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: ‘A high acturecy Boundary Elament Method for Fully nonlinear wavan han boen devaloped which
solven the problems in physical space and, hence, can readily deal with boundaries, structures
and bottom topographies of arbitrary shape. Lt is applied to runup and reflection of waves on
ateep slopes and warifisd by comparison with sur{ace measurements in laboratory expurimenis
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INTRODUCTION the whole southern part of Portugsal and had

This paper is presenting detailed computa-
tional results for the particle velocities in wave
motion on coastal and ocean structures with
steep front slopes such as dikes, seawalls and
rubble mound breakwaters. Such structures
usually have front slopes ranging between 1:1.5
(33:7) and 1:2.5 (21:8) (see BRUUN, 1976) and
the method used here is particularly suited for
such conditicns. It is also discussing the rele-
vance of the method used relative to other
approaches to the same problem.

The problem of run-up and overtopping on
steep slope structures is not just related to
determining their necessary crest height over
the mean sea level. It is also of erucial impor-
tance for the stability of the armor units pro-
tecting the siopes against erosion and failure.
This problem developed into one of the central
questions in modern coastal engineering when
in the 70’s a substantial number of rubble
mound breakwaters, most of them in the Med-
ijterranean or on the Iberian Peninsula, were
severely damaged by storm waves. In the most
famous and disastrous case the not yet com-
pleted breakwater at Sines in Portugal was
almost completely destroyed, an event which
delayed the ongoing industrial development of
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gavere repercuasions for the country’s economy.
Such large scale disasters attract much atten-
tion. More importantly, however, they severely
influence the development within the profes-
sion and signal that satisfactory methods for
the analysis and design of safe and economic
rubble mound etructures still remain to be
developed.
" The present paper briefly outlines the ideas
behind the Boundary Element Method (BEM),
applied to fully nonlinear waves (section 2) and
the difference between the present approach
and other versions known from the literature
(section 3). Results are then presented in sec-
tion 4 for a comparison between detailed mea-
surements and computations of a solitary wave
on a steep slope and in section 5 is given an
account of other theoretical methods available
for treating the problem with particular
emphasis on the non-linear shallow water
{NSW) equations. it ig found that it is crucial
for the validity of the NSW approach that pres-
sure is hydrostatic and horizontal velocities
uniform over depth and focuses on analyzing
the validity of this assumption using the BEM
computational results. In section 6 we compare
our results for runup with an analytical solu-
tion and finally section 7 gives a critical assess-
ment of the strong and weak points of the the-
oretical models discussed.
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2. THE METHOD OF COMPUTATION

The method used for obtaining the results
described in the following is a so-called Bound-
ary Integral Equation Method, BIEM. Although
this method may be developed (at least in the
two-dimensional caee} to include dissipation
effects such as bottom friction, the results here
correspond to potential flow. As mentioned in
section 8, the effect of actual bottom friction
will be very minor on a steep slope unless the
roughness is very large. This section discusses
the ideas behind the method. For a detailed
mathematical description, reference is made to
GRILLI et al., (1989).

By suitable mathematical manipulations, the
problem of determining the velocity potential
(or the stream function) in a flow region of
interest can be transformed into an integral

equation which only requires consideration of -

the velocity potential and its normal derivative
along the boundary of the flow region. Thus a
two dimensional problem is reduced to a prob-
lem in one dimenaion (the boundary curve) and
a three dimensional problem to a problem in
two dimensions (along the boundary surface).
These benefits, however, are partly offset by a
more complicated numerical solution technique
required. The real advantage of the method,
however, is not as much the reduction of com-
putations from two to one (or three to two)
dimenaions as its flexibility to handle with ease
and high numerical accuracy, problems with
complicated boundary geometries. In water
waves, thia flexibility has been utilized to prob-
lems as the overturning of a plunging breaker
and in our formulation of the method it has
been extended so that almost arbitrary config-
urations of structures and bottom variations
can be readily implemented.

The result of the mathematical manipula-
tions is the boundary integral equation for the
velocity potent:al ¢ at a point given by the paosi-
tion vector¥. Thia equation may be written as

ad(x) = I[dﬂ o)aG(—’;"“-}

- GER a¢(xo}]

do (2.1

where X, the position vector for an integration
point covering the entire boundary 0 of the flow
region considered, and o is a function of the
local boundary geometry. See Figure 1 for illus-

tration. The function G{X.x,) is a Green’s funec-
tion which, strictly speaking, may be chosen in
different ways. In all cases, however, analyzed
in the fully nonlinear water wave problem or
problems with complex boundary geometries G
is always the so-called free space Green’s func-
tion

G = { —Inr in 2D problems

l/r in 3D problems
where r is the distance between points¥ andX,.
The solution of the integral equation (2.1)
established only the instantaneous fiow pattern
on the basis of specified boundary conditions.
The way in which this flow develops in time is
then controlled by the boundary conditions and
particularly by the (fully nonlinear) boundary
conditiong at the free surface, that is, the kine-

matic condition

dx—*

T = (0.9, (2.2

and the dynamic condition which is written

D¢

-N7Y ) 7 -
Be + gn (¢ +é) =0 (2.3)

where 7 represents the free surface elevation,
U, the particle velocity, and D/Dt is the time
derivative following a particle. Figure 2 shows
the boundary curve used in the computations
described in the following where we concen-
trate on wave motion on a slope.

The equation system (2.1), (2.2} and (2.3) can,
of course, only be solved numerically, and the
solution obtained gives the development in time
of & wave or flow pattern specified at the start
of the computation, or, as in these computa-
tions, generated at the left boundary precisely
as by & wave maker in a laboratory facility. At
each time step, thé integral equation (2.1) is
solved {which corresponds to sclving Laplace’s
equation in the flow domain using values of
either ¢ or d¢/dr apecified along the boundary).
This aolution essentially determines the other
{(unspecified) quantity (¢ or ad/om, whichever
was not specified as a boundary condition).
With both ¢ and dd/an known along the entire
boundary, the two differential equations ¢2.2)
and (2.3) can then be solved bringing the solu-
tion one step forward in time. That part of the
proceas both moves the wave surface profile one
step in time and, at the same time, establishes

.
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Figure 2. Sketch of the region used in the numerical computations of waves an a steep slope B (x, denotea the amplitude of the

piston wave maker).

the boundary conditions required to solve {2.1)
along the new boundary.

3. REVIEW OF BOUNDARY INTEGRAL
SOLUTION TECHNIQUES

The present method of solution of the bound-
ary integral problem is innovative in several
ways as will be described in the following.

In the most successful applications so far of
the method to water wave problema it has been
a dominating feature that {2.1) is not solved
directly for the physical {x,z) boundary such as
shown in Figure 1 or 2. Instead, two dimen-
gionality and the basic properties of potential
flow are used to invoke complex function {con-
formal) mapping techniques which transferm
the region of solution into simpler boundary
forma. Subatantial numerical advantages are

gained by this technique but also a price is paid.
In the first place, the mappings used require
that the waves studied are periodic in space.
Clearly this is & very severe constraint which
excludea most practical problems from being
treated.

For a constant depth, the mapping function
for a space periodic problem is a relatively sim-
ple analytical relationship. LONGUET-HIG-
GINS and COKELET (1976}, VINJE & BRE-
VIK (1981) and DOLD and PEREGRINE (1984)
are prominent examples of this technique
which has been very succeasful for the problems
considered such as the overturning of breaking
waves periodic in space. For any more general
boundary geometries or non-periodic waves,
however, it is necessary to add & non-trivial
atep which consists of solving the mapping
problem analytically or numerically before the
actual solution described in section 2 can start.

Journal of Coastal Research, Special Issue No. 7, 1880
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The works of COOKER and PEREGRINE
(1988) and TELES DA SILVA & PEREGRINE
{1989) are examples of this approach.

One of the main features of the method used
for the results discussed below is that the inte-
gral equation (2.1) is solved directly in the
physical space. This choice not only makes it
straight forward to deal with situations that
are not periodic in space, but it makes it pos-
gible to consider almost arbitrary bottom con-
figurations and geometries of structures. A
more detailed explanation of this approach and
the solution to the problems it represents, has
been given in GRILLI ¢t ol., (1989).

For any choice of solution technique there
are several steps in the process where it is
extremely important for the accuracy of the
resulta that sufficient care is exercised in the
numerical approximations. One such part is the
evaluation of the integrals in {2.1). In most ear-
lier versions, very simple low order approxi-
mations have been used for the numerical com-
putation of these integrals which often have
influenced adversely the accuracy of the re-
sults. A noticeable exception from this is the
version developed by DOLD and PEREGRINE
{1984) who used high order polynomial approx-
imations for the integrand (but only for space
periodic problemas).

In some cases the integrals in the equation
are computed using shape functione analogous
to the finite element method. In this way, high
numerical accuracy can be cbtained using tech-
niques already developed for that method. The
method is then termed a Boundary Element
Method {BEM), and that is the version we use
here. To the lowest order, this corresponds to a
linear approximation within each element of
the boundary and the variables defined on the
boundary, but the present program has been
developed to handle either up to fourth order
shape functions for both geometry and varia-
bles or quasi-cubic epline approximations.

Another crucial step iz the solution of the two
partial differential equations (2.2) and (2.3)
representing the forward integration in time.
In the first applications of the method to non-
linear waves (LONGUET-HIGGINS and COK-
ELET (1976) and others) (2.2) and (2.3) were
solved by using an Adams-Bashforth-Moulton
(ABM) predictor-corrector method. This proce-
dure yields a high order approximation in time
but is not equally accurate in all respects

because the ¥ derivatives in (2.2) and (2.3) are
essentially only determined to the 0(1AX1%) or
0(1A%1%). The consequence of this is a method
which may be of fifth or sixth order in time but
only of second order in space. This presumably
meane that either more points afe reqguired to
accurately describe the development or the
time steps cannot be made as large as the high
order accuracy of the ABM method suggests.

It turns out that the method is unstable and
develops a so-called sawtooth inatability along
the free surface. This problem has later been
avoided by an alternative approach followed by
VINJE and BREVIK (1881), DOLD and PER-
EGRINE (1984) and others. Their method is
replacing the boundary integral equation (2.1)
with an equation based on Cauchy’s integral
theorem. VINJE and BREVIK actually used the
same integration technique in time as Longuet-

- Higgins and Cokelet which suggests that the

sawtooth instability is really linked to the solu-
tion of the integral equation rather than the
forward stepping in time.

More important, however, is the contributien
by Dold and Peregrine who developed a high
order explicit method for the time integration
which is of consistent high order in both space
and time. In our computations we have
extended that technique to the solution in the
physical space. Thia requires solving the spe-
cial problems at the boundary corners (Figure
1) which do not exist in the formulation using
conformal mapping. In the present version, the
method has been implemented to an accuracy of
O(AD)®,

4. THE BEM APPLIED TO THE
PROBLEM OF WAVES ON STEEP
SLOPES

In the following we concentrate on verifying
the computational accuracy by comparison with
a get of precige measurements and on applying
the BEM method to the run-up and reflection of
waves on structurea with steep front slope such
as certain rubble mound breakwaters with rel-
atively smooth fronts, seawalls, and dikes.
Quality measurements have been published for
the case of a solitary wave on a plane slope by
LOSADA et al., (1886) and Figures 3 and 4 show
two examples of the comparison between the
measured and the computed results. A solitary
wave generated by a piston wave maker

Journal of Copstal Research, Special Inaue No. 7, 1980
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0.265. (a) Instant of maximum runup it=6.7Ts in computations}. {b) Instant of lowest position of water suriace at slope in exper-
iments (t=7.31a). {c} Inatant of loweat surface position at slope in computations (1= 7.38e). (d) t = 9.08s.
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Figure 3b. Same as Figure 3a, 46" slope, H/h = 0.457. (2) Instant of maximum runup (t=§.14a). (b) Instant of loweat computed

surface position at the slops (t=6.738). ()t = 9.18a.

approaches the glope from the left, runs up on
the slope and bounces back and the refiected
wave moves away to the left. The figures show
the surface elevation at several instances of the
process. Figure 3 is for a slope of 45° and in Fig-
ure 4 the slope is 70°, In both figures two dif-
ferent wave height to water depth ratios have
been tested, H'h ~ 0.26-27 (part a) and H/h ~

0.44—486 (part b) the precise value being slightly
different in each case as listed in the figure cap-
tion. We see that not only is there a good gen-
eral agreement, but the computed results, in
fact, reproduce even seemingly arbitrary
details of the recorded surface variations.
Note that in the very late stage of the run
down of the steepest wave on the 45° slope (Fig-

Journal of Coantal Research, Special Insue No. 7, 1990
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Figure 4a. Same as Figure 3a, 70" slope, H/h = (.259. (a) Wave profile before maximum renup (L = 5.52a). (b) Inatant of maximum
runup (t = 6.68a). (c) Instant of lowest surface position at the slope (t=7.49s). (d) t = 8.76s.
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Figure 4b. Same as Figure 3a, 70° slope, H/h = 0.437. (a) Wave profile before maximum runup (t=4.88s). (b} Inatant of maximum
runup (1 =8.04s). (c) Instant of lowest position of water surface at the stope (t=6.67n). (d) t = 7.97s.

ure 3h, curve b), the computation predicts a
backward breaking and the computation had to
be stopped after the small wave turned over
becaunse the computer model cannot describe
postbreaking. The experiments also reported
such cases of backward breaking. The fact is,
however, that the phenomenon is very difficult
to predict and describe computationally be-

cause it is such a small wave that is only cov-
ered by very few computational points when the
computer model, like here, is gaged to describe
the development in a whole wave flume from
generation of the wave at the wave maker until
the slope.

The very high degree of agreement between
measurements and computations over the en-

Journal of Coastal Ressarch, Special Iswue No. 7, 1990
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tire length of the process studied is, in fact, only
possible if the whole flow pattern {velocity field,
pressure variations, efe.} is similarly accurately
modelled. Hence, we can expect the computa-
tional model o be able to predict also flow prop-
erties such as velocities and pressures that
were not measured. Doing so we can get a pic-
ture of flow details which would be very difficult
and laborious to obtain by direct measure-
ments.

Figures 6 and 6 ahow an example of such com-
putations for a wave of H/h ~ .46 on a 30° slope
(1:1.73) which is representatiye for many rub-
ble mound breakwaters. The figures give the
development of the internal velocity field dur-
ing the runup-rundown process. The arrows
indicate the magnitude and direction of the
velocities at each point at the given instant.
From the figures it is possible to follow the pro-
cess in some detail and get a better feel for how
complicated the runup and reflection of a wave
on a slope really is.

In addition to the velocity field, Figures 5 and
6 also show the surface position at each instant,
and it is striking to see that the time inter-
val between the inatant of maximum runup
(t=6.48) and the instant where the water aur-
face almost reaches its lowest position (t=6.9s)
is only 0.58 in these experiments where the
water depth is 0.3m.

1t is also worth noticing that the velocities in
the downward part of the motion oceurring in
Figures 6b-c are somewhat larger than the
velocities in the runup phase. If we imagine the
slope represents the surface of a breakwater or
a seawall, then the situations in Figures 6b-d
aleo represent the time where the internal
water table in the porous structure behind the
armor layer is at its highest position relative to

the external water level which means that the
outgoing pressure on the armor blocks is larg-
est at the same time as the drag forcea from the
down-rush has its numerical maximum (see
e.g., BRUUN and JOHANNESSON, 1974 or
BARENDS et al., 1983). {The porosity of some
structures will influence the flow field some-
what but because of the extremely fast nature
of the runup-rundown process, we would expect
the pattern shown to be gqualitatively the same.)
Furthermore, the downslope component of
gravity enhances that component of the force.
It showsa that this phase of the motion is likely
to be the most dangerous phase in the runup-
rundown sequence and that the blocks in the
armor layer failing at this time will be dragged
out of the slope and downwards.

5. ALTERNATIVE METHODS FOR
WAVES ON STEEP SLOPES

The waves of intereat for the design of engi-
neering structures are usually ao long that var-
jious long wave assumptions can be invoked and
this is the basis for most of the alternative the-
oretical or numerical models used in the liter-
ature to analyze the wave interaction with a
steep slope. The purely analytical solutions to
such models usually can only be obtained for a
plane slope whereas the numerical models such
as the solution of the nonlinear shallow water
equations (and the BEM used in our computa-
tions) ean actually be used on almost arbitrary
slope configurations. In the following two alter-
native approaches are briefly deseribed and
those methods are compared to the BEM by list-
ing advantages and disadvantages of each
method. Both are solutions to the nonlinear
ghallow water equations and one is analytical,

Figure 58. The internal velocity field during runup of the solitary wave in Figure 3b: 30° slope, Hth = 0.457, The times are: 1a}.
§.508.

Journal of Coastal Research, Special Issue No. 7, 1380
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one numerical, Since the basic approximations
such as hydrostatic pressure and moderate
slope utilized in the NSW equations are not
required in the BEM, the BEM computations
can, to some extent, be used to assess the accu-
racy of the NSW methods. This particularly
applies to slopes of 1:2.5 or steeper which fre-
gquently are used in engineering structures,
because on such slopes even steep waves do not
reach breaking which, ag mentioned before,
would stop the BEM computations.

Waves on a slope modelled by the NSW equa-

tion have been discussed extensively in the lit-
erature since CARRIER and GREENSPAN
(1958) derived an exact solution to those equa-
tions for nonbreaking periodic waves on an infi-
nite plane slope. Numerical solutiona of the
nonlinear shallow water equations on gentle
slopes were firat discussed by HIBBERD and
PEREGRINE (1879) and the problem has been
pursued extensively for both smooth and rough
impermeable slopes by KOBAYASHI and co-
authors (see, for example, KOBAYASHI et
al., {1987), KOBAYASHI and GREENWALD

Journal of Coantal Research, Special Iusue No. 7, 1990
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Figure Se. (e). 6.40s.

Figure 8a. Same as Figure 5 but for the down rush phage, Times are: {a). 6.45s.

[

Figure 6b. (b). B.55s.

(1986), and KOBAYASHI and WATSON
(1987)). Also, PEDERSEN and GJEVIK (1983)
solved numerically the related Bouasinesq
equations on a plane slope. An extension of
the NSW equation which includes the effect of
turbulence due to breaking waa derived by

SVENDSEN and MADSEN (1984) and aclved
for a bore on a plane slope.

The NSW equations were originally derived
for irrotational waves with amplitudes of the
same order of magnitude as the depth but a
characteristic horizontal length acale many
times the depth. This implies that the dimen-

Journal of Coastal Research, Special Issue No. 7, 1990




194 Svendsen and Grilti

B o ™ e

Figure &e. (c). 8.75e.

q_-a:s::w__é‘:/{

P S ——

I N— - “ﬂaq_;!ggpf .

Figure 6d. (d). 6.80s.

sionless ratio HA%/h® (the Ursell parameter)
between wave height, H, water depth, h, and
the horizontal length scale, A, is assumed large,
that is

H)3h >> 1 5.1)

For a rigorous derivation, hydrostatic pres-
sure need not be assumed but follows ag a con-
sequence of (5.1) and, since the flow is potential,
bottom friction cannot be incorporated. For a
detailed discussion, reference is made to PER-
EGRINE (1972).

An almost identical set of equations can be
derived, however, if hydrostatic pressure is
assumed a priori. The important advantage of
this approach is that bottom friction can be
included. Those equations are essentially aver-
aged over depth, and the continuity equation
simply becomes

o, 9 _
S eE=0 (5.2)

where v is the free surface elevation and Q is
defined by

n
Q= f udz (5.3)

u being the herizontal velocity at the point and

h, the undisturbed depth. Similarly, the hori-
zontal component of the momentum eguation
may be written (ugingh = h, + n)

o loeud) om_m

% T2 ox +gax °h (5.4}

where © = Q/(h,+m)} is the depth averapged
velocity and o is defined as

o= J’_—uz'h- (5.5)

T, i8 the bottom friction. The coefficient a(>1)
cannot be determined by the model. For most
real velocity profiles, however, o ig not much
larger than 1 and pften it is simply assumed
that o = 1 which implies the horizontal velocity
is uniform over depth, and this is the version of
the NSW equations used in the references
quoted above.

Though valid on uneven bottoms, the validity
of the NSW approximation requires that tan’p
<< 1 (HIBBERD and PEREGRINE, 1979 and
KOBAYASHI et el., 1987), How large values of
tan®p can be allowed cannot be derived from the
model. Due to the many other advantages of the
NSW model, it is desirable to analyze its range
of application even on steeper slopes and it is

Journal of Coantal Research, Special Insue No, 7, 1880
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the purpose of the following comparizon
between the BEM and the NSW methods to ana-
lyze how seriously the solution deviates when
applied to slopes typical for rubble mound
breakwaters. We can de this by looking at how
well the assumption of depth uniform velocity
for cases without friction and the assumption of
hydrostatic pressure are actually satisfied in
the exact computations and also by comparing
other results such as the predictions of the max-
imum run-up.

Figure 7 shows horizontal velocity vectors
derived from the computational aclution of the
potential problem for = -30° (tan’ = 0.333)
discussed earlier. If we assume that the NSW
solution would predict exactly the same aurface
elevations in space and time as the BEM (this
problem is not investigated here), then the fric-
tionlesa NSW equations would predict the
(depth constant) mean U of each of the velocity
profiles shown in the figure. We see from Figure
7 that in most of the situations shown, the
velocity variation over depth varies up to
+(25-35)% from the depth averaged value,
with the smallest values near the bottom.
Therefore, depending on the problem, the depth
averaged velocity may or may not represent a
reasohable approximation to the real gituation.

Strictly apeaking, the NSW approximation
only deals with horizontal velocity components,
because in the long waves implied by (5.1) the

vertical velocities are assumed negligible. On -

the other hand, the vertical velocities actually
occurring can be calculated from the local con-

tinuity equation which hence is not directly

invalidated by the NSW equations. This is par-
ticularly important when the bottom slope
becomes as ateep ad it is on many engineering
structures because the sloping bottom means
that if there are horizontal velocities then there
are alsc vertical velocities which are at least ~

W tanp (=0.577 U in the example p=30°). Such
vertical velocities are associated with vertical
accelerations which require deviations from
hydroatatic pressure. Hence we must expect
that as the slope becomes steeper that funda-
mental assumptions may not hold.

Figure 8 shows the pressure along the surface
of the slope, the position being measured by the
vertical coordinate z. The ordinate on the figure
is the actual computed pressure p, divided by
the hydrostatic pressure, py = pgth, +m} that
would be assumed at that point and instant by
the nonlinear shallow water theory. Thua, p/py
= 1 represents the hydroatatic hypothesis of
the NSW equation exactly satisfied. The pres-
sure variation is shown for each of the instants
for which the velocity field is given in Figures
5 and 6.

In essence, the deviation from hydrostatic
pressure indicates the degree to which the hor-
izontal accelerations driving the flow deviate
from the assumed gon/9x. Thus, the rather sub-
stantial deviations in pressure suggests that
the temporal development of the surface profile
that can be obtained from the NSW model may
deviate similarly from the exact computations.
However, this hypothesis needs to be studied
further.

6. COMPARISON WITH AN ANALYTICAL
SOLUTION FOR RUNUP HEIGHT

On a plane slope going to infinite depth, the
NSW equationa have been solved analytically
for frictionless flow by CARRIER and GREEN-
SPAN (1858) and this solution has recently
been extended by SYNCLAKIS (1987) to the
more interesting case of a plane slope in a
region with an otherwise finite constant water
depth. Results for a solitary wave are available
and can be compared with our computations

RESNREL] h
1
'}

Figure 7a. Profiles of horizontal velocity

m—=

ts for aome of the pituations shown in Figures 5 and 6. Times are; (a). 5.50s.
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and also with the measurements of LOSADA et
al., (1988).

Results for the maximum runup height, R,
are shown in Table 1 for slope angles ranging
from 2.88° (approximately 1:20) to 70°. The sec-
ond column in the table indicates the height of
the incident waves relative to the water depth,
h,, in front of the slope. R, in the third column
ie then the experimental values obtained by
LOSADA et al., (1986) (70° and 45°), by HALL
and WATTS (1953} (15°), and by SYNOLAKIS
(1987) (2.88°). Among the computed results R,
is the runup determined by the BEM method,
(“____" indicates breaking before maximum
runup).

Synolakis gives two estimates of the runup:
an approximate value :

R./h, = 2.831{cotB)*(H/hy)™ (6.1)

where B is the slope angle. This expression is
only valid on relatively gentle slopes satisfying
the requirement

tanp
(H/h,)'?

A = 0.288 << 1 (6.2)

where H is the incident wave height and h, the
depth in front of the slope.
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The other expression is an integral relation
for R. The results from this equation listed in
the table as R, are from SYNOLAKIS (1989)
and are only available for the ateep slopes
where the approximate expression (6.1) does
not apply.

It is fairly clear from the table that within
their range of applicability, all three methods

yield results that are of the same order of mag-
nitude as the measured values. It is also evi-
dent, however, that the methods are not equally
accurate. '

Ag far as (6.1) is concerned, it appears that
the limit which (6.2) speciftes for the validity of
that approximate equation is very real. The
parameter A is listed in Table 1. Evidently, for
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Figure 8a. Pressure variation at points along the slope for the same cases as in Figure 6.

the steep slopes of 45° and 70°, A is not <<1
and, consequently, the R /h, from (6.1) cannot
be expected to predict the runup. The values
turn out to be only about half the measured val-
ues. For 15° and 2.88° slopes (6.2) is satisfied
and nevertheless the predictions of (6.1) are
only reasonably accurate for the small wave (H/

h, = 0.1) on a 15° slope (error + 9.6%, A =
0.244). Although A is amaller (0.173) for the
steeper wave (H/h, = 0.2) on that slope the pre-
dictions of the runup is actually leas accurate
{error +22.2%) and for a 2.88° slope, the errors
are +15.6% and +44.9%, respectively, al-
though A ~ 0.1 {<< 1} which meana that (6.2)
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Figure 8b. Pressure variation at points along the slope for the same cases as in Figure 6.

Tabie 1. Compariser of numerical and analytical results witk experimental resulis

Experimental resuits

Numerical and analytical resuits

Ru/h, By/h, Ry, A
B Hh, B.h, Exper. by BEM (8.1) (Int eq) 6.2)
70" 0.259 0.558 LOSADA, et al. 0.580 (0.316) 0.524 1.560
w 0.437 1.071 (1886) 1.062 {0.607) 1.142 1.200
45" 0.269 0.672 0.674 (0.546) 0.644 0.560
46° 0.467 1.294 1.2567 (1.064) 1.184 0.430
i5° 0.100 0.281 HALL & WATTS 0.310 0.308 0.244
15° 0.200 0.589 (1953) 0.654 0.732 0.173
2.88° 0.019 0.077 SYNCLAKIS £.081 0.089 0.105
2.88° 0.040 0.156 (1987) —_ 0.226 0.072

is satisfied. The data in SYNOLAKIS (1987)
actually suggest that the last wave may be
breaking (as our computations predict) which
would explain the large discrepancy. As will be
argued later, part of that error is likely to be
due to the fact that the prediction (6.1) does not
inciude the effect of friction which does become
important, in particular in laboratory flumes
when the slope is as small as 2.88°,

It is also worth noting that the accuracy of
{6.1) in all cases is lees for the steeper waves on
each slope although the form of (6.2) yields
smaller A-values for such waves and, hence,
implicitly suggests that (6.1) should be more
accurate the steeper the wave. So that deduc-
tion clearly is not confirmed by the results.

The runup R, predicted by the integral equa-
tion derived by SYNOLAKIS are reasonably
accurate for steep slopes, errors ranging from

:—4.2% (45°, H/h, = 0.269) to —7.7% (456°, H/h,

= 0.457). This, however, is probably the best
accuracy one can expect because although the
integral equation is claimed to be exact, this
only means an exact result for first-order soli-
tary waves. The largest errors occur for the
steepest waves where the first-order theory is
least accurate.

In comparison, the BEM method is seen to
work very well, particularly on the steep slopes
of 45° and 70° where the error on the runup is
+3.9%, +0.8%, +0.3% and + 2.9%, respec-
tively for the four cases in Table 1. In fact, this
is probably within the accuracy of the well-con-
trolled measurements themselves, so that those
figures cannot really be considered a measure of
“‘error’’ relative to a flawless experimental
result.

Cn the 15° slope (1:3.73), the BEM predicts
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too large runup figures for both waves { + 10.3%
and 9.2%, respectively).! Since the accuracy of
the computations is not influenced by the slope
angle, B, {as long as the waves do not plunge),
the only explanation for the deviations ie that
friction in the experiments causes the differ-
ence. This difference, however, would then be
smaller in large scale nature because the frie-
tion ie larger in the laboratory experiments
both due to smaller Reynolds humber and due
to side wall effecta. This also throws some more
advantageous light on the accuracy of the
approximate formula (6.1) as far as the lees
steep waves are concerned.

The resuits for the mildest slope {f = 2.88°)
really confirm this. The BEM could only predict
runup for the smaller of the two waves tested
because the wave with height ratio (.04 broke
before the runup point was reached. The result
available, however, agreee with the measure-
ments to within +5.2% (against +15.6% for
(6.1)) which confirms that for the relatively
small amplitude wave (height ratio 0.019), the
experimental friction is of relatively smaller
importance. Also, the experiments of SYNO-
LAKIS are believed to be more accurate than
the much older measurements by HALL and
WATTS (1953).

7. DISCUSSION OF RESULTS AND
THEIR LIMITATIONS

It has been demonstrated here that the BEM
method which essentially solves the exact equa-
tions for flow without friction is a highly accu-
rate method for prediction of nonlinear wave
motion. This can be done in regions with fairly
arbitrary bottom topographies and boundary
geometries. It has been demonstrated numer-
ous times that the method is also capable of pre-
dicting the overturning of the wave as in a
plunging breaker and the version developed for
the present computations haa that capability as
well. Prediction of the motion of the falling jet
itself requires far more computing accuracy
than is necessary for the motion of nonlinear
waves in general, but essentially this is a mat-
ter of caring for some computational detaile
within the framework of the modei.

However, once the plunging jet hits the water

1. Thore deviationa are of the same arder of magnitude as for the
approximate methad although the accuracy is independent of the
wave height because the BEM is aqually nccurnte for steep waven.

in front of the crest and turbulence starts to
develop, the basic assumptions for the model
breakdown. Although it may be possible to
develop the model to carry the computations
somewhat further than the point where the jet
plunges, this is the time where it is necessary
in the present version to atop the computations.
Hence, the real limit of applicability of the
BEM muodels today is that they cannot handle
breaking anywhere in the computational
region.

The exact analytical selution of the NSW
equations developed by SYNOLAKIS (1887} is
limited in generality in the first place by enly
considering a solitary wave as input and by
only representing a solution for a plane slope.
Secondly, it is limited in accuracy by only con-
sidering a first-order aolitary wave as input.
The solution does have features that Carrier

" and Greenspan have termed wave breaking,

simply because the solution for the surface for
some parameter values develope a vertical tan-
gent as would be the case in real wave breaking.
This type of “breaking” has been investigated
quite extensively in the literature from the
mathematical point of view but has, to the
knowledge of the authors, never been compared
in details with experimental or accurate com-
putational reaults as those of the BEM. We are
suspicious though of the relevance of this
breaking because the assumptions underlying
the NSW.equations on which it iz based break
down long before the tangent to the water sur-
face becomes vertical. The importance of this
argument is further enhanced by the fact that
the Serre equations (SERRE, 1853) do not show
a behavior similar to the NSW equations as
demonstrated, e.g., by the numerical work by
SEABRA-SANTOS et al., (1987). Those equa-
tions are a higher order approximation to the
long wave problem'that includee the effects of
vertical accelerations while keeping the Uraell
parameter >>1, .

It would be expected that a numerical solu-
tion of the NSW-equations must suffer from all
the limitations imbedded in the equations
themselves. However, the aolution technique
used by HIBBERD and FEREGRINE (1879) and
KOBAYASHI et al., (1987) is based on a dissi-
pative LAX-WENDROFF scheme which has
features not imbedded in the original NSW
equations. LAX and WENDROFF (1960), sug-
gested to add artificial dissipation to the
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numerical scheme they developed themselves
by rigorous Taylor expansionsa. For details see
RICHTMYER and MORTON (1967). The dissi-
pation is designed so that masa and momentum
is conserved and the dissipation remains small
for wavee with limited surface curvature. On
the other hand, since the NSW equations do not
have solutions of constant form even on a hor-
izontal bottom, any wave propagated by those
equations will steepen until the front slope of
the water surface becomes vertical, just as in
the analytical solution on a slope by Carrier
and Greenspan. In the numerical solution using
the dissipative Lax-Wendroff scheme, however,
the dissipative terms become large just where
the surface slope becomes “large”. This has sev-
eral effects. First, it stops further steepening of
the profile which now attains a constant shape
with a very steep {but not vertical) front slepe,
very much like in a real wave that propagates
while it continues to break (HIBBERD, 1977).
Second, it may be inferred from the results of
SVENDSEN e¢ al., (1978) that if the shape of
the wave has become stagnant, the energy dis-
gipation will equal that of a hydraulic jump
with a height equal to the wave height.
SVENDSEN (1984) has shown that such a dis-
sipation will render a good prediction of the
wave height development on a gentle slope once
the wave has developed a bore like shape,
although it does not predict the trangition of the
breaker shortly after breaking, in particular,
not for plunging breakers. Hence, on a gentle
siope where the NSW equations are normally
used (see section 5) the dissipative Lax-Wen-
droff scheme applied to the NSW equations sup-
plies a solution which, in many respects, closely
modela the actual surf zone wave. The two
major limitations are that the point of breaking
is determined in a non-physical way as the time
it takes the wave to steepen, which for a wave
of a given height to depth ratio is & certain dis-
tance from the starting point of the computa-
tions. If, in other words, we move the starting
point of the computations then we move the pre-
dicted breaking point similarly. The second
limitation of the realiam of the predicted wave
is that the steepness of the stabilized front is
determined by the discretization step Ax. HIB-
BERD and PEREGRINE (1979) found that the
transition from trough to crest would occur over
4-5 times Ax. Hence, changing Ax changes the
front shape of the wave.

On a steep slope it is less clear how to inter-
pret the resuits because, although the front
steepens and the energy dissipation becomes
large, the dispersive mechaniams which are
important for that process are missing in the
NSW equations. Also the front shape can hardly
get time to reach the stable form which was the
basis for the above mentioned resemblance with
the energy dissipation in a hydraulie jump.
Finally, we have seen that the deviations from
hydrostatic pressure may be important. Hence,
a closer investigation of those details wonld be
necessary before relying on the NSW equations
for wave motion on steep slopes.

8. CONCLUDING REMARKS

As we have seen, none of the methods avail-
able are capable of describing all aspects of the
wave motion on steep slopes.

The BEM is accurate and gives the most
details but eannot be pursued beyond breaking,
which limita its application to the steeper
alopes. Also in its present form, bottom friction
and structural porosity are not included.

The analytical solution of the NSW equations
has severe limitations in being limited to sim-
ple wave shapes (presently solitary waves) and
plane slopes.

-The most frequently used numerical scheme
for the NSW equations hag been well verified on
gentler slopes (less than 20°) and for those cases
renders a robust model that includes bottom
friction and can carry the computations beyond
the breaker point. The equations, however, can-
not be expected to work well on slopes of 30° or
more. Also some caution would need to be exer-
cised as to the interpretation of the results for
how the waves develop towards breaking.

Hence it is concluded that on steep slopes the
BEM method is likely to give the most accurate
results although it presently doea not include
bottom friction and cannot be carried beyond
the inatant where the jet of a breaking wave
hits the surface in front of the crest.
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