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The numerical mode! for nonlinear wave propagation in the physical space, developed by Grilli,
et al.'*'3, uses a higher-order BEM for solving Laplace’s equation, and a higher-order Taylor
expansion for integrating in time the two nonlinear free surface boundary conditions. The corners
of the fluid domain were modelled by double-nodes with imposition of potential continuity.
Nonlinear wave generation, propagation and runup on slopes were successfully studied with this
model. In some applications, however, the solution was found to be somewhat inaccurate in the
corners and this sometimes led to wave instability alter propagation in time.

In this paper, global and local accuracy of the model are improved by using a more stable free
surface representation based on quasi-spline elements and an improved corner solution combin-
ing the enforcement of compatibility relationships in the double-nodes with an adaptive
integration which provides almost arbitrary accuracy in the BEM numerical integrations. These
improvements of the model are systematically checked on simple examples with analytical
solutions. Effects of accuracy of the numerical integrations, convergence with refined discretiza-
tion, domain aspect ratio in relation with horizontal and vertical grid steps, are separately
assessed. Global accuracy of the computations with the new corner solution is studied by solving
nonlinear water wave flows in a two-dimensional numerical wavetank. The optimum relationship
between space and time discretization in the model is derived from these computations and
expressed as an optimum Courant number of ~0.5. Applications with both exact constant shape

waves (solitary waves) and overturning waves generated by a piston wavemaker are presented in
detail.
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1. INTRODUCTION

Over the last decade numerical solution of the exact
nonlinear equations for the inviscid water waves using a
Boundary Integral Equation (BIE) description has be-
come an extremely successful method. Most of the previ-
ous contributions, however, utilize space periodicity of
the waves and alsc are based on a conlormal mapping of
physical space onto a plane in which the equivalent of the
free surface is the only part left of the boundary. The BIE
is then solved in the transformed plane, There are many
advantages of this method which have been explored
extensively by many authors (see Longuet-Higgins and
Cokelet?4, Vinje and Brevig®? and Dold and Peregrine’;
for a more complete literature survey, see Grilli, et al.*).
The procedure, however, also has some important limita-
tions which are associated with the use of complex
variables and with the assumption of waves that are
periodic in space.

To be able to address more general water wave prob-
lems, we developed an alternative method, where we
considered the wave motion in the physical space (Grilii,
et al'21% Grilli and Svendsen'®'3-'%), We used the
BEM for solving Laplace's equation, and a higher-order

Taylor expansion for integrating in time the two noa-
linear free surface boundary conditions. Nonlinear wave
generation, propagation and runup on slopes and inter-
action with other coastal structures (like submerged
breakwaters) can successfully be studied with this model.
Various ways of generating the waves include numerical
piston or flap wavemakers (Grilli, et al.'*!?; Grilli and
Svendsen'*'%!"), internal sources (Grilli and
Svendsen'*) and the imposition of an initial wave poten-
tial on the free surface (Grilli, et al'* Grilli and
Svendsen'®). Nonlinear wave absorption was also ad-
dressed (Grilli, et al.'™).

The present paper first examines the problems asso-
ciated with the corners in the fluid domain where the free
surface and bottom boundaries intersect the lateral
boundaries (A to D, Fig. 1). Such corners can be avoided
in the above mentioned approaches based on confor-
mally mapped space and wave periodicity. The corners
usually separate parts of the boundary with different
boundary conditions. In our previous studies, all corners
of the fluid domain were modelled by double-nodes with
imposition of potential continuity, and we will continue
to do so. In some applications, however, the solution was
found to be somewhat inaccurate in the corners and this
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Fig. 1. Compuiational domain Q(t) for the BEM, with
four corners A to D. T,(1) is the free surface, I', the
bottom, T, ,(1) the wave generator and T, a fixed slope of
angle 8.

sometimes led to wave instability after propagation in
time.

The loss of accuracy in the corners has been pointed
out by many authors using the BEM for solving Lap-
lace’s equation with mixed Dirichiet-Neumann boundary
conditions. However, many authors only discuss the
corner issues rather vaguely and it is often difficult to
assess which of the many problems have been properly
addressed in their solution procedure. In the following,
we list five independent aspects of this problem which we
think have not quite been well identified, in the literature.

1. The first deals with the exact mathematical solution
in the corners of the equations which we solve
approximately by the BEM. To analyze the exact
solution, one has to consider both the Laplace
equation and its time dependent noalinear bound-
ary conditions. In our problem, in particular, the
actual solution may become singular in the corners
under some particular boundary conditions (e.g,
impulsive wavemaker motion). This is discussed in
Section 4.1 and can be named, in short: possible
corner singularity of the exact mathematical solution.

2. Even if the exact mathematical solution of the
nonlinear flow equations is singular in the corners,
the numerical solution only approximates the exact
solution by a combination of the [unctions & priori
selected in the numerical model for representing the
solution between the collocation nodes. In the case
of the BEM, lor instance, if the potential is modelled
on the free surface by a piecewise polynomial ap-
proximation (shape lunctions or splines within each
boundary element), the numerical solution close to
the corner will never become anything but a polyn-
omial variation. In particular, a logarithmic
singularity cannot be represented in the numerical
results (even if it actually exists). If, in a given
problem, the corner singularity of the solution is
analytically derived to a leading order, it must be
represented in a BEM approximation by using the
equivalent singular lunction as a shape function in
the last element close to the corner, with proper
numerical integration. This technique of “singular
elements™ has proved very successful in such fields
as fracture mechanics. This aspect can be named, in
short: removal of the actual corner singularity (as

done by Cointe?, for some weakly nonlinear water
wave problems).

. A purely numerical aspect, is the accuracy of the

numerical integrations, close to the corner. [n the
BEM using higher-order elements, both regular and
weakly singular integrals are always evaluated with
great care and sophistication, when the observation
points belongs to the integrated element. When it
does not belong to the element, however, simple
integrations (e.g, Gauss quadrature) are usually
used. In our model, we observe important losses of
accuracy ol these regular integrals in situations
where the observation point, though not on the
element, becomes quite close to it. It turned out, the
variations of the BIE kernels over the element are
too rapid in this case, to be accurately represented
by a reasonable number of so-called Gauss points.
Such situations occur, in particular, when the ele-
ments close to the corners of the fluid domain are
integrated with respect to nodes on the other side of
the corner, but also when the distance between two
boundaries tends to vanish (e.g. in the narrow
wedge that develops during wave rundown on a
slope). A very poor corner solution in the BEM
always results from these local losses of accuracy
(associated to an overall average loss of accuracy of
the solution) which, we believe, some authors may
have misinterpreted as being due to some of the
other aspects described here. An adaptive integra-
tion has been developed in our model for handling
this problem, combined in some cases with an
automatic grid refinement towards the corner (e.g.,
for wave motion on a slope). They are described in
Sections 3.2.2. and 3.3. The effect of the adaptive
integration is also extensively checked in Section
6.1. This aspect can be named, in short: loss of
accuracy of the integrals in the corners.

. Another numerical aspect comes from the so-called

double-node representation of the corners. This
method, detailed in Section 4.3, is just one way of
technically handling the corners by writing two
separate equations for each corner, at points with
the same coordinates and identical potential, but
different normal vectors. For some types of bound-
ary conditions, these equations may simply be iden-
tical. If nothing more is done, the problem clearly
becomes overdetermined, and the corresponding
numerical system matrix poorly conditioned (theor-
etically singuiar). The double-node technique re-
quires that this overdetermination is removed by
explicitly imposing continuity of the potential at the
corner (this is described in Section 4.3.1). The
literature is generally not very explicit about this
problem and some authors may in fact have skipped
this stage and misinterpreted the poor accuracy of
the corner solution as to being due to some other
reason. This can be named, in short: continuity
conditions for the velocity potential.

. Finally, some other relationships between the cor-

ner unknowns can always be derived from the
boundary conditions (c.g., uniqueness of the veloci-
ty vector at the corner). Some of them can be
introduced as extra conditions in the corners, and
replace one of the corner equations. This is de-
scribed in Section 4.3.2. In turn, the boundary
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conditions on each side of & corner have to be
compatible with each other. Otherwise, this will
create a singularity of the corner solution. This
aspect can be named, in short: compatibility condi-
tions,

After analyzing and checking these five aspects of the
corner treatment, the optimum relationship between
space and time discretizations in the numerical model is
also studied from computational results for the propaga-
tion of nonlinear water wave in a two-dimensional
numerical wavetank. Applications with both exact con-
stant shape waves (solitary waves in Section 6.2) and
overturning waves generated by a piston wavemaker
(Section 6.3) are presented in detail.

The model equations are briefly recalled in Section 2,
the new numerical implementations with the adaptive
integration are presented in Section 3 and the corner
problems and treatments in Section 4. Generation of
wave by a plane piston wavemaker is presented in
Section 5. The new improvements of the model are
illustrated and checked in Section 6, on simple applica-
tions with analytical solutions and also on nonlinear
water wave flows in a numerical wavetank. More details
about the model equations and the numerical implemen-
tation can be found in Grilli, Skourup and Svendsen!?
and Grilli and Svendsen'®. Preliminary results for the
corner treatments have also been reported in Grilli and
Svendsen'® and in Grilli, Svendsen and Qtta'®

2, MATHEMATICAL FORMULATION

2.1. Governing equations

We consider an inviscid irrotational 2-D flow de-
scribed by a velocity potential ¢(x, ), and the velocity
field is given by v = V¢ = (4, w). Thus, the continuity
equation in the fluid domain Q(r) with the boundary [(t)
becomes a Laplace equation for ¢ (Fig. 1),

Vig =0 in Q) N
Using the free space Green's function G{x,x;}=
~1; log[x — x,|, {1) becomes the boundary integral
equation (BIE),

a(x)(x;) = J‘r I:_‘,i (x)G{x, x;) — ¢{(x) G(x, xl):l

2

where x = (x, z} and x; = (x,, 2;) are position vectors for
points on the boundary, n is the unit outward normal
vector, and a(x,) is a geometric coefficient.

On the free surface I” (1), ¢ satisfies the kinematic and
dynamic boundary conditions,

Dr é

ﬁ=(31+u V)—u=V¢ on [ (1) 3)
Dé _ i liver _Pa P

Dl_ gz 2 lvqﬂ P) an Ff(t) (4)

with r, the position vector of a free surface fluid particle, g
the acceleration due to gravity, z the vertical coordinate
(positive upwards and z =0 at the undisturbed f[ree
surface), p, the pressure at the surface, p, a reference
pressure (e.g. at infinity) and p the fluid density.

nnan 1 . - Il ’ - e ¥ —

2.2. Boundary conditions

In the applications presented in Section 6, waves are
generated by two methods. In the first one, the potential
¢(x,1,}) and the elevation #(x,t,} of a permanent wave
solution of (1)-(4) are prescribed at initial time ¢, on the
frec surface I {¢,), and the normal velocity is imposed as
u, over the vertical lateral boundary I', |,

¢ = Plx, t,). Z =u{x,t,) onTAt)
V¢-n:a—¢=ut onl,, (%)
n

where the overbar means a specified value. In the second
method, waves are generated by simulating a plane
wavemaker motion on the boundary I',,{t}. In this case,
the motion and normal velocity are specified over the
surface of the paddle by,

Vé-n= aj = uy(x,{t), )-n onT,(t) {6)

dn

where (x,,u,) are prescribed wavemaker motion and
velocity respectively. Along the stationary bottom I', and
the tank extremity I',, representing a fixed structure®, we
have,

Vén Ea¢

s 0 onlyand T, (7

2.3. Time stepping method

The time stepping, described in detail in Grilli, et al.??,
follows the Eulerian-Lagrangian approach used by Dold
and Peregrine®. It consists of integrating the two non-
linear free surface conditions (3) and (4) at time ¢, to
establish both the new position of the [ree surface I' (1)
and the relevant boundary conditions of Laplace’s prob-
lems at the next step ¢ + At. It uses Taylor expansions in
terms of the Lagrangian time derivative (as defined in (3))
and the small time increment At, for both the position ¥{r)
and the potential ¢(¢) on the {ree surface, which corre-
sponds to following in time the pathline of a fluid
particle, identical to a node of the discretization used for
solving the BIE (2).

All the partial derivatives of ¢ with respect to time
satisfy equation (1) so the coefficients of At in the Taylor
expansions can be found from a sequence {¢, §, 524, ...}
of solutions of a succession of Laplace’s equations. In a
local coordinate system defined by (s, n), the tangential
and normal unit vectors at the iree surface, the expansmn
coefficients are expressed in terms of ¢, 4, % and 232, and
of their derivatives along the free surface (see Grilli, et
al.'?). The order of these s-derivatives increases like the
order m of the Taylor series expansions, and since the
derivatives are computed by numerical differentiation, an
operation which loses accuracy in the corners of a
physical domain, we have so far limited the series and
thus the s-derivatives in our model to second order in
At (m = 2). The procedure described can, however, be
extended to higher order and, in particular, for space

"Nouoe when I, () or F (1} represent a radiation boundary a:med al
absorbing waves propagaling in their direction, the potential ¢ is
imposed on these boundaries (this case, we are currently developing,
will notl be devailed here).
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periodic problems where the periodicity conditions can
be used to avoid extrapolating the s-derivatives in the
corners, higher-order time series have been used by
others (see Dold and Peregrine® (m = 3), Seo?? (m = 4)).

For m =2, the procedure works as follows. Alter
solving a first Laplace problem for (¢, %) at time ¢,
boundary conditions of a second problem for (§2, §32) are
determined. Along the free surface, Bernoulli's equation
yields,

-a_¢' l ? Pe— Po

e i E!W’ -2 o (1) (8)
and along the fixed boundaries, we get,

P

ﬁ =0 on l—b 3nd FrZ (9)

When I',,(t) represents a plane wavemaker, we have
(this boundary condition is detailed in Section 5),

2 d(u,-
Ez‘a% B [ (UJ, 2- “»'V("p'")] on Iy, (1) (10)

where u,(x_(t), ) is, like in (6), the wavemaker velocity as
a rigid body, given by the time derivative of the wave-
maker motion x,(t) following this motion 47,

Notice, when I,,(t} or I',,(t) represent a radiation
boundary, 5 is imposed.

3. NUMERICAL IMPLEMENTATION
3.1, Discretization of the Boundary Integral Equarion

3.L1 General

The BIE (2), equivalent to the Laplace’s problems (1)
for ¢ and %2, is solved by a Boundary Element Method
(BEM) using a set of N collocation nodes on the
boundary and higher-order elements to interpolate be-
tween the collocation nodes. Each integral in (2) is
transformed into a sum of integrals over each boundary
element.

The technique of shape [unction representation of the
boundary geometry as well as of the variation of the
unknowns in the equations {isoparametric elements), has
proved to be very efficient in the vast majority of our
computations (see Grilli, et af.'?13:14.18 Svendsen and
Grilli*®). This description, however, implies that at the
nodes where elements join there is a small discontinuity
in the derivatives of the functional description which is
not the case at nodes internal to the elements for quad-
ratic and higher-order isoparametric clements. Similar
discontinuities and even larger occur at all nodes in linear
element approximations.

Using higher-order elements, numerical experiments
show that instabilities sometimes occur in the regions of
high curvature of the free surface (such as in the jet of a
plunging breaker). Since this is found less likely to occur
with the less accurate linear elements, we believe these
instabilities are due to the generation and (time) propa-
gation of numerical errors resulting from the difference in
treatment of the nodes in the interior and at the extremi-
ties of the elements, rather than the discontinuities them-
selves,

The lesser accuracy of the numerical integrations in the

BEM for highly curved elements and the loss of accuracy
of the numerical integrations that has been observed in
the corners (Section 1, 3rd aspect), create additional
errors and may add to the importance of these discon-
tinuities.

Quasi-spline elements have been implemented to en-
sure continuity of the free surface slope (Section 3.1.2)
and improved integrations (Section 3.2.2)) have been
developed for removing these losses of accuracy.

3.1.2. Quasi-spline elemenis

Discontinuities in the slope of the boundary are re-
moved by using quasi-splines elements (see e.g., Lon-
guet-Higgins and Cokelet?*), which combine a cubic
spline approximation of the geometry and a linear shape
function model of the fields. These elements are used on
the free surface only in combination with the higher-
order isoparametric elements on the rest of the boundary.
Full cubic spline elements are not used for several
reasons: one is, they require knowledge of the gradients
of the fields at the free surface extremities; a second is,
they have been found computationally time consuming
(Seo®?).

To be able to model breaking waves, the spline ap-
proximation of the geometry must account for a multi-
valued free surface. For that purpose, the point index t
(also used by Longuet-Higgins and Cokelet) is adopted
as a parameter, whose value is equal to the index of the
{ree surface nodes, at the position of these nodes (ie., 1 to
N, where N, is the total number of [ree surface nodes).
Instead of defining the splines in polar coordinates,
however, regular cartesian coordinates are used to derive
two single-valued spline approximations of the free sur-
face: x = x(t) and z = 2(r) (where r = (x, z) represents a
ftee surface point). Hence, at the free surface nodes,

Two regular cubic spline analyses are performed on
the free surface for the points (x, 7;) and (z,, 7). In such
analyses, the slope has to be specified at the points
located at each extremity of the approximated curve. In
this case, ¥ and § have to be provided at both extremities
of the [ree surface. They are estimated here, based on
cubic polynomials fitted to the 4 first and 4 last nodes of
the free surface. In some particular cases, however, the
slope at one extremity of the [ree surface can be deduced
from the physics of the problem and imposed explicitly as
a boundary condition to the geometry (see Section 4.3.).

All the BEM integrals are computed on a reference
element I, to which each element on the actual boundary
It is related by a change of variable (see Grilli, et al.!?,
for the translormation in case of isoparametric elements).
The reference element for the quasi-splines is a 2-node
element of boundary with the intrinsic coordinate
¢ e[ -1, +1]. The Jacobian of the transformation lrom
the cartesian quasi-spline element k, defined on the nodes
(. + 1) of the {free surface, to [, is,

a5, ds, . ot .

3t &) = En () 3¢ Qywith§(x) =2t — 1) -1 (12)
where 5, denotes the curvilinear abscissa in the element k.
Thus, by definition and by (12),

s, . 1[fdx N\ fdz \?]*
70=3|(70) +(Fo)] (3




where the derivatives with respect 1o 1 of x and z are
deduced from the sections of the two spline approxima-
tions (11) corresponding to the k-th quasi-spline bound-
ary element of the [ree surface.

3.1.3. Algebraic system of equations

The BIE (2) discretized and expressed for each colloca-
tion node ! of the boundary, leads to a linear algebraic
system of equations for the unknown field u {(either ¢ or
%) Boundary conditions &, on I', (Dirichlet boundary)
and %2 on I', (Neumann boundary), have been discretized
for consistency, the same way as z and §&. Here s refers to
nodes on boundary section I'y (total N, nodes) and p
refers to nodes on [, (total N;_nodes), and the overbars
denote known imposed values. We get the system,

au,
e + K"’E’ — Ka 3

ot
= Kd’[,a_np_[cu"i'Kn“]UsE'xrl j=gl (14)

where the summation convention of repeated indices is
used and, using j for s or p, X}, 4; and &, represent the
system matrix, unknown and load vectors, respectively,
with the following definitions,

MM, IG(x(£), x,) ds, MMy
o kz:l J. Ty £ on 0§ (€t kgl "
MM 3s, MM,
Kl{u = Z J N,(é)G(x(C), xl) _a"g (é) dc = 2 I:l.f
k=1 Jdrg e
Li=l.. . Nps=1... Nr;p=1.., N,
Ne= N, +Nr, (%)

U; denotes the value of u and N (£) the reference element
shape function, at node j, 4§ is the Jacobian in the k-th
element and Mr = M + M is the total number of ele-
ments of the discretization (with M, the number of
elements on the free surface). In case of quasi-spline
elements, M, = (N, — 1), N{£) is linear and %% is com-
puted by (13) in the k-th element.

¢, represents a diagonal matrix whose diagonal coeffi-
cients ¢, are equivalent to the geometric coefficients a(x,)
in (2). Instead of computing the ¢, by a direct numerical
evaluation, these cocfficients are deduced by the rigid
mode technique (Brebbia') which has been shown to
improve the conditioning of the algebraic system (see
Grilli, et al.'?).

3.2. Evaluation of the matrix terms

3.2.1. Elemem by element numerical integration

Due to the higher-order shape [unctions or splines
used in the interpolations, integrals in (15) cannot in
general be calculated analytically over each element.
When the collocation node ! does not belong to the
integrated element k, a standard Gauss-Legendre quad-
rature is used.

When { does belong to the element &, a kernel transfor-
mation developed for higher-order elements is applied to
the weakly singular [} which is then integrated by a
numerical quadrature, exact for the logarithmic singu-
larity. Though it is not singular, important variations of
the integrand occur for /£ when [ belongs to an element

LITA

with high curvature (like in the crest of a wave approach-
ing breaking) which leads to a loss of accuracy of its
regular integration. This integration is improved by
petforming on [X a change of variable (&) =
arctan #1=2 and an analytical integration by parts,
before using the numerical quadrature, which both result
in the somewhat smoothing out of the large variations of
the integrand over the clement. Both these cases are

detailed in Grilli*! and Grilli, et al.?.

3.2.2. Adaptive integration

In connection with the 3rd aspect in Section I, an
adaptive numerical integration method is developed and
used for improving the accuracy of the regular integra-
tions made with respect to a collocation node x,, not
belonging to the considered element k, from which the
element is seen with too large an intercept angle (say
& > 0,,). This indeed leads to large variations of the
integral kernels over the element which cannot be quite
caught by regularly spaced Gauss points (3¢ being, again,
the most sensitive term to this). Large intercept angles o,
occur in the discretization for the elements close to the
corners and also when the distance between two boun-
daries tends to vanish (e.g. through time updating of the
fluid domain geometry during wave motion on a slope).
In general also large angles occur when the discretization
mesh varies quite a lot from one part of the boundary to
another one (e.g. due to high ratio length over height of
the fluid domain, or due to the concentration of fAuid
particles-collocation nodes in some region of the flow).

The adaptive integration performs ns binary subdivi-
sions of the element k into segments within which the
number of integration points (GP) is kept constant. The
subdivision procedure divides the reference element geo-
metey (T, =&e[—1, +1]) into 2™ equal segments of
length 2' ™, until the intercept angle ay; of segment i seen
from the collocation point x, in the actual geometry,
becomes smaller than a preset angle a,,, (. oy <
@pori | = 1,..., 2™). Then, each segment is itsell mapped
onto the interval [ -- 1, + 1]. Both types of integral over
an element k in (15), say /* for I}, or I}, , can be written
as,

™ +1
;~EJ FO e = j FENd  (16)
I ]

ns (_ 1)l+ﬂli.b]

j — 1
G =t L “amesrr Bl B) = INT[IE;’T"]

2“ Raaf

where #,(£) represents the product of G (or §£), a shape
function and the Jacobian %k Integrals in (16) are
computed by a regular Gauss quadrature, with respect to
the variable y. Almost arbitrary accuracy can be achieved
in the integrations provided ns is chosen large enough.
To reduce the computation time, however, the number of
successive binary subdivisions is limited to ns = 4 in the
applications (i.e. 16 segments), and a,,,, = 40° is selected,
based on our compuling experience. Notice, for ns = 0,
the integration formula (16) reduces to one segment of
length 2, which corresponds to the vsual regular integral
over I,

The adaptive integration (16) is computaticnally quite
efficient over one element, for a given ns, with respect to a
given x,. The selection of the number of subdivisions ns
for all the elements &, with respect to all the N colloca-
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tion points {, however, is computationally expensive. Il
requires (2*)! computations ol angles &, for each couple
of values (k,1) (1o be compared with the maximum),
which themselves require to perform the change of vari-
able from the reference element I', to the actual geometry
rs.

It is therefore necessary to a priori restrict these
operations to a number of pairs (&, {) in the computation
data. In general, the 8 elements defining the 4 domain
corners are selected, and also the elements on parts of the
boundary discretization which, one anticipates, will be-
come close to each other in the following time steps (e.g.
tip of a plunging breaker, wave running down on a
slope, ... ). These selections can be and are, ol course,
interactively modified during the computations when the
domain geometry changes through the time evolution.
Doing so, the extra computational effort of performing
adaptive integrations is, in general, reduced to a few
percent of the computation time per time step, used
otherwise without them,

3.3. Automatic grid refinement on a slope

It is observed that, during wave motion on a slope
(runup-rundown), the size of the last element on the free
surface may become much smaller than the size of the
first neighbouring element on the slope. This leads to
somewhat less accuratke integrations close to the surface
corner, even with the adaptive integration procedure. To
improve the accuracy of the integrations, the discretiza-
tion on the slope is stretched, as suggested by
Klopman?®®, according to an exponential law which
imposes the length of the upper element on the wall
(closest to the {ree surface} to be the same at all time steps
as the length of the last element on the free surface. The
other elements on the wall are, accordingly, becoming
wider towards the bottom. This automatic grid refine-
ment, associated with the adaptive integration, increase
the accuracy of the numerical solution in the corner by
several orders of magnitude.

4, FREE SURFACE INTERSECTION WITH
MOVING BODIES

4.1. Mathematical problem

When waves are generated by simulating a wavemaker
or a body motion, there is a corner on the boundary
curve, where body and [ree surface meet. The same
situation is also created at the intersection with other
surface piercing structures, like fixed slopes. The possible
mathematical singularity of the solution will be analyzed
here (1st aspect, Section 1).

The flow near the intersections between a free surface
and a moving solid body has given rise to substantial
concern in the literature since Kravtchenko®! showed
that for linear waves and harmonic motion, the intersec-
tion with a moving vertical wall would generally create
an incompatibility between the flow requirements of the
boundary conditions along the [ree surface and the wall.
Kravtchenko's derivations indicated 2 weak logarithmic
singularity of the complex potential W ~ z* log z, with

= x + iy. This corresponds tc a bounded [ree surface
clevation at the intersection, but the second and higher
derivatives of W are singular.

For the case of an impulsively accelerated wall
{(ie, with theoretically infinite initial acceleration)
Peregrine?® (and Lin?? using a different approach) found
a stronger singularity of the complex potential W ~
z log z, which corresponds to an unbounded free surface
at the intersection (varying as log x). This seemed to be
confirmed by the experiments by Greenhow and Lin®,

In a more detailed investigation, Roberts?” found that
if the acceleration i, = “38# of the vertical wall remains
bounded, the amplitede of the free surface at the wall will
also be bounded, although not particularly smoothly
behaved (short dispersive waves appear close to the
intersection). Roberts finds that, with a quasi-impulsive
start over a small but finite time, gravity cannot be
neglected, as in Peregrine’s analysis, and waves of large
wavenumber (short waves) cannot be neglected, as in
Lin’s. In particular, if the initial paddle acceleration is
t, ~t?7) with p > 1, the acceleration is bounded at
smali times and gravity is dominant. Hence, the problem
can be linearized and the singularity of W reduces to
z*log 2 with a2 bounded free surface clevation at the
intersection (this defines a weakly-nonlinear regime). He
also finds that, even though the amplitude at the wall
remains finite, away from the wall the free surface varia-
tion is logarithmic to leading order as, ¢.g., computed by
Lin, Newman and Yue?® and verified by Greenhow and
Lin’s experiments (even the dramatic acceleration they
produced by a seldge hammer is still not mathematicatly
an impulsive start). Notice that Roberts’ analysis also
showed a well-behaved solution in the case of an acceler-
ation exponentially increasing with time.

Cointe??, following a procedure similar to Kravtchen-
ko's, confirmed the results by Roberts and extended them
to a non-vertical wavemaker. With the angle between the
paddle and the undisturbed freed surface denoted by @,
Cointe finds, the higher singularity of the complex poten-
tial is ~z¥® (i.e., of an order similar to the singularity at a
Neumann-Neumann corner in a Laplace preblem), for
Qe]0,n[, and § not an integer (for integer ratios,
logarithmic singularities have to be introduced). For the
case ® = §, he explicitly derives,

W(z) = ¢ + iy ~ A(t) + [u, + if(1)]z

+ -z logz + ... (17)

Al -

where x (1), u{¢), 4,(t) are the position, horizontal velo-
city and acceleration of the paddle motion, and A(t) and
f(1) are complex and real functions of time, respectively.
Thus, in (17}, the order of the singularity agrees with the
results by both Kravtchenko?' and Roberts?” (Cointe
shows, (17) can even be explicitly derived from Roberts
results).

Cointe, et al*, also investigated the case of an impul-
sive vertical paddle motion, with velocity following a step
function at t = 0. Gravity can be neglected in this case (as
in Peregrine®®), and the problem is devided into an
exterior problem whose (linearized) solution, given by
Peregrine?® and Lin22, is singular with W ~ z log z, and
an interior nonlinear problem which gives the behavior
of the solution at the intersection. The interior solution is
cxpressed by self-similarity in case of large depth and
matched to the exterior solution. Cointe, et al., however,
were unable to provide any result (even linearized) or
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conclusion about this interior solution (except in the case
where the paddle is pulled).

Following the general conclusions by Cointe?, the
existence of a strong singularity at the corner for the fully
nonlinear case with large or unbounded initial accelera-
tion of the paddle is suspected but has still to be proved
theoretically. The linearized exterior solution corre-
sponding to this case, however, is proved to be singular
with W ~ z log z and, hence, an unbounded [ree surface
and numerical problems at the corner can be expected.
When the initial acceleration is bounded (p > | in Ro-
berts' power law) and small enough with respect to
gravity, the initial flow belongs to a weakly-nonlinear
regime, with a weak singularity of the free surface poten-
tial at the intersection (W ~ zZlogz) and a finite free
surface elevation. This can be expected not to pose any
numerical problems provided proper numerical treat-
ment of the corner is done (see Section 4.3.). In our
model, indeed, no singular behavior or instability of the
solution is observed, provided the acceleration remains
small during the first few time steps starting the computa-
tions.

4.2. Numerical problem

Care must be taken to ensure the well-posedness of the
flow equations and boundary conditions to be solved by
the numerical method. It {ollows from the outline in
Section 4.1. that one has to account for the fact that both
the potential and its normal gradient are known on the
body part of the corner, whereas there is a different and a
priori unknown normal gradient on its free surface part.

Lin?? and Lin, Newman and Yue?® handled this
problem by specilying both the potential ¢ and the
stream function ¥ at the body part of the corner in their
complex Cauchy integral theorem formulation. Doing so,
they could generate nonlinear waves by a wavemaker.
Using a similar technique, Greenhow and Lin® simulated
nonlinear wedge entries in water. Dommermuth and
Yue®, lollowing the same principle as Lin, et al., imposed
both the potential and its normal derivative at the body
part of the corner in their BEM formulation. A similar
numerical treatment of the corners has been imple-
mented in our model and described in the following
Section.

Cointe? introduced two numerical treatments of the
corner. In the weakly nonlinear regime {with small initial
acceleration), he uses his explicit solution (17) of the flow
(which actually constitutes a removal of the corner
singularity in the sense of the 2nd aspect in Section 1),
whereas in the fully nonlinear case, he simply determines
the corner value of the normal gradient on both sides by
linear extrapolation from its value in the previous ele-
ment on the boundary. This, Cointe believes, is equiva-
lent to the “regularity conditions” introduced by Lin??
and, consequently, should also be equivalent to our
method,

4.3. Continuity and compatibility conditions

Double {collocation) nodes are used at the corners A
to D (Fig. 1} to provide two different normal directions
and unknowns on the two sides of each corner and
continuity of ¢ (or %) at the two nodes is explicitly
imposed in the BEM algebraic system (4th aspect, Sec-
tion 1).

W a. Sl SRl

In some cases, extra relations (kinematic or geometric)
between the ¢'s and the §'s (or 4¥'s and %s') exist al the
corner points (the compatibility conditions). Though they
should automatically be satisfied by the numerical solu-
tion, they are not exactly fulfilied due to numerical errors.
Since there is no damping in the model, these small errors
can add up through time updating which sometimes
leads to instability of the sotution. Therefore, the errors
are reduced by explicitly imposing these extra relations
to the solution after each time step (Sth aspect, Section 1).

4.3.1. Double-nodes and potential continuity

For double-nodes, the coordinates of both nodes are
the same but the normal vectors differ and, therefore, 4
and £ are different. Also the type of boundary condition
may be different at the two nodes. Two expressions of the
BIE (2) are derived at each corner double-node, lor
which continuity of ¢ (and %) is explicitly imposed in the
algebraic system (14) of system matrix X'; and load
vector .%,. Only the case of the boundary value problem
for (¢, %) is described here. The procedure, however, is

identical for (3, &2).

e Dirichlet-Neumann: In the case of wave generation
by a wavemaker or by a potential on the (ree
surface, the value of the potential is imposed at the
free surface corners A and B, say at node s, as ¢,
(Dirichlet condition) and the normal velocity on the
lateral boundaries, say at node p, as % (Neumann
condition, different or equal to zero for 2 moving or
fixed body). Two equations are obtained for s and p,
in the algebraic system (14). At node p, however, by
continuity at the double-node, the potential is the
same as in s: ¢, = ¢,, and no actual unknown is left,
Instead of removing the equation p from the system
and reducing its size by one (which may be compu-
tationally expensive), the algebraic system is modi-
fied at line p, to exactly satisly the continuity

condition,
H,y=0Yj#pand X, = A, L, = M,
M= | A" (18)

where the weighting by the maximum diagonal
element .# ensures a good conditioning of the
modified system, The solution of {14} modified by
(18) automatically satisfies the continuity of the
potential at the double-node.

e Neumann-Neumann: In the case of wave generation
by a wavemaker or by a potential imposed on the
free surface, the normal velocity is specified on both
sides of the corners at the bottom double-nodes C
and D, say at node g, as %4 = 0 on the bottom and
at node p, as 7 on the lateral boundary (different or
equal to zero for a moving or fixed body). Two
equations are obtained [or p and g in the algebraic
system (14), each of them for the (same) unknown
potential at the corner. Hence, the system matrix
X,; is singular. To make it solvable, one of the
equations, say at node g, is modified on a way
similar to above, to explicitly satisfy the continuity
condition ¢, = ¢,,

Xo;=0,¥ #p,gand X, = A,
Ky, = — M Ly=0 (19)
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& Dirichler-Dirichlet: When a radiation condition is
imposed on a lateral boundary, potential is specified
identical on both sides of a free surface corner A or
B, say at nodes s and p, as ¢, = ¢, (Dirichlet
conditions). Due to the 2 different normal directions
on the two corner sides, the (unknown) %&'s are to be
found different, say (%, %#), which corresponds to
having 2 different equations at lines s and p of the
system (14). Hence, the system matrix ¥7; is non-
singular and no continuity condition is required in
this case.

As expected (Section 1), it is observed in the applica-
tions, that by introducing the continuity conditions (18),
(19} at the double-nodes, the condition nember of the
system matrix X'; is significantly reduced and the accur-
acy of the solution is thereby dramatically improved, in
particular, close to the corner nodes.

4.3.2. Compatibility conditions
Again, only the case of (&, $2) is discussed. However,
all the equations in the following are identically valid and

used also for (532, 2.

1. Kinematic conditions:

e Dirichlet-Dirichlet: When the potential is known
on on¢ part of the boundary, the tangential
velocity 5% is known as well, within the accuracy
of the interpolation procedure used for comput-
ing it*. When the potential and, hence, & are
imposed on both sides of a Iree surface corner, say
at nodes p and ¢, the (unique) corner velocity
vector (w, w) = u, = u, can be expressed at both
nodes as a function of their own normal and

tangential velocities, i.c. (382, 22) and (4, ) by,

u= %msﬁp—%sin B,
= %cos B, — % sin 8,
w=%—-i_’sinﬁ,+ %%Ecosﬁp
= % sin 8, + % cos 8, (20)
or, by reordering the knowns and unknowns,
%sinﬂp - %sinﬁq =
[éé—_i: cos fi, — %cos Bq] =u
%cosﬂ, —%%’cosﬁ,—
[% sin 8, — %sin B,] =w @n

*Cur computations of the s-derivatives use a sliding 4th-order polyno-
mial (Grilli, ef al.'*). Hence, they are petting less accurale in the corners
because they are based more on an extrapolation than an interpolation.
Another method for calculating 42 in the corners would be to using
hypersingular equations (sec Gray'®). That method may be more
accurate since it would be based on integration rather than differentia-
Lion.

where s = (cos 8, sin ) is the tangential vector
(positive clockwise along the boundary), and the
expressions noted («, w') are only functions of the
geometry and boundary conditions. Hence, the
unknown 3&'s at the double-nodes can directly be
obtained by solving (21), which could simply be
done by replacing the lines p and g of the alge-
braic system (14), by the two equations (21). I
has been found, however, by making some nu.
merical experiments, that the solution is more
accurate when only one of the equations (21) (the
relation for the lateral boundary g} is introduced
in the algebraic system, as a compatibility condi-
tion. This, we believe, is due to the loss of accur-
acy of the s-derivatives in the corner, mentioned
above. The other equation, for %, is the BIE (2)
whose algebraic expression is at line p of the
systern. Thus, line g of X'}; becomes,

Hyi=0,¥j # p,gand X, = 4 cos f§,,
Hgp=—Mcosf,, =MW 22)

e Dirichlet- Neumann: After solution of the system (14),

modified by (18), the ¥ have to be calculated at the
free surface, to be used in the time updating. This is
normally done in the model by numerical interpola-
tion (as mentioned above). At the free surface dou-
ble nodes, however, equations (20) are still .valid,
now, with %5 being known from the lateral bound-
ary condition (Neumann condition), and being
known at the free surface from the BEM solution
(Dirichiet condition; the tilde refers to a value
whose approximate numerical solution only is
known). Equations (20) can therefore be used for
computing $&'s which explicitly satisfy uniqueness of
the velocity vector at the double-nodes (i, w) =
u, =u,. We get,

8¢, o¢, _
Fs—cosﬁp — E;f:os[},r =
33, ,
I:—af sin 8, — —sin ,8‘] =u
%sinﬁ, - %sin B, =
9%, o4, o
[—5;1— cos fi, - PR ,8,,] =w (23)

which is then solved for the 's as,
% _wecosf —usinf,
os sin(ff, — 8,)
0¢, wcosf,—~usinf,
Js sin (B, — B,)

Only the tangential velocity on the free surface 2% is
needed in the time updating. From (24) we get,

(24)

op, 39, o$,
W= Wecsc by - B0~ 220t 8, - B

(25)

{n the particular case of a plane Neumann boundary
I,, of angle & with respect to the bottom (as in wave




generation by a wavemaker), S, = 8. For a piston
wavemaker, 0 = %, thus cos fi; = Q, sin B, =1 and,
by (23),

3y _ 38y g _ 9
‘Es— = —a? tan ﬂp an 5€C ﬁp (26)

In case of a plane flap wavemaker oscillating at an
angle 6(t) with respect to the bottom, we get the full
expression (25) with g, = 8(1).

Finally, in case of a plane impermeable slope I',,, of
angle @ with respect to the bottom (Fig. 1), §, =

8 — =, hence cos f, = —cos 8,sin §; = —sin §, and
%2 = 0. Thus by (25),
39, _ 39,
e __TF — 7
P i cot (6 — B,) (27

which simply expresses that the velocity vector is
unique and parallel to the slope.

2. Geometric conditions:
In some Dirichlet-Neumann cases, the slope of the
free surface at a double-node can directly be de-
duced [rom the physics of the problem, and used as
an improved boundary condition for the spline
approximation of the [free surface (see Section
3.1.2)

e Fixed body: The [ree surface slope ¥ is zero by

symmetry, for a fixed vertical Neumann bound-
ary I',, (vertical wall). Hence, with the point index
representation, we get: % = 0.
The free surface slope is limited to avoid unrealis-
tic intersection with a plane boundary I',; of
angle # (which otherwise may unwantingly hap-
pen, e.g., during wave rundown) to: arctan §£ < 8
orf <% tané.

e Moving body: The free surface slope is artificially
limited for a moving vertical Neumann boundary
I,,(t) (piston wavemaker), to avoid unrealistic
intersection with the wavemaker (e.g., in case of
large acceleration) to: [arctan | < Jor & > 0.
Finally, for a moving plane Neumann boundary
T,,(¢} of angle  (flap wavemaker), we similarly

get: % > 4 tan 6.

It is observed in the applications, that the introduction
of the compatibility conditions (22), (25)-(27) at the
double-nodes significantly reduces the local numerical
errors during time updating and, consequently, the insta-
bilities of the solution which otherwise may show up (e.g.
in higher-order terms like ¢, £$) and propagate.

5. WAVE GENERATION BY A PLANE
WAVEMAKER

3.1, General boundary condition

A plane wavemaker motion x,(t) of velocity u,(x,(1), 1)
is prescribed on the boundary I',,{f), to which it corre-
sPonds the boundary conditions (6) and (10), for § and
%24 The equation for §32, however, includes a time
derivative with respect to the rigid body motion that
needs to be developed with great care. This has been
done by Cointe? for a general rigid body motion with

translation a, and rotation 8 at x,,. In case of a plane rigid
body, Cointe’s expression reads,

2

$_ . £, . a] ¢ .
m=(“'“’+9[‘“'”‘a}m(“‘ K

2%
as?

where the dots denote absolute time derivatives with
respect to the body motion (§ like in {10)).

The motion and boundary conditions are expressed
for a piston wavemaker, which will be the only one used in
the following applications (similar derivations are re-
ported in Grilli and Svendsen'’, for the generation of
periodic waves by a flap wavemaker). This represents a
flat vertical plate moving with horizontal motion x,(t)
and velocity uy(xt), ) = %, (1), corresponding to the
wave motion to be generated. We have,

(¢ n) (28)

n=(—1,0),s=(0,1,0=80=0
o« =x, = (x,,0), & = u, = (u,,0), & = i, = (i,, 0) (29)

Hence, from (6),(28), the boundary conditions read,

o¢ ¢ . *¢

= — U, —
Fasl

a_n_ —up,%= —up (30)

5.2. Generation of a first-order solitary wave by a piston
wavemaker
In the following, primes denote dimensionless vari-

ables: lengths are non-dimensionalized by d, times by /4,

velocities by \/g_d and accelerations by g.

For a wave of permanent form (solitary wave) Goring’
determined the motion required by a piston wavemaker
to generate a specified water surface elevation i immedi-
ately in front of the wavemaker (see Grilli & Svendsen'®,
for detail) as,

_ (" _en
x,(6) = L ypra dt (31

A first-order solitary wave profile of amplitude H' is
generated in water of constant depth d" = 1,

7'(x', t') = H'sech?[x{(x’ - ¢'t')] (32)
JIH : - ,
where k = and the celerity ¢ = /1 + H'. Substi-

2
tuting {32) into (31) with x’ = x,(¢t) required throughout
the integration gives the piston motion. However, since a
solitary wave profile extends to infinity in both direc-
tions, it has to be truncated at some distance from the
origin, before being used in the model. Goring introduced
the significant horizontal extension 21" of the wave,
corresponding to a reduction in amplitude of the profile
to n' = £, H'. One gets,

A= é with { = arcosh[e, ™ '/%] (33)

In the applications (Section 6) we use ¢, = 0002, ie.
I~ 3.80.

Hence, wave generation by the wavemaker now starts
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at 1, =0 for x = 2’ in the wave profile. Setting x' =
x, + A"in (32) and integrating (31) we get,

H
Xy = " [tanhx(t) + tanh x2']

1) = k(' — x () — 1) (34)

This equation, implicit in X}, is solved by Newton
iterations for any given . Then, w,(¢) is computed by
(31), for #'(x, ) 1), and (¢ is found by the time
derivation of 11 following the piston motion. We get,

Oy = : m1f2 .
() = H{l + i) cosh? y(¢) + H'
cosh? x(¢t') sinh x(t")
(cosh? (1) + H')?

which, introduced into (30), defines the boundary condi-
tions on the wavemaker.

The initial wavemaker velocity and acceleration at
tt =0 are deduced as a [unction of H and ¢,, by
introducing (33), (34) (with x(1,) = I} into {35), as,

By = /3 HY (1 + HY) (35)

EZ
i +eH

(L— "
(1 + ¢ H)?
which both are approximately proportional to £, for a
given H’. Therefore, the initial piston acceleration is

controlled by selecting the truncation ¢, of the solitary
wave. For ¢, = 0.002 and H' = 0.5, for instance, we get

u(t,) =~ 000122, /gd and 1) =000184g which is
quite small.

w(r) = H'(1 + H)Y?

) = 3 H2 (1 + H, (36)

6. APPLICATIONS

6.1, Check of accuracy of the corner treatmenis

Two simple problems with known analytical solution
are solved in various geometrics and discretizations, to
illustrate and check the effects on the accuracy of the
numerical solution of the new corner treatments, namely
the continuity and compatibility conditions in the cor-
ners, and the adaptive integration. Figure 2 shows the
sketch and boundary conditions for the first problem (1)
with rectangular domain of length L = [0 and depth d.
The free surface (Dirichlet) and bottom (Neumann)
boundary conditions are similar to those of a wave
problem with the wave being generated by a potential on
the free surface. The lateral boundary conditions are
identical 1o those of a wave radiation problem, with
Dirichlet conditions on both lateral boundaries: ¢ =0
and ¢, respectively (as also shown in the Figure; notice
¢ = o). The second problem {2) is defined the same way,
with Neumann boundary conditions instead on both
lateral boundaries: ¢, = —1 and 1 respectively, like in a
wavemaker problem with reflection at the other end of
the domain. For both problems, the analytical solution is
¢ = x over the domain, and ¢, = 0 on the [ree surface
and on the bottom, and —1 and 1 on the left and right
lateral boundaries, respectively.

These two problems are solved using the wave propa-

y?
@
/ z
L=10
=0 d p=1 ¥e
Pn =0

Fig. 2. Sketch of a simple rectangular domain problem
with analytical solution, for check on corner trearments
and adaptive integration. Length is L = 10 and depth 4,
with & and the discretization like in Tables 1,2, and 3, and
boundary conditions shown for problem I only, with @, =
10. Notice in problem 2, Neumann conditions ¢, = F 1 are
used instead on the lateral boundaries.

gation model, in domains with different aspect ratios §
(Tables 1, 2, and 3), with accordingly varying horizontal
(Ax) and vertical (Az) grid steps (distance on the bound-
ary between two successive nodes), and total discretiza-
tions of N nodes with My linear 2-node elements*. The
computation time varies between 0.07s and 2.90s CPU
(IBM 3090/300) for all the cases in Tables 1,2 and 3
(which corresponds to the solution of 2 Laplace prob-
lems, with time updating of the geometry in between).
The maximum error of the numerical solution is
quantified, in each case, as the maximum normal gradi-

Table 1. Maximum error of normal gradient on the free surfoce as a
Junction of the number of Gauss points (GP) per element: Results are
either with adaptive integration in the corner elememis {1, |T75}) or
without adapiive integration (@ I7%7). Subscripis | and 2 refer (o
problems with lateral Diricklet and Neumann boundary conditions,
respectively. The aspect ratio is § = 1, with & = | and the discretization

has Np = 24 nodes and My = 20 elements.

WGP 4GP 6GF 8GP 10GP
fou™  63107% 3710°% 46107° 147107 33107
loady™  8710°% 57107% 2510°'" 25107% 55 -
lgare  1810°* 4510°% 1410°" 13107% 101071
lg mes 2910°% 221077 4010°'" 52107 12107

Table 2. Maximum error of normat gradiens on the free surface as a
Sunction of grid step 8. Results are defined as in Table 1. The aspect ratio

is =1 8 = { and the discretizaiion has N nodes and M, 2-node
elemenis.

ax Ne M leldn™ lealar™ leal?” lpa 2"

0.25 20 16 29107 48107' 11107 (g0
0.20 24 20 33107 SS10°'* (o' 2107
0.10 44 40 43107 37107 12107 241074
0.05 84 BO 12107 p1107*? 281077 R210°'4
0025 164 160 3310°%* a4t 10 2910777 231074

* Notice since in this case the exact solution is linear, there is no need for
using higher-order elements. In wave problems, however, we do use
higher-order clements on 21l boundaries (Sections 6.2, 6.3).
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Table 3. Muaxintwn error of normal gradient on the free surface as a funcrion of 4 and & Results arc
defined as in Table 1. Notice, o™ = arctan[1{83] represents the maximum angle of intercepl of the free
surface and hottam corner elements.

y & b+ Ne My o™ el Il [l 1.7
1 0.2 1.0 24 20 45° 33107 5510713 (01074 12107
2 04 0.5 24 20 63° 8610~ 121074 LI10"'  4410°'%
5 0.25 0.8 54 50 51° N[ 24107 141072 1.310°"*
10 0.25 1.0 92 88 45° 171071 201072 181012 L7
10 025 035 100 96 63° 8610 271070 1.210719 24 1072
10 0.25 025 116 112 76" R4 1070 361078 kR[4 2210712
10 0.25 0.20 124 120 79° 1.210°7 4310 ' 64107 " 1010712
20 050 05 92 88 63° [ (1 1910712 1410710 741071
40 100 025 92 88 76° 251077 1410713 4510°° 1919~
100 100 0258 212 208 76° 1030°° VAR 6.1 107* 66107 "2
100 100 020 214 210 79° 171077 7710742 1.1 1077 68 10"

ent [2|™* = [¢,]™* on the [ree surface boundary (z = 0)
(the maximum error & = —log{¢,|™* is also defined for
conveniency of the diagrams). In case the adaptive inte-
gration is used for the 8 corner clements, results show the
maximuim errors always occur on the [ree surface, at the
first node after the corner. In case the adaptive integra-
tion is not used, the maximum errors occur at some other
location on the [ree surface.

Resuits in the corners themselves are modified during
or after solution of Laplace's problem by imposing the
compatibility conditions (22) or (26), (27). The accuracy
in the corners is found excellent in all cases (G(107'%)),
which confirms the success of this operation.

Notice, finally, the average accuracy of the solution on
the whole boundary closely lollows the changes in mag-
nitude of the maximum error &. This shows the impor-
tance of an improved solution in the corner region on the

¢ = —log| g [

£a1,y Ea2

6 1 1 1 L A
0 0.2 0.4 06 0.8 1

Az/Azx

Fig. 3. Maximum error |, ™ of normal free surface
gradient for problems 1 and 2 (Fig. 2), represented by
e = —logle,|™ (Table 3), as a function of the grid step
ratio %%: without adaptive integration &, () or with
adaptive integration ¢, (1), for & = 10 in problems |
{(—-} or 2{- - « - ). Results for § = 100 are represented by
scattered ( & ) symbols.

global accuracy of the numerical selution. A detailed
analysis of the results is presented in the following.

6.1.1. Effect of the numerical integrations on the
accuracy of the solution

The effect of the numerical integrations over each
element on the accuracy of the solution of both problems
(1, 2), is studied in a first series of computations (Table 1),
A square domain is selected, with & = 1, which eliminates
the effects due to stretching the domain (investigated
later) and the grid step is Ax = Az = 2 (4 = 0.20) with
Np =24 and M = 20. The number of Gauss points
(GP) in the integrations over each element is successively
taken equal to 2, 4, 6, 8 and 10, and the adaptive integra-
tion is either used (subscript a) or not (subscript 1) in the
corner elements. For all these cases, the intercept angle in
the corners is constant: & = 45° (i.e,, the angle from which
the corner element is seen from the first node on the other
side of the corner). Without the adaptive integration,
results in Table 1 show, g varies roughly linearly with
GP, between (3.2, 2.74) and (13.5, 13.0) in the first and
second problems, respectively. With the adaptive integra-
tion, there is a gain of accuracy of 1 to 3 orders of
magnitude.

Notice, results {or the 1st problem (al) are 2 to 3 times
more accurate than those for the 2nd problem {a2). This
will also be true in the majority of the cases studied later
on.

6.1.2. Convergence of the solution

The convergence, or more cxactly the non-diver-
gence®, of the solution when the grid step Ax = Az is
reduced, is checked in a square geometry with £ = 1. This
second series of computations is made in five different
discretizations {Table 2), for both problems (1, 2). The
number of GP is now fixed at 10 in all the computations.
Results show the accuracy of the solution stays good for
the smaliest grid step (4% = 0.025), though it slightly
decreases with the grid step. This decrease is believed to
be due to truncation errors in the integrations, which
become larger when using many small elements. As could
be expected from the higher grid density in the corners,
the improvements due to the adaptive integration be-
come less and less significant for small grid steps.

*The divergence of BEM solutions for refined grid sieps has indeed
often been pointed out in the literature.
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6.1.3. Effect of horizontally siretching the geometry on
the accuracy of the solution

To assess the effect of a horizontally distorted geo-
metry on the accuracy of the solution, a third series of
computations is made with the data in Table 3. The
number of GP is still fixed at 10 in all the computations
and both problems | and 2 are solved in each domain
configuration. Two independent parameters are found to
be responsible for the errors in the solutions, namely the
grid step ratio 4 (or maximum intercept angle «™*), and
the domain aspect ratio &, the effects of which we want to
analyze separalely:

1. Five nodes at least must be kept on the laterai
boundaries for calculating the s-derivatives in the
wave model, which makes Az < £; Ax, however,
cannot be reduced accordingly, in order to limit the
total discretization Ny to a teasonable size (main-
taining Ax = Az would lead to a total discretization
increasing like (84 + 12)). Therefore, when % in-
creases in practical applications (i.c., when d de-
creases for a fixed L in the present case), 4, in
general, has to decrease. Hence, the intercept angle
a™* increases with larger &'s, leading to increasing
losses of accuracy of the numerical integrations in
the corners, in case the adaptive procedure is not
used.

The effect of a smaller 4% (or of an increased &™) on
the accuracy of the solution is analyzed by selecting
for the same aspect ratio & = 10 or 100, different
grid step ratios (0.20 to 1.00). Resulis in Table 3 and
in Fig. 3 show changes of 2 to more than 4 orders of
magnitude for ¢,, or ¢,,, when the grid step ratio is
reduced, whereas the ¢,’s stay almost uninfluenced
(the very slight increase observed in the error
should only be due in this case to increased trunca-

max
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Fig. 4. Errorse,, ([1) ande,, (o) (defined as in Fig. 3),
as a function of the domain aspect ratio & The effect of
reducing § from 1.00 to 0.20 in these computations, has
been removed by using the adaptive integration. Linear fits
to the &,5, in problems | (——) or 2 (----), show
approximate linear decrease with log &.
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tion errors in the integrations, because of smaller
Az). Clearly the adaptive integration removes most
of the negative effects of reducing 4.

2. Increasing the aspect ratio leads to both large and

small geometric dimensions to be present in the
computational domain (L » d), which corresponds
to a large condition number of the BEM algebraic
system matrix &",;. Hence, it is expected that trun-
cation and round-off errors in the (direct) solution
of the system should increase, making the overall
accuracy of the solution decrease with &.
The effect of increasing the aspect ratio §is analyzed
on cases calculated with the adaptive integration, in
order to remove the effects of reducing 22 Results in
Table 3 and in Fig. 4 show ¢,, and £, approximate-
ly linearly decrease with log % The accuracy, how-
ever, is still excellent up to & = 100 (@(10~'")).

The role played by both parameters in all the results in
Table 3 can be summarized the following way: the ¢ 's are
a monotonously increasing function of &, whereas the
g,'s do not show any clear correlation with it; hence the
use of the adaptive integration removes the effect of
reducing 22 and improves the accuracy by 1 to more than
4 orders of magnitude. The horizontal stretching leads to
a decrease in accuracy of 2 to 3 orders of magnitude, up
to ¥ = 100.

6.2. Global accuracy during propagation of an exact
solitary wave

The examples in Section 6.1. assessed the eflect on the
accuracy of the solution of parameters such as: number
of integration points per element, domain aspect ratio
and grid step ratio. Computations made in a simple
geometry showed that the adaptive integration proce-
dure, used in the corner elements, removed the negative
effects of reducing 4% It was also shown, aspect ratios of
up to 100 did not induce very significant losses of
accuracy of the solution,

A more realistic case corresponding to the propagation
over constant depth 4 of a fully nonlinear solitary wave,
is now used to analyze the optimum relationship between
Ax and At, with respect to the global accuracy of the
results. An exact solitary wave, permanent wave solution
of the fuily nonlinear flow problem (1) to (4), is obtained
by the method of Tanaka®? and introduced in the BEM
model by imposing its velocity potential on the free
surface at initial time ¢, = 0 (by (5)). No-flux conditions
{u, = % = 0) are used on both lateral boundaries. Reflec-
tion of solitary waves by steep slopes and vertical walls
has been studied in detail elsewhere (see Grilli and
Svendsen'®). Comparison with the experiments by Lo-
sada, et al.?® also showed very good agreements with the
computational results (Grilli and Svendsen’®'#).

A steep wave of H' = 0.5 is propagated by the BEM
model during 5 time units, i.e., over a horizontal distance
of theoretically 5S¢’ (depths). Constancy during wave
propagation of the dimensionless volume m of the wave
(above z = (), total energy ¢,, wave shape and celerity, is
used to check the accuracy of the computations.
Tanaka’s solution provides for H' = 0.5:m = 1.79148,
e, = 0.615712, and ¢ = 1.21578 (primes denote dimen-
sionless variables defined as in Section 5.2.). The domain
aspect ratio is ¥ = 28 (with 4 = 1), and the initial wave is
truncated left and right with ¢, = 5 10 % (see Section 5.2.)
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Fig.5. Free surface profiles for the propagation over constant depth of an exact solitary wave of height H' = 0.5, during 5
units of time from time t' = 0 to 5, shown by steps of I (i.e. over ~ 6.08 units of length). Length of the domain is L' = 28 and
the initial position of the crest is x,, = 14. Notice vertical scale has been exagerated 4 times. Results for various space and

time discretizations are given in Table 5 and in Fig. 6.

and introduced in the model at t;, = 0, with its maximum
amplitude at x, = 14. Figure 5 shows initial and last
computed wave profiles; one sees, reflection is negligible
over the propagation distance considered.

Three spatial discretizations are used in the computa-
tions, with free surface grid steps Ax' =84
(0.15, 0.20, 0.25); in cach discretization, Az = 0.25 on the
lateral boundaries; Ax' is 0.25 on the bottom, in the first
set of results and 0.40 in the next two ones. Quasi-spline
clements in number M, ~ A are used on the free surface,
and three-node quadratic elements on the three other
boundaries. Adaptive integration is used in the corner
elements, and 10 GP are used per element. Table 4
summarizes data for the three discretizations. The CPU
time provided is per time step on an IBM 3090/300,
including a printing and saving time of about 10%.
Resuits in the last two columns of Table 4 are the volume
and total energy changes at the very first time step of the
propagation, with respect to Tanaka's theoretical values.
They are time step independent and reflect the little
adjustments undertaken by the wave, calculated by
Tanaka's Cauchy theorem method, when introduced
in the discretized BEM model. Whereas volume is found
identical to within 2.85 10™* % somewhat independently
of Ax’, the total energy is found identical to within
2.85 1072 % in the most refined grid.

Four diflerent time steps At' (temporal discretization)
are used in each discretization (0.025, 0.05, 0.10, 0.20),
which corresponds to propagating the solitary wave
over 201,101,51 or 26time steps respectively (or
330,16.5,84, or 42 time steps per water depth of
propagation). Hence 12 different propagation problems
are calculated.

Toble 4. Discretization data for the propagation ever constant depth of
an exaci solitary wave of height I = 4 = 0.5: Ax" = & is the horizenral
step between nodes on the free surface; there are N nodes and My
elements: M, 2-node quasi-splines on the free surface and M = M — M,
J-node quadratic elements elsewhere. The CPU is per time step (IBM
30901300} and the A™’s are the differences between the calculated values
for the wave at the first time step with respect to Tanaka's™ theoretical
volume m = [.79148 and rotal energy e, = 0615712,

A N;p My M, CPUs) &'m ATe,

025 236 178 112 267 -530107% —-502107*
020 222 119 140 245 -52010"% -31610°*
Q.15 186 —1.76 10"

268 225 mn ~510 107¢

Results in Table 5 show the maximum differences (A*)
found between the calculated value during wave propa-
gation between ¢, =0 and ¢' = §, and the values at ¢}, as
a function of the spatial and temporal discretizations.
They are of two natures: changes in ampliiude A°H’ and
celerity A" which are “one point results” (i.e., measured
at one point of the wave), and changes in volume A°m
and total energy A%, which are “boundary integrated”
results (see Grilli, et al.'3, for the calculation of m and e,
by boundary integral). Figures 6(a) and (b) show loga-
rithmic diagrams of these resuits, two by two, as a
function of Ax’ and of the Courant number (CLF)
defined as £% (also given in Table 5).

Figure 6(a) shows, the errors of the “one point results”
reduce with the Courant number until they reach a
minimum error for 4 < 0.5. For a constant Ax’, results
do not improve further when reducing the time step;
errors can only be decreased by reducing Ax’. One also
sees, errors roughly increase with the cube of the Courant
number, for 4% > 0.5, ie, with ~ Ar?, for constant Ax’,
as could be expected from the truncation error in the
second order Taylor serigs used in the time integration.
Figure 6(b} shows, the “integrated results™ follow a
similar pattern, with a minimurm of the error reached in
most of the cases around £5 = 0.3 — 0.5; this minimum
error, again, only decreases with Ax". Reducing the
Courant number further makes the errors even slightly

Table 5. Checks on accuracy for the propagation over constant depth of
an exact solitary wave of height H' = Y4 = 0.5 during 5 time units: Ax’ is
the horizontal step beiween nodes on the free surface, Al is the time step
and 25 the Courant number: the A"s are the maximum differences
benween the calculated values for the wave propagation between £, = 0
and t' = 5, and the vaiues at the first time step for: the amplitude H',
celerity ¢, volume m and total energy e,

Ax A OAH At A'm Ale,

025 020 080 4601073 20616072 —67810°*  233107¢
0.25 010 040 22910°° 3291077 —27010°° -39610°*
025 005 020 203107° 29510°% —28510"* 51010
0.25 0025 .10 201 107" 287107 -30610"* -551107"
020 020 100 2041072 3.50107% —10210° 480107*
020 010 0.50 16310 141 10°% —19510°* —24110°*
020 005 025 1201073 106107 —18510°% -34310°*
020 0025 0.13 111107 9.8010°* -19710"* ~37010°*
015 020 133 119107 -8461072 —13310°2 408 10°*
015 010 067 113107° 337007 —135107* —-142107*
0.15 005 033 2201074 570107 —10910°* —198107*

0025 0.17 6380107 490 10~

0.15

~L14 10 —217107*
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Fig. 6(a). “One point™ numerical errors for the case in
Fig. 5, as absolute maximum differences with the initial
values during propagation ( —log(|4°}) for: the changes in
wave height A°H | } and celerity A°c’ (----), as a
Sunction of the Courant number €, = 45. Results are for
three horizontal grid steps Ax' = 0.25¢(11),0.20 (-} and
0.15 (O ). Theoretical truncation error is shown ~Af?
{—-—-} for an arbitrary constant grid step. Notice
results do not improve for €, < 0.5. Fig. 6(b). © Boundary
integrated” numerical errors for the case in Fig. 5, with the
same horizontal grids and definitions as in Fig. 6(a}, for:
the changes in volume A°m ( ) and total energy A’e,

(----}) of the wave. Notice results are optimum around
¢,=03-07

worse likely due (o the accumulation of truncation errors
(somewhat more significant here because of the integra-
tion along the boundary), when using unnecessary large
numbers of time steps. For larger Courant numbers, the
errors again increase as ~ At'? or slightly greater.

In conclusion, high accuracy (@{107*)) can be
achieved for a solitary wave of H' = 0.5 with an optimum
Courant number around &L = 0.5 (notice, this also corre-
sponds to the thearetical optimum CLF number). [n this
case, refining the spatial discretization always reduces the
errors further. Notice, however, quite small errors are
already obtained with slightly larger Courant numbers
and rather coarse discretizations, like for instance in the
case of the first line of Table 5 with £ =08 and
Ax' = 0.25, which only corresponds to four nodes per
water depth on the free surface, and 4.2 time steps for the
propagation of the wave over one water depth.

An optimum Courant number around 0.5 should also
be valid for other waves of simple shape with similar
celerity, by making it proportional to the celerity of the
wave or of the water particles. When rapidly changing
local phenomena are involved, however, like in the tip of
a breaking wave or during wave runup-rundown on a
structure, convergence of nodes by Lagrangian motion is
observed, which locally reduces Ax’ and also somewhat
increases the partical velocities. Henoe, it is expected that,
even though the local optimum Courant number should
stay around 0.5, 2 much smaller number, based on the
original Ax' should be selected. At best, an auto-adaptive
time stepping, maintaining constant the Courant number
based on the smaller node interval should be imple-
mented and used (see Section 6.3.).

6.3. Global accuracy during generation of wave
overturning by a piston wave-maker

The generation of overturning waves by a piston
wavemaker is calculated to illustrate and check the
accuracy of the continuity and compatibility conditions
at the intersection between the free surface and a moving
lateral boundary (Section 4.3.). Adaptive integration is
used in the corner elements (10 GP per element) and, due
1o wave breaking, it is also selectively used on parts of the
tip of the overturning wave, where the proximity of two
sections of the boundary would otherwise lead to a loss
of accuracy.

Foliowing the analysis in Section 4.1., a piston motion
with very small initial acceleration is selected. The law of
motion {34), (35) (Section 5.2}, which has been used in
other studies for generating first-order solitary waves
aver constant depth d (Grilli, et al.'*'®), provides a
small initial wavemaker acceleration and has a relatively
large maximum acceleration at the mid part of the
motion (required lor generating wave overturning). The
initial acceleration is deduced from (36) as i, (0) =

J3 H3 (1 + H'),. Exact solitary waves are known to
become unstable for H' ~ 0.78 (Tanaka*?*"). Thus, in-
troducing much higher H* in (34), (35) creates a wave
which rapidly breaks quite close to the wavemaker. This
gives us a strong test for both the corner treatment and
the accuracy of the integrations.

A wave with height H' = 2 (¢, = 0.002and ¢ = 1.73) 15
generated in a tank of length L' =& Although the
wavemaker accelerates up to &,™* = 0.96 in this case, the
initial acceleration is only: 1,(0) ~ 0.0294. Two spatial




discretizations are used with quasi-spline elements on the
free surface and 2-node elements elsewhere: A first one
with L’ = 10, Ax’ = 0.25 for the initial discretization on
the free surface and on the bottom and Az’ = 0.125 on the
lateral boundaries (N = 96 and M, = 92). A second one
with L'=8 and Ax' =Az =010(Nr=179 and
Mp = 175). With these data, CPU times per time step are
0.79 and 1.90s respectively (IBM 3090/300).

To account for the large variations in the distance
between nodes, induced by the Lagrangian motion, an
auto-adaptive time stepping is implemented, based on
the conclusions in Section 6.2. The minimum distance
Alr[™ between nodes on the free surface is used to
determine, for each time, a new time siep ensuring an

optimum ratio 24 in the computations as:at’ =

2 -
1.5
7 14
0.5 -
0

0 1 2 3

Alriming,, with €, = 57, the Courant number at initial
time ¢,. An estimate of the optimum Courant number is
obtained from Section 6.2 by: €, =05 x 1.22/1.73 =~
0.35 (proportionally to the celerity). Three cases are
considered with different Courant numbers and initial
time steps: €, = 0.32 and 0.16 in the coarsest discretiza-
tion, i.e., Af, = 0.08 and 0.04, and €, = 0.40 in the finest
discretization, i.e., Af, = 0.04.

Figures 7(a), (b) and (c) show dimensionless free sur-
face elevations 2’ {of x*} for the three considered cases.
The wavemaker is located, for each time, at the leftward
extremity of the free surface. We see, the [ree surface
geometry around the intersection with the wavemaker
stays very smooth during the motion; this is also true for
the variation of ¢, ¢, 3 and £ not shown on the figures.

5 & 7 8

Fig.7{a). Dimensionless free surface profiles shown each 23 time steps (at ¢ = 1.55, 2.53,3.25,3.69,397,4.19,432,451,
4.68, 4.86, 5.04, 5.18, 5.22) for an overturning wave generated by a Ist-order solitary wave piston motion, with H = 2.0).
Auto-adaptive time stepping is used with €, = 0.32 for Ax' = 0.25 (A( varies from 0.08 to 0.0004, Az = 0.125 and
L' = 10). The circles denote nodes-fluid particles. Notice computations break down shortly after the last profile.
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Fig. 7(b}. Same definitions as in Fig. 7(a} with €, = 0.16 (At' is 0.04 to 0.0003). Profiles are shown each 50 time steps
(at r = 1.56, 2.55, 3.24, 3.70, 4.02, 4.23, 4.27, 4.33). Notice computations break down shortly after the last profile.
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Fig. 7(c). Same definitions as in Fig. 7(a) with €, = 0.40 for Ax" = 0.10 (At varies from 0.04 10 0.0002, Az' = .10 and
L' = 8). Profiles are shown each 50 time steps (at ¢ = 141, 2.35,2.99, 341, 3.71, 3.90, 4.05,4.16,4.22, 4.30, 4.34 }. Notice
computations break down shorily after the last profile.
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The small circles represcnt nodes of the discretization,
identical to the free surface particles, whose Lagrangian
motion is followed in time. Surface profiles are given at
different dimensionless times ¢’ corresponding to inter-
vals of 25, 50 and 50 (varying) time steps, in each case
respectively. Hence, the distance between two profiles
gives a measure of the change in size of the time step (Af'
reduces down to 0.0004, 0.0003 and 0.0002 respectively at
the time of the last computed profile), and the corre-
sponding total number of time steps is 323, 405 and 550
in each case. Computations are pursued up to the time
wave has overturned and the strong convergence of the
flow in the tip of the wave concentrates the fluid particles
so much that it creates a quasi-singular situation. Neither
the auto-adaptive time stepping nor the adaptive integra-
tion can handle this well and computations eventually
breakdown shortly alter the last profile shown in each of
the figures. Clearly regriding of the nodes should be done
to be able pursuing the computations further in time (see
Dommermuth and Yue$).

Analyzing results in more detail, we see that, in the
first two cases with same discretization (Fig. 7(a), (b)),
reducing &, makes the computations fail earlier: at
t'=4.326 with ¢, = 0.16, instead of ¢’ = 5223 with ¥, =
0.32. In Figure b, this is likely due to an accumulation of
truncation errors with an unnecessary large number of
time steps, which makes nodes (wrongly) move too close
to each other, In Fig. 7(a), computations can be pursued
accurately till almost complete overturning of the wave.
Notice, the intervals between nodes close to the wave-
maker become quite wide. This is well handled, however,
by both the cubic splines approximation of the free
surface and by the adaptive integration. In Fig. 7(c),
computations fail around the same time as in Fig. 7(b)
(t' = 4.344 with &, = 0.40), likely due here to the more
refined discretization which brings nodes closer to each
other at the tip of the wave and eventually leads to
numerical instability.

Overall accuracy is compared between the three cases
by checking the conservation of the initial volume (V =
10 and & for the first two and for the third case respective-
ly). In Fig. 7(d), a plot of the change in volume A°V as a
function of time is shown for the three cases. We see,
accuracy increases from case  to 3 and, up to ¢’ = 4, the
maximum volume error is —0.0073, —0.0065 and
—(.0008 respectively, As expected, reducing €, from 0.32

2 -

1.5

T T ] T T T T T v
0 05 1 1.5 2 25 3 35 4 45

Fig. 7¢d). Veolume change A*V( () during computations,
for the three cases in Fig. 7{a) ( L 76 (----)and 7¢
{— - — - ). Netice initial volume is V = 10 (7(a), 7(b})
and 8 {7¢).

to 0.16 in the same discretization does not bring much
accuracy (10%), whereas reducing Ax' from 0.25 to 0.10
decreases the maximum error by 89%/. At later times, the
maximum error increases up to A°V = 0.0561, 0.0029
and 0.0080 respectively for the last computed profile.

In Fig. 8, the free surface profiles of cases 1 and 3 are
compared al identical times {t' = 1.18 to 3.58 by steps of
0.40). The overall agreement is excellent, which provides
a good proof of the convergence of the method in this
case. Slight differences only show up in small portions at
the back and at the tip of the wave, corresponding to
elements with either very small (case 3) or too large (case
1) intervals between nodes, which leads to less accurate
integrations and BEM solution.

Some quite interesting hydrodynamic features in
Fig. 7(a) should finally be pointed out. Maximum ampli-
tude increases on the free surface up to the time where
there is a vertical tangent at the iront face of the wave
(' = 1.83 at ¢ = 3.692). This also roughly corresponds
to the time of largest (negative) acceleration of the
wavemaker. Then, the wave starts overturning and its
maximum amplitude decreases smoothly and contin-
uously until the wave eventually collapses on itsell. This
can be explained by the combination of both a strong
downward velocity of the particles, due to the transfor-

0 | ]
0 1 2

T T z

3 4 5

Fig. 8. Comparison between results in case 7(a} (----)and 7(c} (——), for r = 1.18 to 3.58, by 0.40.
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" mation of potential energy gained during the building up
of the wave height, and of large horizontal velocities and
accelerations directly gained from the wavemaker mo-
tion. Eventually, the tip of the overturning wave becomes
elongated enough in the horizontal direction, for a little
body of water to be expelled downwards, out of its side.
This creates some sort of “bimodal™ plunging breaker.

7. CONCLUSIONS

We identified five separate aspects of the corner treat-
ment, relevant when solving wave problems with the
BEM in the physical space, and we addressed the asso-
ciated problems separately, leading to an improved cor-
ner solution.

Applications of the nonlinear wave model to simple
examples with analytic solution, using the improved
corner solution, demonstrate substantial gains in accur-
acy and stability of the overall solution. Cases with
different horizontal and vertical grid steps in the discreti-
zation, large horizontal aspect ratio of the domain geo-
metry, and mixed boundary conditions (of all possible
kinds) are well handled in the model. The representation
of the corners by double-nodes, with imposition of con-
tinuity and compatibility conditions, provides well-posed
mixed boundary conditions in all cases. The use of an
adaptive integration in the corner elements (and also on
any part of the boundary with large intercept angle)
reduces by several orders of magnitude, the loss of
accuracy ol the corner solution often mentioned in the
literature.

The optimum relationship between space and time
discretization, leading to maximum accuracy of the re-
sults, has been deduced for the propagation over con-
stant depth of an exact solitary wave. It is expressed as a

Courant number €, = §2 = 42 /gd whose optimum

value is within 0.3-0.5 (when . /gd ~ 1.7-1.2). The accur-
acy of the solution at the corner between free surface and
moving lateral boundary is studied for the generation of
an overturning wave by a piston wavemaker. This leads
to using an auto-adaptive time stepping, based on main-
taining constant the Courant number derived with the
minimum distance between nodes on the [ree sur-
face: At = A|r'™" ¢€,. Results show interesting hydro-
dynamic leatures of wavemaker induced overturning of a
wave.
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