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WAVE ENERGY FOCUSING IN A THREE-DIMENSIONAL NUMERICAL WAVE
TANK

Stéphan T. Grilli, M.ASCE !, Christophe Fochesato ? and Frédéric Dias *

Abstract: Extreme waves at sea, so-called freak waves, are simulated in a three-dimens-
ional (3D) fully nonlinear Numerical Wave Tank (NWT), through wave energy focusing
achie- ved from the motion of a snake wavemaker. Wave kinematics is analysed near the
crest from the numerical simulations. By contrast with simple linear superposition, non-
linear interactions enhance energy focusing and generate larger more damaging waves.
The NWT solves incompressible {ree-surface Euler equations for potential flows, with a
higher-order Boundary Element Method and a mixed Eulerian-Lagrangian time updat-
ing. The numerical efficiency of the NWT was recently improved by the implementation
of the Fast Multipole Algorithm in the spatial solver. A typical case of an overturning,
near breaking, rogue wave is presented as an application. Detailed wave shapes are
given, as well as results for the particle velocities at the surface and under the wave
crest.

INTRODUCTION

This study deals with the rare but important phenomenon of freak waves at sea. Despite
their low probability of occurrence, such waves may cause severe damages to ocean struc-
tures located in their path. Hence, dynamic loads caused by freak waves must be considered
when design important off-shore or naval structures. Freak waves are localized in time and
space and result from a short duration local focusing of wave energy, which may be due to a
number of factors. Among these, spatial wave energy focusing is one of the most commonly
proposed mechanisms to explain the appearance of rogue waves. According to linearized
wave theory, wave components with different phases and directions can superimpose over
a small region of space and time to produce a much larger wave. Such superposition is
enhanced by nonlinear effects (e.g., Grilli and Brandini, 2001). Other factors, however,
may cause wave energy focusing, such as the bottom topography in shallow water, or wave-
current interactions. In deep water, the ‘Benjamin-Feir’ modulational instability may cause
self-focusing of wave energy (e.g., Henderson et al., 1999). Other wave-wave interactions
or interactions with atmospheric conditions may also play a role in this phenomenon. Kharif
and Pelinovsky (2003) summarized these mechanisms in their recent review article.
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While most studies of rogue waves so far have assumed deep water, it has been shown
that these waves can occur for any water depth. Here, we consider an arbitrary finite depth,
but specify a flat bottom in order to concentrate on one focusing mechanism only. Our model
can however feature an arbitrary bottom topography.

Early two-dimensional (2D) studies, both numerical and experimental, used the mecha-
nism of frequency focusing, which occurs when faster waves catch slower ones that have
been generated earlier, to create wave superposition (Chaplin, 1996). More recently, spatial
energy focusing has been the typical mechanism used to generate extreme waves in three-
dimensional (3D) laboratory wave tank. To do so, a properly programmed snake wave-
maker creates the superposition of several directional sinusoidal wave components. She ef
al. (1994), for instance, made such laboratory experiments and studied the kinematics of
breaking waves using a PIV technique. Brandini and Grilli (2001) and Brandini (2001) car-
ried out a 3D numerical study of spatial wave focusing with the Boundary Element model
of Grilli ef al. (2001), by implementing both a snake wavemaker to generate waves at one
extremity of a 3D NWT, and an open absorbing boundary at the other extremity. More re-
cently, Bonnefoy et al. (2004) developed a NW'T based on a higher-order spectral solution of
Euler’s equations with a free surface, and compared their results with experiments. Although
their method cannot model overturning waves, it allows to consider many wave components
in a large basin, and thus to generate realistic random wave fields.

By contrast, the goal of the present study is to numerically simulate intense directional
energy focusing in a 3D-NWT, leading to wave overturning, and study the kinematics of
such extreme waves near the crest. Following Grilli and Brandini (2001), we use a Boundary
Element Method (BEM) to solve Euler equations with a free surface. The computational cost
of the original method, however, which grows quadratically with the discretization, makes
such computations rapidly prohibitive. We eliminate this obstacle by implementing the Fast
Multipole Algorithm (FMA) to accelerate all the matrix-vector products in the spatial solver
(Fochesato and Dias, 2004), and achieve a computational cost almost proportional to the
discretization size, i.e., O(N). Greengard and Rokhlin (1987) initially developed the FMA
for the N-body problem, and allow for a faster computation of all pair-wise interactions.
The FMA, in particular, is well suited to compute interactions governed by Laplace’s equa-
tion and, hence, for our problem. The FMA takes advantage of the fact that the strength
of pair-wise interactions decreases with distance, so that far distant points can be regrouped
together, to contribute to one collocation point. A hierarchical subdivision of space automat-
ically provides distance criteria to separate close interactions from distant ones. The FMA
can be used to directly solve Laplace’s equation, but it can also be associated with an integral
representation of Laplace’s equation, such as the BEM, which leads to a linear discretized
system of equations, with matrix-vector products. The solution of this system with an iter-
ative solver can be greatly accelerated by the FMA. Rokhlin (1985) applied this idea to the
equations of potential theory. [See the review article by Nishimura (2002) on the application
of this algorithm for boundary integral equation methods.]

Korsmeyer et al. (1993) already combined the FMA with a BEM, using a Krylov-
subspace iterative algorithm. Following Rokhlin’s ideas, they designed a modified FMA
for the equations of potential theory. Initially developed for electrostatic analyses, their code
was generalized to become a fast Laplace solver, which subsequently was used for potential
fluid flows. Theirs was an efficient model but its global accuracy was limited due to the use
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Fig. 1. Sketch of computational domain for 3D-NWT.

of low order BEM elements. Scorpio and Beck (1996) studied wave forces on bodies with a
multipole-accelerated desingularized method, and thus did not use a BEM to discretize the
problem. Neither did Graziani and Landrini (1999), who used the Euler-McLaurin quadra-
ture formula in their 2D model. For completion, let us just point out that other fast methods
exist for water waves, essentially spectral methods based on the Fast Fourier Transform. In
particular, the recent work by Bonnefoy et al. (2004), cited above, is a NWT for non-breaking
waves, that uses a spectral method and also has a O(N) numerical complexity.

In the following, we show how the FMA can be combined with the NWT by Grilli et al.
(2001) to yield a much more efficient numerical tool. The modified model is then applied to
freak wave generation, over much more refined discretizations than could be used in the past.
Thus, physical processes can be better represented and analyzed in these new simulations.
Details of the FMA can be found in Fochesato and Dias (2004). The next section presents
the numerical model and its more recent improvements. Then the configuration of the NWT
used for freak wave simulations is described. Finally, results are presented and discussed for
one application.

BACKGROUND OF NUMERICAL MODEL

The basic formalism is that of Grilli et al.’s (2001) NWT. We consider the equations for a
potential flow of an ideal, incompressible fluid, with a free surface. Within the domain, the
governing equation is Laplace’s equation, A¢ = 0 for the velocity potential ¢, defined from
the velocity as, u = V. Green’s second identity transforms this equation into a Boundary
Integral Equation (BIE),

ot o) = [ {5 6w —ota) G e ar 0

where G(x, @;) = ﬁ is the 3D free space Green’s function, d = | — ;| , n is the normal
vector exterior to the boundary and «(w;) is proportional to the exterior solid angle of the
boundary at collocation point «; (Fig. 1). On the free surface, the potential ¢ satisfies the
nonlinear kinematic and dynamic boundary conditions,

DR Do

1
E—qu ; Ez—gz+§v¢-v¢ (2)

respectively, where R is the position vector of a fluid particle on the free surface, ¢ the
acceleration due to gravity and D/ Dt the material derivative. Lateral boundaries are either
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fixed or moving boundaries. In this study, waves are generated by a snake flap wavemaker,
at the open boundary I',;(¢). The motion «,, and velocity u,, of the wavemaker are specified

as, ® = x, and % = u, - n, where overlines denote specified values. Along the fixed parts

of the boundary, such as the bottom I', and lateral boundaries I',2, a no-flow condition is

; 9¢ _
prescribed as, 2= =

Flow kinematics can be explicitly calculated inside the domain based on the boundary
solution of Eq. (1). For instance, velocity and local acceleration at internal point @; are
given by,

w = Vida) = Am{g%ﬁﬂw%wo—am%§@wo}ﬂ‘

aul_ %w = 62¢w r.&r %wa—wa
= v, L) Am{ (@) Qa, 1) — 22(a) <,o}dr 3
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respectively, where Q(z, ®;) = 25 d, %(m, z)) = ={n — 3(e;s - n)es}, withe; = 1d

and V; the gradient operator with respect to internal point ;.

The domain shown in Fig. 1 represents a closed basin such as a wave tank, whose bot-
tom can be defined with arbitrary geometry. The numerical model is presented in detail in
Grilli et al. (2001) and Fochesato et al. (2005). The time stepping algorithm consists in
updating the position vector and the velocity potential on the free surface, based on second-
order Taylor series expansions. At each time step, The BIE (1) is solved through the use
of a Boundary Element Method (BEM). The boundary is divided into elements for which
a local interpolation is defined, both for the geometry and field variables. Bi-cubic poly-
nomial shape functions are used and a local change of variables is defined to express BIE
integrals on a curvilinear reference element. The numerical computation of these integrals
is performed using a Gauss-Legendre quadrature and appropriate techniques are applied for
removing weak singularities of the Green’s functions. The number of discretization nodes
yields the assembling phase of the discretization matrix. The latter is modified by applying
the rigid mode technique, which allows to directly compute the solid angles « and thus avoid
evaluating the strongly singular integrals of the normal derivative of the Green’s function.
The use of the multiple node technique, to deal with domain edges and corners also leads to
a modification of the algebraic system matrix. The velocity potential, or its normal derivative
depending on the boundary condition, is obtained by solving the resulting linear system of
equation. Since the system matrix is fully populated and non-symmetric, the method has at
best a N? computational complexity, where NV is the number of nodes in the discretization,
when using the iterative algorithm GMRES (optimized conjugate gradient method). Thus
the spatial solution at each time step is of the same complexity as the assembling of the sys-
tem matrix. The FMA is implemented to reduce this complexity and increase the solution
efficiency when evaluating every matrix-vector in the discretization of the BIE.

The FMA is based on the principle that the Green’s function can be expanded in separated
variables (i.e., spherical harmonics) when the source point «; and the evaluation point & are
far enough from each other on the boundary. Thus, one can write for a point O (origin of the
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expansion) close to & and far from a;,

Y (6,
Gz, ) 4WZ Z )% “)

k=0 m=—k

where Ox = (p,a,3) and Ox; = (r,0,¢) in spherical coordinates. Functions Y= are
the spherical harmonics defined from Legendre polynomials. In order to determine in which
cases this approximation can be used, a spatial hierarchical subdivision of the domain is
defined based on distance criteria. Close interactions are evaluated with standard Green’s
functions and far interactions are approximated based on the subdivision into cells and ex-
pansions of the Green’ functions with Eq. (4). Error and complexity analyses for the FMA
are given for instance by Greengard (1988). In our case, the FMA must be adapted in order
to be part of our wave model. Thus, the integral Eq. (1) can be written as,

o) o) % =3 3 (o P2l 5

k 0 m=—k

where M;*(O) is the moment at the origin O,

wpo) = [{ 5@ v as - o) g (P ) far @

Based on Egs. (5),(6), we now consider the contribution of boundary element to a collocation
point. The local computation of several elements grouped together into a multipole relies on
a BEM analysis, using the spherical harmonics instead of the Green’s function. The integra-
tion of the normal derivative of the spherical harmonics is done by taking care of avoiding
an apparent singularity, which could generate numerical errors. The BEM discretization
only takes place in the computation of the moments. The rest of the FMA is standard, es-
pecially the translation and conversion formulae, which allow to pass information through
the hierarchical spatial subdivision, from the multipole contributions to the evaluation at ev-
ery collocation point. From the wave model point of view, we had to adapt all the aspects
depending on the existence of the system matrix in the former BEM model.

The accelerated FMA model benefits from the faster Laplace’s equation solver at each
time step. The FMA model performance was tested by comparing new results with the
former model’s results for a 3D application, which requires great accuracy : the propagation
of a solitary wave on a sloping bottom with a transverse modulation, leading to a plunging
jet (Grilli et al., 2001). The consistency of the new approximation was checked but, more
importantly, the accuracy and stability of results and their convergence with the discretization
size was verified. In fact, by adjusting the parameters of the FMA, i.e., the hierarchical
spatial subdivision and the number of terms p in the multipole expansions, one can get the
same numerical results as with the former model. In this application, for discretizations
having more than N = 4,000 nodes, the computational time was observed to evolve nearly
linearly with N. See Fochesato and Dias (2004) for detail.

NWT FOR 3D ENERGY FOCUSING

Here, the NWT is defined as a rectangular basin with a flat bottom of depth hy. A snake
wavemaker i1s implemented at one extremity (Grilli and Brandini, 2001), as a series of flap
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Fig. 2. Typical snake wavemaker motion on the leftward extremity of the NWT.

paddles rotating on the bottom with the angular velocity O 7. Each paddle position is defined
as, ¢, = (1,,Yp,%,) = &, — pm, wWith &, = y,J — h, k, the coordinates of the axis of
rotation and p the distance from the axis of rotation, measured on the paddle in the vertical
plane. Hence,

So
p= \/:1;227 + (ho+ z,)? ,and Q = arctan {h_} (7)

[

where S,(y, t) is the horizontal paddle stroke specified at = = 0. From these definitions, we
find the velocity and acceleration vectors on the wavemaker as,

. d . . .

w=—pm—pQn ;= {pm—ﬁ}m— {2,o'ﬂ+pﬂ}n ®)
Following Dalrymple (1989), we specify the wavemaker stroke 5, as the linear superposition
of Ny sinusoidal components of amplitude a,, and direction ,,, as

Ny

Sol(y,t) = Z a,, COS {kn(y sinf, —xycosb,) — wnt} 9)

n=1

where £, and w, denote the wavenumber and circular frequency of each component, re-
spectively, which are related by the linear dispersion relationship, w? = ¢k, tanh (k,h,),
and z; is the focusing distance for the waves in front of the wavemaker. Angles 6,, are
uniformly distributed in the range [—8ax, fmax]. Only directional focusing is studied here,
hence w,, = w. [Frequency focusing could be specified by adjusting the components’ fre-
quency as a function of the angle 8,,.] Moreover, for simplicity, we use identical component
amplitudes; different values however could as easily be selected.

The first objective of this work has consisted in finding wavemaker parameter values such
that an extreme overturning wave is generated near the middle of the NWT. The variables
are non-dimensionalized (length by depth /g, and time by \/h/g). The NWT is 10 unit
long along the z axis and 20 units wide along the y axis. We consider the superposition
of Ny = 10 components having identical amplitude a, = 0.035, and directions 6,, vary-
ing between —45 and 45 degrees. Every component has a frequency w, = 1.2816, which
gives a linear wavelength [, = 27 /k = 3.725, velocity ¢ = w/k = 0.7599, and steepness
ka = 0.059. The energy focusing point is specified at the distance x; = 7.5 from the wave-
maker. At the beginning of the computations, the BEM discretization uses 60 elements in
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the « direction, which corresponds to roughly 20 nodes per wavelength. In order to obtain
the overturning phase, this resolution is improved to 75 elements from ¢ ~ 16.25. The width
of the domain is divided into 70 elements, and the depth into 4 elements. [Note that all the
boundaries are discretized in the present simulations, unlike in Brandini and Grilli’s (2001)
work, that used an image method to eliminate the bottom discretization; this simplification
will be implemented in the FMA, in future work.] Fig. 2 shows a typical motion of the snake
wavemaker in the NWT. At the other extremity of the domain, an absorbing piston boundary
is specified (Clément, 1996; Grilli and Horrillo, 1997; Grilli and Brandini, 2001), although
it is not perfectly suited to these intermediate depth waves. Nevertheless, this condition suf-
ficiently delays the instant when reflection can no longer be neglected in computations, to
allow us to study the extreme 3D overturning wave generated in the NWT. [The implemen-
tation of an absorbing piston having the same kind of movement as the snake wavemaker, as
in Brandini and Grilli (2001), would improve this feature.]

APPLICATIONS

Figure 3 presents the time evolution of the free surface computed in the NWT, using the
wavemaker parameters and BEM discretization discussed in the previous section. To reduce
the initial singularities at the interface between the free surface and the moving boundary,
the wavemaker motion was ramped up over three periods (Grilli and Brandini, 2001). The
initially flat and still free surface starts moving near the wavemaker, and a first focused wave
of moderate amplitude is generated (Figs. 3a,b). Then, the wave elevation decreases, before
disappearing. Hence, we effectively model some local wave focusing, which is transient
both in time and space, a known characteristic of freak waves. Behind this first wave, a
second wave appears, which clearly results from the superposition of wave components with
different directions (Figs. 3c). The amplitude of the wavemaker oscillations increases further
and the sum of the wave components gives rise to an even larger wave in the middle of
the tank. This wave steepens while approaching the focal point, theoretically specified at
x = 7.5. Wave overturning is initiated when the crest is located at + = 4.0 (Fig. 3d).
Behind the latter wave, the phenomenon is starting to repeat itself, with a new curved crest
line appearing and converging towards the focal point.

A closer analysis of the computed free surface shapes leads to the following comments.
The largest focused wave appears like a curved front, with maximum elevation significantly
larger than that of the following waves, which have not yet converged. A circular trough is
created just in front of the focused wave (the so-called “hole in the sea” reported by freak
wave eyewitnesses), and an even deeper, crescent shape, trough forms behind it, separating
the main wave from the curved crest line following it. There is a strong asymmetry between
the focused wave front and its back. This asymmetry increases with time and indicates that
the wave is about to break. In the present case where the directionality is important, the front
is not so wide, and 3D effects are emphasized (note, axes sclaes are distorted in the figures).
The properties of this extreme wave, generated in the NWT, thus qualitatively agree with
observed geometrical properties of freak waves. In particular, Fig. 4 (left) shows a vertical
cross-section of the solution obtained at y = 0 and ¢ = 18.05. We see, the wave profile is
similar to that observed in many actual freak wave measurements, as well as computed in
earlier 2D numerical studies of modulational instabilities of a wave packet (e.g., Kharif and
Pelinovski, 2003): the wave crest amplitude is much larger than the trough amplitudes and
the back trough is deeper than the front one. The crest peaks at = = 0.38, and the back and
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front troughs are respectively measured at = = —0.17 and » = —0.10. It is remarkable that
we get such a 2D characteristic shape, whereas the mechanism of wave generation used here
is purely 3D. This suggests some independence of freak wave shapes and properties from the
phenomena that have generated it. Fig. 4 (right) shows a profile of the solution at the final
computed time ¢ = 18.36, when the wave is overturning.

Velocity and acceleration fields computed on the free surface (see Guyenne and Grilli,
2003, for detail) show two main phases in the evolution of this focused wave event. The
first phase is one of approach, where the different wave components forming a crest line
are converging towards the focal point. The obtained kinematics simply corresponds to the
propagation of a curved crest line. The second phase corresponds to the appearance of a
single focused wave, resulting from the directional superposition of many components. The
maximum value of the longitudinal velocity component increases and the largest velocities
concentrate more and more at the focused wave crest, indicating flow convergence. As a
result, this crest tends to go forward faster than its basic wave components, thus initiating
wave overturning. At the same time, the transverse component of the velocity and accelera-
tion fields show that 3D effects are reduced near the wave front face. Hence, the dynamics
of imminent breaking of the freak wave takes an almost 2D configuration. [This observation
has important implications for the design of offshore structures that would be located in the
path of such a wave.] This is in good agreement with some description of a “wall of water”,
that we can find in stories about extreme wave events in the ocean. Examples of results for
the wave kinematics at some internal points, in a vertical cross-section at y = () under the
wave crest, and in the plunging jet are given in Fig. 5. The maximum velocity in the crest is
1.1v/ghy during overturning.

CONCLUSIONS

We gave an overview of a 3D-NWT simulating directional wave energy focusing, based
on a BEM solution of potential flow equations. Recent model improvements were presented,
in particular, the use of the FMA, which has a O(/N) numerical complexity. In the single
application presented, we generated an extreme wave event, using a snake wavemaker. Prop-
erties of the generated extreme waves are briefly discussed (shape and kinematics). Brandini
and Grilli (2001) presented a similar study based on an earlier version of this NWT. They
could not however, reach the overturning phase for an extreme wave event, both due to
limitations in the model implementation (now corrected; see Fochesato et al., 2005) and dis-
cretization size that could be realistically used. Here, we observe, a vertical 2D slice through
the extreme wave crest is quite similar to the characteristic shape measured for freak waves
in the ocean. The 3D wave generation yields a curved wave front, before focusing occurs,
with a circular trough in front of the wave, followed by a deeper trough with a crescent shape.
The kinematics shows two main phases: (i) a converging curved crest; (ii) a steepening wave
with velocity and acceleration vectors on the front face having weak transverse components.
After focusing, wave overturning seems essentially similar to 2D wave dynamics. This cor-
responds to the reported aspect of a “wall of water” in the ocean. More details will be given
during the conference.
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Fig. 3. Free surface evolution : (a) att = 6.36, (b) att = 10.96, (c) att = 16.25, (d) at
t = 18.36.
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Fig. 4. Free surfaceaty = 0:t = 17.84 (left) and t = 18.36 (right).
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Fig. 5. Free surface and velocity aty = 0 : t = 18.05 (left) and t = 18.28 (right).


cristina
Ocean Waves Measurement and Analysis, Fifth International Symposium WAVES 2005, 3rd-7th, July, 2005. Madrid, Spain




