W) and bias (B), are iteratively adjusted based on a heuristic search (so-called “ greedy
heuristic algorithm”) to minimize errors between simulated and known outputs [2]. The
training algorithm stops when errors increase for more than 6 epochs, with an epoch being
a measure of the number of times all of the training vectors are used once to update the
weights.

0 : R ——
005 01 015 02 025 03 035 04
f (Hz)

FIGURE 9 — Sea states spectra used as input to train the NN test case (Table 1).

Table 1 provides ranges of NN training parameters for 490 sea-states, combining H, €
[1,8] m by 0.2 m increments and 7, € [5,11] s by 0.5 s increments ; Fig. 9 shows all the
corresponding JS spectra. For each sea state, the seakeeping model is run to simulate the
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NN Relative RMS R*
process || sample size (%)

Training 25 2.26 1073 | 0.9997
Validation 15 1.81 1073 | 0.9997
Testing 30 2.41 1073 | 0.9997

TABLE 2 — Root Mean Square error (RMS) and determination coefficient (R?) for the 3
NN sampled data sets.

time series of vessel motion in heave, pitch, and roll; all individual sea state time series
have the same duration t,,,, = 600 s and are re-interpolated on a fixed time step At =1 s.
Fig. 7 shows an example of an individual time series computed with the seakeeping model
for 1 sea state. Data and results for all sea states are concatenated into a single time series,
for each parameter or boat motion, each with n =490 x 600 = 294, 000 data points. The
NN is trained using a randomly selected sample of 55% of these data points, with 15%
and 30% set aside to be used later for the NN validation and application, respectively
(Table 2). A Levenberg-Marquardt algorithm is used for training [2].

Table 2 shows overall results of the NN training. An excellent agreement between
output and target data is obtained, with a determination coefficient R? = 0.9997 (repre-
senting the fraction of total variance in the training sample explained by the NN). One can
see that a measurable error on the predicted H, only occurs during the first few seconds,
when the sea-state parameters abruptly change, between one of the 490 sea states to the
next. A highly accurate prediction is observed for later times.

IV — 3 NN validation and testing

The NN validation stage uses an independent data set from that used in training (15%
of the initial sample; Table 2), to prevent the model from overfitting. In the validation
stage, weights in the NN model function F are no longer adjusted, but other NN para-
meters are iteratively refined. The validation stage generalizes the NN model, such that
in the present case, it will accurately predict sea states not represented in the training
sample. Table 2 shows that the NN prediction errors are slightly decreased as a result of
the validation stage, with a minimum RMS error of 1.81 x 1072, here at 55 epochs.

In the NN testing stage, the remaining 30% of the initial sample were used to test
the model. The NN free parameters, weights, and bias are fixed at the values obtained
during the training/validation stages for testing. Table 2 shows that prediction errors on
this unused sample are as low as for the other stages, which confirms the NN’s ability to
predict sea state parameters. This is further verified in the next section.

IV — 4 NN application to predict sea state parameters

A final assessment of the NN’s ability to predict sea state is done using a fully inde-
pendent “application” data set also built with the seakeeping model, for which Table 1
shows that the same (H,, 7)) ranges is covered, but in 50% smaller increment, yielding
1,000 sea states. However, much shorter time series of the vessel motion, with t,,,, = 60 s,
are generated with a 1 s time step, yielding n = 60, 000 long single time series. The RMS
error of the NN prediction of sea state parameters in the application data set is shown in
Fig. 10 in dimensional units. As before, the accuracy of the NN prediction is very good.

It is important to note that here, randomly changing the sea state every 60 s not only

11
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FIGURE 10 — RMS error of NN prediction of application data set parameters (Tables 1
and 2) : (a) Hs (in m); and (b) 7, (in s), as a function of target sea state values (Hs, T},).

demonstrates the NN’s ability to predict current sea state conditions using a very short
time series of boat motion, but its adaptability to rapidly changing sea state conditions.

V — Conclusions

A NN model was implemented and validated to predict sea state parameters, based on
time series of ship motion. The latter were obtained from realistic seakeeping simulations,
but actual data from model testing and field measurements will be used in future phases of
the project. Current results demonstrate the excellent ability of the trained NN model to
predict sea state parameters when provided with short time series (60 s) of boat motions.
This is very promising but will need to be confirmed using short time histories of actual
boat motion data from a sensor (tank or field), which will include noise.

In future work, model testing in a tow tank will provide actual boat motion time
series in controlled sea states and will be used to validate the seakeeping model and NN
training procedure ; in particular viscous damping terms will be calibrated. Tests will be
performed without and with a forward speed. The seakeeping model will be generalized
to use more arbitrary directional sea states and include the boat forward speed, and the
present study will be repeated.
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