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Abstract. Extreme waves are obtained from the motion of a snake
wavemaker in a numerical wave tank. Spatial focusing is one of the
mechanisms which may take part in the generation of a rogue wave. In
particular, directional focusing is only a three-dimensional phenomenon,
that we want to isolate in this study. The numerical model solves incom-
pressible Euler equations with a free surface for a potential flow, thanks
to a Boundary Element Method and a mixed Eulerian-Lagrangian time
updating. Its more recent improvement has consisted in the insertion of
the fast multipole algorithm in order to reduce the computational com-
plexity of the spatial solver. We present a typical case of a near breaking
rogue wave. A description of the particular geometry of such a wave is
discussed, as well as the kinematics at the surface.

Introduction

The general framework is the study of the rare but important phenomenon that
are the freak waves. Indeed, in spite of their low probability of occurrence, these
waves can cause severe damages and the off-shore and naval communities must
take into account such events for their design rules. Besides their low probability,
freak waves are characterized by the fact that they are localized in time as well
as in space. They come from some energy focusing, which can be due to multiple
reasons. Spatial focusing is one of the mechanisms, commonly proposed to ex-
plain the appearance of a rogue wave. More generally, linear theory suggests that
different wave components can have different phase and directions, so that they
superimpose in a small region of space and time. Actually, energy focusing may
come from another reason. It can result from the bottom topography in shallow
water, or from wave-current interactions. In deep water and without the presence
of a current, a more recent proposed mechanism is the modulational instability
(Benjamin-Feir instability). Lastly, other wave-wave interactions or interactions



with atmospheric conditions may play a role in the phenomenon. These mech-
anisms are summed up in the recent review article by Kharif and Pelinovsky [10].

If most of works on rogue waves concern deep water, it has been remarked
that it can occur for any water depth. In the present study, we consider finite
depth, but specifying a flat bottom in order to concentrate only on one focus-
ing mechanism. Spatial focusing is the natural mechanism to generate extreme
waves in laboratory. It is a controlled context which represents the superposition
of several sinusoidal wave components. The first possibility is frequential focus-
ing which occurs when faster waves catch again slower ones, generated earlier.
That is how two-dimensional studies have been carried out. Directional focusing
is uniquely a three-dimensional phenomenon. In order to generate it, a snake
wavemaker can be used to give several swells which cross at one point of the
basin. She et al. [11] made such laboratory experiments and studied the kine-
matics of breaking waves thanks to the PIV technique. Brandini and Grilli [4, 2]
adapted the Boundary Element code of [9] by inserting a snake wavemaker, and
started a numerical study on spatial focusing. More recently, Bonnefoy et al. [1]
developped a numerical tool based on a spectral solving of Euler’s equation with
a free surface and undertook to compare with some experiments. Their method
allows to consider more wave components in a larger basin, with a random-like
waves field, the wave components propagating as wave packets. Then, they can
reproduce a focusing wave event, close to one coming from a sea state. Neverthe-
less from the numerical point of view, their calculations are limited by the nature
of the method used, and they cannot pursue until wave overturning. The present
study arises in a lightly different context. Indeed, the aim consists in isolating
the phenomenon of directional focusing which leads to a breaking wave in order
to study their kinematics. It comes in the following of Grilli and Brandini’s work
[4] on the use of a Boundary Element Method to solve Euler equations with a
free surface. The main drawbacks of this kind of discretization is its computa-
tional cost, which is quadratic with the number of nodes used to mesh the whole
boundary of the domain. This obstacle has been got over with the insertion of
the fast multipole algorithm in order to speed up all the matrix-vector products
in the spatial solver [7]. The next section presents the numerical method and its
more recent improvement. Then the configuration of the tank is described. Last,
the results are discussed in section four.

Numerical model

We consider the equations for a potential flow of a perfect, incompressible fluid,
with a free surface. Inside the domain, they reduce to the Laplace equation

Ap=0

for the velocity potential ¢, defined from the velocity u = V¢. Green’s second
identity transforms this equation into a Boundary Integral Equation (BIE) on



Fig. 1. Domain of computation. The free surface I'f(t) is defined at each time step by
the position vector R(t). Lateral boundaries are denoted by I7; and I72. The bottom
I, is defined by z = h(z,y). Use is made of the Cartesian coordinate system (z,y, z)
and of the local curvilinear coordinate system (s, m,n), defined at the point R(t) of
the boundary.
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where G(x, x;) = 1/4w|x — x;| is the Green’s function for the 3D free space,n is
the normal vector exterior to the boundary and a(x;) is proportional to the solid
exterior angle made by the boundary at the collocation point x;. On the free
surface, the potential ¢ satisfies the nonlinear kinematic and dynamic boundary
conditions
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where R is the position vector of a fluid particle on the free surface, g the
acceleration due to gravity and D /Dt the material derivative. Lateral boundaries
are either fixed or moving boundaries. In the first case, the potential is specified
on the free surface in order to determine the initial perturbation. In the second
case, waves are generated by a wavemaker at the open boundary, I'1(t), the
motion x, and velocity u, being specified as
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where overlines denote specified values. Along the fixed parts of the boundary,
the no-flow condition is prescribed:
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The domain represents a closed basin such as a wave tank, whose bottom
can be defined with arbitrary shape. The numerical model is presented in details
in Grilli et al. [9]. The time scheme consists in updating the position vector and
the velocity potential on the free surface based on second order Taylor expan-
sions. At each time step, The BIE must be solved which is realized through the
Boundary Element Method. The boundary is divided into elements for which a
local interpolation is defined, both for the geometry and field variables. Poly-
nomial shape functions are introduced, that also define a change of variables
which brings the integrations on a cartesian reference element. The numerical
computation of these integrals by a Gauss-Legendre quadrature and appropri-
ate techniques for singularities of the Green’s functions make up the assembling
phase of the discretization matrix. This one is modified by taking into account
the rigid mode technique which allows to directly compute the solid angles and
to avoid the singular integrations of the normal derivative of the Green’s func-
tion. The insertion of the multiple node technique in order to deal with the edges
also leads to a modification of the matrix. Lastly, the velocity potential, or its
normal derivative depending on the boundary, is obtained by solving the result-
ing linear system. Since the matrix is full, the method has a N? computational
complexity, where N is the number of nodes, by using the iterative algorithm
GMRES so that the solving phase be at the same level as the assembling phase.
In order to reduce this complexity, the fast multipole algorithm is inserted. The
idea is to replace every matrix-vector product coming from the discretization of
the BIE by a call to this algorithm.

This one lies on a property of the Green’s function which can be expanded in
separate variables when the source point and the evaluation point are far enough
from each other. It can then be written for a point O, origin of the expansion,
close to x and far from x;
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where Oz = (p,a, 8) and Ox; = (1,0, @) in spherical coordinates, and the func-
tions Ykim are the spherical harmonics defined from the Legendre polynomials.
In order to determine in what cases this new approximation can be used, a hier-
archical subdivision of space is defined, whose regular partitioning automatically
gives distance criteria. Then, close interactions are obtained by direct compu-
tation with Green’s functions, whereas far interactions can be approximated by
successive local operations based on the subdivision into cells and expansions
of the Green’ functions into spherical harmonics. The underlying theory to this



approximation has been well established in the case of the Laplace’s equation. In
particular, error and complexity analysis are given in the monograph by Green-
gard [8].

In our case, the Laplace’s equation has been transformed into an integral
equation and a specific discretization has been used. Thus, the fast algorithm
must be adapted in order to be part of the surface wave model, but the expan-
sions remain the same. The integral equation can be written as
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where M[*(O) is the moment at the origin O:
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Instead of considering mutual interactions between two points, we need to look
at the contribution of an element of the discretization to a collocation point. The
local computation of several elements grouped together into a multipole calls on
a boundary element analysis with the spherical harmonics instead of the Green’s
function. The integration of the normal derivative of the spherical harmonics is
done by taking care of avoiding an apparent singularity which could generate
numerical errors. The discretization by boundary elements only takes place in
the computation of the moments. So the rest of the fast multipole algorithm is
unchanged, notably for translation and conversion formulas which allow to pass
the information through the hierarchical subdivision, from the multipole con-
tributions to the evaluation at every collocation point. From the surface wave
model point of view, we have needed to adapt all the aspects depending on the
existence of the matrix in the former model. The storage of the coefficients that
we want to use several times for each time step is now done inside the cells of the
hierarchical subdivision. The rigid mode and multiple nodes techniques modified
the matrix a priori before the computation of the matrix-vector products. They
are now considered as correction terms to the result of such products, so that
the linear system to be solved keeps the same properties.

The accelerated model only benefits from a faster solver for the Laplace
equation at each time step. It has been tested by comparing with the former
model on a three-dimensional application which requires a great accuracy. It
is the propagation of a solitary wave on a sloping bottom with a transverse
modulation which leads to a plunging jet. Above all, the consistency of the new
approximation has been checked up. But, what is important is that the accuracy
and stability are not distorted. By adjusting the parameters of the fast multipole
algorithm, it is possible to get the same result as with the former model. In this
case, the computing times evolves nearly linearly with the number of nodes,
above roughly 4000 nodes.



Description of the tank

A rectangular basin with a flat bottom is defined. It is limited by fixed and
moving boundaries. At one extremity, a snake wavemaker has been implemented
[4]. It is a rotating wavemaker whose axis is located at the bottom, at depth hq. It
is composed of several vertical parts which can move independently. The position
xp = (zp, Yp, 2p) Of each vertical part is defined by

Tp=x,—pm ,with x,=y,j—hok (7

the coordinates of the paddle axis rotation, where the angular velocity 27 is
applied. We denote p the distance fron the axis of rotation, measured on the
wavemaker in vertical planes. Hence,

So
p=1/72 + (ho +2,)? ,and 2 =arctan e (8)

where S, (y, t) corresponds to the horizontal stroke specified at z = 0. From these
definitions, we find the velocity and acceleration vectors

Up = —pm — pf)n
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Following Dalrymple [6], we specify the wavemaker stroke S, as the linear
superposition of Ny sinusoidal components of amplitude a,, and direction 8,,, as

Ny

So(y,t) = Z an, cos {kp, (ysinb, — x5 cosb,) — wyt} (10)

n=1

where k, and w, denote components’ wavenumber and wave frequency, related
by the linear dispersion relationship

w2 = gk, tanh (k,h,) (11)

and zy is the focusing distance for the waves in front of the wavemaker. Angles 6,
are uniformly distributed in the range [—6max, fmax]- Only directionnal focusing
is studied here, hence w,, = w. Frequential focusing could be added by adjusting
the frequency as a function of the angle 8,,. Moreover, we restrict ourselves to
the case where the amplitudes are the same, but different values could be chosen.

The first objective of this work has consisted in looking for a parameter set
such that a breaking wave is generated. We consider the superposition of eight
components having identical properties but with directions comprised between
—45 and 45 degrees. Variables being non-dimensionalized (length by the water
depth hg, and time by /ho/g), every component is determined by a frequency
1.2816 which gives a wavelength 3.725 after the dispersion relationship and a
linear velocity ¢ = 0.7599. The shared amplitude of each individual component



is fixed to 0.04 implying the steepness 0.0675. Last, the focusing point is spec-
ified at the distance 7.5 from the wavemaker. Once defined the features of the
wave field, the dimensions of the tank are adapted. Length is chosen at 10 and
width at 20. The discretization uses 50 elements in the longitudinal direction,
what corresponds to roughly 20 nodes per wavelength. The width of thee do-
main is divided into 70 elements, and the depth into 4 elements. Note that all
the boundaries are discretized. the presented simulation has been obtained in
4min 30s per time step with an Intel Pentium 4 processor, for more than 300
time steps.

To illustrate, Figure 2 presents the kind of movement executed by the wave-
maker. At the other extremity of the domain, an absorbing piston is used [5, ?].
Though it is not perfectly adapted to this three-dimensional waves, it delays the
moment when reflection cannot be neglected any more. The implementation of a
piston having the same kind of movement as the snake wavemker would improve
this feature.

-n1

Fig. 2. Tllustration of the snake movement of the wavemaker located at the left of the
tank.

Results

Figures 4 and 5 present the time evolution of the wave field. Note that only the
free surface is shown. The wavemaker progressively sets out in order to reduce
the singularities at the interface between the free surface and the moving bound-
ary [4]. We observe the flat free surface at rest which starts to move near the
wavemaker and generates a first focused wave of moderate amplitude (Figure
4). Then, the wave amplitude diminishes before disappearing at the graph scale
(Figure 5). The studied mechanism effectively produces some local focusing both
in time and space. Behind this first wave, we can see a second one which clearly



results from the superposition of the wave components with different directions
(Figure 5(b),(c)). The amplitude of the wavemaker oscillations incrreases and
the sum of the wave components gives rise to an extreme wave in the middle
of the tank (Figure 5(d),(e)). This one steepens before reaching the focus point,
foreseen at x = 7.5. At the end time of the simulation, the crest is located
at ¢ = 4.4 (Figure 5(f)). Behind, we remark that the phenomenon was starting
to be repeated with a new curved crest line converging to the center of the basin.

The observation of the free surface shape for this three-dimensional applica-
tion leads to the following comments. First of all, we see a circular trough located
just in front of the wave. Behind it, a deeper trough has formed, separating the
main wave from the curved crest line which follows it. This trough has a crescent
shape. A strong asymetry between back and front of the wave is observed. Its
amplitude is significatively greater than following waves which have not yet con-
verged. This asymetry increases along time and indicates that the wave is about
to break. The wave itself appears like a curved front. In the present case where
the directionality is important, the front is not so wide and three-dimensional
effects are emphasized (though noting that axis are not at real scales). The ob-
servation of this extreme wave presents some geometrical properties found for
freak waves. In particular, a vertical slice of the solution at y = 0 allows to bring
out the shape observed in measured spectra as well as in 2D numerical studies,
for instance those about the modulational instability of a wave packet [10]. The
crest amplitude is greater than the trough amplitudes, the back trough being
deeper (Figure 3). The crest is measured at 0.35, and the back and front troughs
are respectively measured at 0.17 and 0.07 (here length unity is the water depth
ho). It is remarkable to note that we get such a 2D characteristic shape whereas
the mechanism here is only due to the third dimension. This suggests some in-
dependence of the wave shape from the causes which generate it.

0.5

Fig. 3. Vertical slice of the free surface at y = 0 and ¢t = 18.308.



The observation of the velocity and acceleration fields at the free surface
shows two main steps in the evolution of this focused wave event. The first step
is a phase of approach where the different wave components form a crest line
converging to a point. The kinematics simply present the features of the propa-
gation of this curved crest line. The second phase corresponds to the appearance
of a unique wave, resulting from the superposition. The maximal value of the
longitudinal component of the velocity field increases and the greatest values
concentrate more and more at the crest. So this crest tends to go faster for-
ward than the wave basis, what is going to lead to wave breaking. At the same
time, the transverse component of the velocity and acceleration fields show that
three-dimensional effects are reduced on the front face of the wave. This way,
the dynamics of the imminent wave breaking approaches a configuration nearly
2D. This well agrees with some description of “wall of water”, that we can find
in stories about extreme wave events in the ocean.

Conclusion

This paper sums up the numerical method we use to study the mechanism of
directional focusing in a numerical wave tank. It is based on the solution of
incompressible Euler’s equations with a free surface for a potential flow, by a
Boundary Element Method [9]. Its more recent improvement is presented. It
consists in using the Fast Multipole Algorithm in order to compute faster ev-
ery matrix-vector product coming from the discretization [7]. This allows to
overcome the main drawback of such numerical method, that is to say its com-
putational complexity which is O(N?). The application consists to observe an
extreme wave event generated by the movement of a snake wavemaker. Direc-
tional focusing is one of the mechanisms which may take part in the generation
of a freak wave. This mechanism is only three-dimensional. Following Brandini
and Grilli’s study [4], we define the conditions of the numerical tank which leads
to a breaking extreme wave. The description of such a focused wave is done, but
the overturning phase could not be obtained until now. We observe that a 2D
vertical slice of the solution looks like the characteristic shape observed for freak
waves. Its three-dimensional aspect appears as a curved front with a circular
trough in front of the wave and followed by a deeper trough with a crescent
shape. The kinematics show two main phases. First, we observe the propagation
of a curved crest line converging to one point. When the focused wave is gen-
erated, it steepens and the velocity and acceleration vectors on the front face
of the wave have a weak transverse component. Therefore, after the focusing
phase, the occurence of wave breaking approaches to some dynamics that are
essentially two-dimensional. This corresponds to the aspect of “wall of water”
which appears in some stories of rogue waves in the ocean. The maximal value
of the velocity on the crest just before breaking is measured at 0.73+1/ghg, where
g is is the acceleration due to gravity and hg the depth of the tank at rest.
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Fig. 4. Evolution of the free surface: (a) at t = 2.143, (b) at t = 4.243, (c) at t = 6.231,
(d) at t = 8.025, (e) at t = 9.465, (f) at t = 10.974.
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Fig. 5. end of the evolution of the free surface: (a) at t = 12.639, (b) at t = 14.077, (c)
at t = 15.431, (d) at ¢ = 16.640, (e) at t = 17.650, (f) at ¢ = 18.308.



