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We present the development of a Lattice Boltzmann Method (LBM) for the numerical simulation of mul-
tiphase flows with high density ratios, such as found in ocean surface wave and air-sea interaction prob-
lems, and its efficient implementation on a massively parallel General Purpose Graphical Processing Unit
(GPGPU). The LBM extends Inamuro’s et al.’s (2004) multiphase method by solving the Cahn-Hilliard
equation on the basis of a rigorously derived diffusive interface model. Similar to Inamuro et al., instabil-
ities resulting from high density ratios are eliminated by solving an additional Poisson equation for the
fluid pressure. We first show that LBM results obtained on a GPGPU agree well with standard analytic
benchmark problems for: (i) a two-fluid laminar Poiseuille flow between infinite plates, where numerical
errors exhibit the expected convergence as a function of the spatial discretization; and (ii) a stationary
droplet case, which validates the accuracy of the surface tension force treatment as well as its conver-
gence with increasing grid resolution. Then, simulations of a rising bubble simultaneously validate the
modeling of viscosity (including drag forces) and surface tension effects at the fluid interface, for an
unsteady flow case. Finally, the numerical validation of more complex flows, such as Rayleigh-Taylor
instability and wave breaking, is investigated. In all cases, numerical results agree well with reference
data, indicating that the newly developed model can be used as an accurate tool for investigating the
complex physics of multiphase flows with high density ratios. Importantly, the GPGPU implementation
proves highly efficient for this type of models, yielding large speed-ups of computational time. Although
only two-dimensional cases are presented here, for which computational effort is low, the LBM model can
(and will) be implemented in three-dimensions in future work, which makes it very important using an
efficient solution.
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1. Introduction

The numerical simulation of multiphase and multi-component
fluid flows is a challenging problem in Computational Fluid
Dynamics (CFD), both for conventional macroscopic and meso-
scopic methods, such as the Lattice-Boltzmann Method (LBM). In
classical CFD methods, multiphase flows are simulated by coupling
a Navier-Stokes (NS) equation solver to an advection or advection-
diffusion equation scheme, for the updating of interfaces between
fluids [1]. In earlier work, advection equations have been used in
combination with either sharp or diffuse interface models
(although this may seem less adequate in the latter case), whereas
advection-diffusion equations have mostly been used with diffu-
sive interface models. The interface itself is typically represented
by a capturing method such as the widely used Volume Of Fluid
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(VOF) method [2], or an interface tracking method. Most of the
interface tracking methods assume a sharp interface, i.e., they con-
sider the phase transition to be clearly defined and thus the inter-
face between two fluids to be infinitely thin. By contrast, the
interface capturing methods allow for both sharp or diffusive inter-
face representations, depending on the equation solved. An addi-
tional challenge when using a sharp interface method is the
accurate computation of the interface curvature and related sur-
face tension forces. This has encouraged many researchers to use
diffusive interface methods, in which surface tension forces at
interfaces are modeled as a continuum, by distributing them over
thin but numerically resolved layers [3]. Such models have recently
attracted much interest, owing to their computational advantages
[4,5]. Because of these various options, when developing and
implementing a free surface or multiphase CFD model, one has to
make a priori decisions regarding using: (i) a sharp or diffusive
interface method; (ii) an advection or advection-diffusion equa-
tion for free surface updating; and (iii) a tracking or a capturing
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method for the interface representation. In our proposed two-
phase model, detailed below, interface motion is modeled by a
Cahn-Hilliard’s (CH) interface capturing, advection-diffusion
equation [6], using a scalar order parameter ¢, (o« =1,2) to iden-
tify each phase. The interface between the two phases is then de-
fined as a smooth transition from ¢, to ¢, and vice versa.

Recently, the LBM has matured into a powerful alternative to
classical NS solvers, both for simulating single phase, and multi-
phase and multi-component flows [7-10]. The LBM discretizes
the Boltzmann equation, which governs the dynamics of molecular
probability distribution functions from a microscopic scale point of
view, based on a discrete velocity set. This yields a numerical
method for computing macroscopic distribution functions on a
Cartesian grid (the lattice). Macroscopic hydrodynamic quantities,
such as pressure and velocity, are obtained as low-order moments
of these distribution functions. The resulting formulation can be
shown to converge towards the solution of classical macroscopic
equations such as NS, to the second-order in space and-first order
in time [11]. The LBM has several solver-specific features, which al-
low taking full advantage of recent advances in massively parallel
General Purpose Graphical Processing Units (GPGPU) [12], such as
a an operator locality and fairly regular algorithms, which yield sig-
nificantly more efficient parallel codes than those of more tradi-
tional CFD solvers.

While there have been numerous applications of classical CFD
solvers to multiphase flows, whose exhaustive review is beyond
the scope of this paper, over the past two decades, several note-
worthy methods have been developed for simulating multiphase
flows in the context of the LBM. These are: Rothman and Keller’s
color method [13], the Shan and Chen model (SC) [14], Swift’s free
energy method [7], and the method of He et al. [8]. In the SC meth-
od, separate probability distribution functions are introduced for
each phase, and these are modified by a forcing term that models
“molecular” interactions with neighboring lattice nodes in the
other phase. Swift et al. used a free energy concept, in which the
stress tensor is modified by adding the effects of surface tension
forces. In their method, two sets of particle distribution functions
are required, one for solving NS equations and one for solving
the approximate CH interface capturing equation. He et al. trans-
formed the classical discrete Boltzmann equation for a single
phase, from a mass and momentum to a pressure and momentum
formulation. This transformation helps reducing potential instabil-
ities due to high gradients in fluid density near the interface. Sim-
ilar to Swift et al., a second set of particle distribution functions is
used to track the interface.

While all of the above methods successfully solved multiphase
flows, the maximum fluid density ratio achievable in computations
was limited by the occurrence of instabilities for high density ratios
(typically larger than 10-20). Developing methods to overcome this
limitation is challenging and represents an active research area in
LBM. In this work, we aimed at developing an accurate and efficient
LBM method for investigating the complex physics of ocean wave
and air-sea interaction processes. Hence, our method must deal
with large density ratios of about 1000. Our proposed approach
builds and improves on some recent progress achieved in the LBM
modeling of multiphase flows. In particular:

e Lee and Lin [9] used an approach similar to that of He et al. [8]
to solve discrete Boltzmann equations for the pressure and
momentum in multiphase flows. In those, they split up inter-
molecular forces for non-ideal gas into hydrodynamic pressure,
thermodynamic pressure, and surface tension force contribu-
tions. They reported that “parasitic currents” affected numerical
results at interfaces, due to the imbalance between thermody-
namic pressure and surface tension forces resulting from
truncation errors, particularly, in relation to curvature

computations. They nearly eliminated this problem by using a
thermodynamic identity to recast the intermolecular forcing
term from a stress to a potential form. Furthermore, they used
different discretization patterns (i.e., centered, staggered, and
mixed differences) at different steps of the simulation, to make
their numerical scheme stable for large density ratios. With this
discretization scheme, they were able to simulate two phase
flows with density ratio of up to 1000. However, their method
was only valid for low Reynolds and Mach numbers. Addition-
ally, numerical efficiency seemed to be quite low, due to the
need for calculating various forms of first- and second-order
derivatives of the macroscopic variables.

Inamuro et al.’s [10] LBM method overcame numerical instabil-
ities resulting from high density ratios by removing density
from the advection part of the equilibrium distribution func-
tions, resulting in the absence of a pressure gradient in the
momentum equation (referred to in the following as “pressure-
less” NS equations). They then corrected the velocity field by
solving a Poisson equation for the pressure. Unlike in classical
LBMs, in their model, the fluid viscosity is not related to the
relaxation time, because of the absence of pressure and density
in the equilibrium distribution functions. Therefore, viscous
effects are modeled by adding: (i) an extra term to the equilib-
rium distribution functions, which removes the dependency of
relaxation time on viscosity; and (ii) the viscous stress tensor
as a body force to the collision operator. However, specifying
viscous effects this way in the model yields additional nonphys-
ical terms in the corresponding momentum equation, which
decrease the model accuracy.

In this work, we developed and implemented a LBM based in
part on Inamuro et al.’s [10,15] approach of removing the pressure
gradient from the momentum equation. However, in our model we
use a modified primary set of equilibrium functions for the “pres-
sureless” NS equations, in which viscosity is still present and re-
lated to the relaxation time as in a classical LBM. Thus in our
method, the corresponding NS equations do not have the unde-
sired terms that appear in Inamuro et al.’s model. Additionally,
Inamuro et al. used a convection-diffusion equation in their inter-
face capturing method, whose theoretical derivation did not seem
to be fully rigorous. By contrast, to this effect, we use the standard
Cahn-Hilliard (CH) equation, in which surface tension and equiva-
lent body forces are rigorously derived, and we solve it using an
LBM scheme, by way of a second set of equilibrium functions; this
yields a more accurate and efficient solution than in earlier imple-
mentations, particularly on a GPGPU. Finally, we similarly correct
the “pressureless” velocity field by solving a Poisson equation for
the pressure, but here this is done by way of a third set of LBM
equilibrium functions, again providing an efficient scheme when
implemented on a GPGPU.

More specifically, it has been demonstrated in various publica-
tions [16,12,17,2,18] that LBM methods can be made very efficient
when implemented on massively parallel GPGPUs (single and mul-
tiple units). Hence, as indicated above, our proposed model’s algo-
rithm, which uses 3 separate sets of LB equilibrium functions and
related collision-propagation operators is optimally formulated
for such an implementation. Accordingly, we developed our LBM
code in the nVIDIA CUDA framework, which made it possible effi-
ciently implementing and validating it on the latest generation
GPGPUs (e.g., nVIDIA Tesla C2070, which provide up to 448 cores,
6 GB of main memory, and a double precision computing capabil-
ity). For all applications presented herein, this GPGPU implementa-
tion led to computational speedups of about two orders of
magnitude, as compared to a single-core CPU implementation of
the same model. However, because the Poisson equation must be
(iteratively) solved over the entire computational domain for each
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time step of the solution, these are still very demanding computa-
tions and only two-dimensional (2D) problems have been solved
so far, on a single GPGPU, although the method could be quite eas-
ily extended to three dimensions and to multiple GPGPUs.

The paper is organized as follows. Section 2 provides an intro-
duction to the free energy method, applied to diffusive interfaces
modeled using the CH equation. Our proposed LBM for multiphase
flows with high density ratio is detailed in Section 3, where we
separately describe the LB solution of the momentum, CH advec-
tion-diffusion, and pressure Poisson equations. The GPGPU imple-
mentation is briefly described in Section 4. In Section 5, the
method is validated by comparing 2D numerical results to refer-
ence solutions for two-component Poiseuille flows, stationary
droplets of one fluid embedded in another, a bubble of a lighter
fluid rising in another fluid, the Rayleigh Taylor instability, and
breaking ocean surface waves. Finally, Section 6 offers conclusions
and perspectives for future work.

2. Diffusive interface models

As mentioned in the introduction, numerical schemes based on
a sharp interface representation, while usually more accurate, may
require addressing additional numerical problems in their imple-
mentation, as compared to diffusive interface models. In particular,
although not strictly necessary, sharp interface models may use a
moving numerical grid, whereas diffusive interface models natu-
rally accommodate fixed grids (such as used in the LBM). Sharp
interface models also face difficulties for accurately computing
the interface curvature and the related surface tension forces. This
often leads to the appearance of “parasitic currents” in the numer-
ical solution along the interface. These problems disappear when
using a diffusive-interface representation based on the continuous
variation of an order parameter (such as density or a function of
density), in a way that is physically consistent with microscopic
theories of interfacial processes. Three main types of diffusive-
interface models have been proposed in the literature: (i) tracking
force models [4]; (ii) continuum surface force models [5]; and (iii)
phase-field models [3].

In the current work, we use the latter approach, in which the to-
tal free energy F of a two-fluid system is specified to be minimum
for the equilibrium interface profile ¢({), where ¢ denotes a con-
tinuously varying order parameter (with values ¢, and ¢, referring
to fluid 1 and 2 on either side of the interface, respectively; and
¢1 > ¢2, ¢ € [P1,¢,]), and ( is a coordinate normal to the interface
(positive when pointing from fluid 1 to 2). More specifically, Cahn
and Hilliard [6] expressed the free energy density of an isothermal
two-phase/fluid system as,

f= %1902+ pw(o) @)

The first term in this equation is related to the energy gradient
and the second one to the bulk free-energy density ¥(¢). In the fol-
lowing, we will express the two parameters f and k in Eq. (2.1) as a
function of the standard surface tension coefficient g, of the two
fluid system and an assumed interface thickness W.

The existence of two phases is possible if ¥ has two minima,
such as when posing, ¥(¢) = (¢ — ¢,)*(¢ — ¢;)>. Based on Eq.
(2.1), the total free-energy of the two-phase system in domain Q
reads,

k
5= [s0.v0da= [ {S1vor + (o)} de 22)
The chemical potential y, is then defined as the functional
derivative of the free energy with respect to ¢, which can be easily
derived from the Euler-Lagrange equation as,

—”—‘lffv(iaf (2.3)
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As indicated, the equilibrium state of the interface is defined
such that the variation of ¢ across the interface minimizes F,
hence, this corresponds to u, = 0 or,

d2¢_ﬁdl'
d¢ T de’

) = p¥ — kV2 4,

k

(2.4)

since ¢ is only a function of {. Multiplying both sides of this equa-
tion by d¢/d{ and integrating with respect to ( yields,

k<d—¢>2 =28% (2.5)

d¢

which, combined with the above definition of ¥(¢), can be solved
for ¢ as,

n_Pitd h— 2
o) = 5t tanh W) (2.6)
where the equivalent interface thickness has been defined as,
4 k
W=—F /= 2.7
o=, 28 &7

This equation predicts that, at a distance W/2 on either side of
the interface, the order parameter reaches 76% of its value in each
fluid, ¢, or ¢,, respectively.

Jacgmin [3] further expressed surface tension forces as a
function of the variation of the order parameter across the
interface (such as in Eq. (2.6)), by assuming that the rate of
change of F due to convection is equal and opposite to the
rate of change of the kinetic energy due to surface tension
forces F, i.e.,

/F~ud§2:/,u¢v-(¢u)d§2: —/(¢Vu¢) -udQ, (2.8)
Q Q Q

where u denotes the interface velocity. Using Eq. (2.3) and noting
that surface tension forces only exist within the plane tangent to
the interface, yields,

F=—¢Vpu, =k¢V(V>p). (2.9)

Eq. (2.9) represents surface tension by an equivalent volume force,
which could be directly inserted into the governing momentum
(NS) equations (see, e.g., [3]).

Introducing a stress representation of surface tension forces
into Eq. (2.9), Jacgqmin showed that, for a plane interface, the equiv-
alent surface tension coefficient for the two-fluid system can be
calculated as,

+oo /d 2
O1p = I([m <d—(§> dC (210)
Combining Egs. (2.10) and (2.6), we find,
3
012 :w\/z B. 2.11)

Hence, in a given application, once the interface thickness W and
the surface tension coefficient g, are specified, the two governing
parameters of the diffusive interface model,  and k, can be calcu-
lated with Eqgs. (2.7) and (2.11).

Finally, the motion of the diffusive interface is modeled, following
Jacgmin [3], as a function of the order parameter by extending the
Cahn-Hilliard (CH) equation [6] to include convection, as,
¢

SEV - (gu) = MV,

o (2.12)
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where the right hand side represents the interface diffusive
transport, expressed as a function of a mobility coefficient M and
the chemical potential x,, defined above.

3. Lattice Boltzmann model

In this work, two-dimensional (2D) multiphase flows are sim-
ulated by solving two sets of equations: (i) the NS equations,
which provide the flow fields, based on the conservation of mass
and momentum, with the addition of the volumetric surface
tension force term of Eq. (2.9); (ii) the extended Cahn-Hilliard
equation (2.12), which describes the interface motion. We solve
these equations using a new Lattice Boltzmann Method (LBM),
which is an extension of Inamuro et al.’s [10] method, developed
to accurately simulate multiphase flows with large density ratios
(such as air-water). As will be detailed in the following, our
algorithms significantly differ from Inamuro et al’s in several
aspects.

To develop our LBM equations, we first introduce two sets of LB
particle distribution functions, one for each equation (i) and (ii),
and then find the corresponding mesoscopic equilibrium distribu-
tion functions, which reproduce the desired macroscopic equa-
tions. To discretize the 2D-LBM equations, we use the so-called
D2Q9 set of particle velocities (Fig. 3.1), which is based on 9 dis-
crete particle velocities in directions e; defined as [19],

€ = (07 0)/
e = c(cos((i— 1)m/4),sin((i— 1)/4)); i=1,3,57
e, = v2c(cos((i — 1)m/4),sin((i — 1)7/4)); i=2,4,6,8 (3.1)

with Ax and At the lattice constant mesh and time step sizes,
respectively, and ¢ = Ax/At defining the particle propagation speed
on the lattice.

In the LBM, it is customary to use non-dimensional lattice vari-
ables (here denoted by a prime) scaled on the basis of a length
scale /, time scale T and mass scale @; thus, for the mesh parame-
ters, AX' = Ax/A, At' = At/t and ¢’ = ct/4. It is also customary to as-
sume that ¢’ = 1, which is akin to having the mesh Courant number
be unity. If the length scale is further defined as A = Ax, we then
have AXx' =1, which requires 7 = At and At' =1 as well. Hence,
with these definitions, in lattice variables, we always have
C=AX =At' =1[19].

3.1. Lattice Bolzmann solution of momentum equation
3.1.1. Classical LBM solution of NS equations

The macroscopic continuity and momentum (i.e., NS) equations
for compressible isothermal fluids read (using tensor notations),

(] ()
€4
e
&
&
(S €7

Fig. 3.1. D2Q9 lattice for definition of particle velocities.

op  Ouy

E-i—paxa =0, (3.2)
au;( aud - 60'11;

oG+ g} = G+ B (33)

where p(¢) is the local density of the two-fluid system, B, is a body
force (e.g., gravity: B, = pg,), and o, denotes the stress tensor,
which, for two-phase flow problems, can be decomposed into three
parts [9],

Oup = —Pdyp + OL° + T3, (3.4)

where p is pressure, gZi¢ the viscous stress tensor, and o3 a stress
tensor representing the volumetric effects of surface tension forces
at the two fluid interface. For Newtonian fluids, these tensors read,

i ou, ou
visc __ o B
k o¢ o¢ R ap 9¢
sT _ [ > YY 1,99
e (2 ox; 0%, ko 0,0, Doy k()xx oxg' (36)

where p(¢) denotes the local dynamic viscosity, and the second
equation directly follows from the definition of surface tension
forces in Eq. (2.9) (i.e., Fy = 905} /0xy).

Lee and Lin [9], however, reported that numerical schemes
where the stress tensor is directly based on Egs. (3.4), (3.5) and
(3.6) are often unstable, as a result of an imbalance of the pressure
and surface tension terms due to truncation errors, yielding para-
sitic currents near the phase interface. To alleviate this problem,
they introduced a modified pressure p™, which includes parts of
the surface tension effects,

k 99 99 &¢
2 Ox, Ox, ox,0x;’

— ke (3.7)

p"=p+
and a tensor o3 also modified accordingly. They showed in appli-
cations that the variation of the modified pressure is now smooth
across the phase interface, compared to that of pressure p, which
greatly improves the stability of the numerical model in the case
of large surface tension forces.

With these new definitions the total stress tensor is reformu-

lated as,
000, 0w 0w, (o o
ax, 8}@6“ %y 0x/;> +M<6x/,—~_8xoc - (38)

Oup = —P"0up + k(

We now introduce a set of particle distribution functions g;(x, t)
to satisfy the equations of conservation of mass (3.2) and momen-
tum (3.3), with the stress tensor defined by Eq. (3.8). In a standard
LBM ansatz, the time evolution of these particle distribution func-
tions is computed as (assuming a single relaxation time (SRT) for-
mulation [20]) (i=0,...,8),

At (eq)

—(&i(x,t) - g

8i(X+ @At t + At) = g;(x,t) — T
g

(X7 t)) + AtBh
(3.9)

where g,?e‘” denotes the equilibrium state, to which the particle dis-
tribution functions are locally driven, and B; represents the effects
of body forces B, in Egs. (3.3). Following Buick and Greated [21]
the latter can be expressed as B; = w;e;,B,/c2, where w; is a weight
factor (defined later). The relaxation time 7, is related to the fluid
viscosity and the assumed speed of sound in the medium, ¢, (also
detailed later).

With a proper definition of the equilibrium distribution func-
tions, such LBM schemes converge to the solution of NS equations
[11]. In standard LBMs used for two-phase flows with low density
ratios, the macroscopic values of fluid density, momentum, and
stresses are obtained from the moments of the particle distribution
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functions [20]. Assuming no other body forces besides gravity, we
have, respectively,

b
> g =p. (3.10)
i=0

b
> gl = pu, (3.11)
i=0

: a9 9 9 d¢

e 2

;giqeme,-ﬁ = <pCS — kaT), (97;,) 6&/} + ka_XM 87/; + puaLl/f. (312)

3.1.2. Modified LBM for two fluids with high density ratio

When using the classical LBM equations to simulate two fluid
flows with high density ratio, the large density gradient near the
interface between fluids will usually cause large truncation errors
that could trigger numerical instabilities. To eliminate this prob-
lem, following Inamuro et al., we eliminate the bulk density from
the previous equations, leading to modified NS equations, which
no longer have a pressure gradient term (so-called pressureless
NS equations). The velocity field u* found as solution of these equa-
tions, however, will have to be corrected by solving an additional
Poisson equation. This is detailed in the following.

First, we define a new equilibrium state where the moments of
g/’s or g*Vs are defined without the fluid density p as,

b

> &' =0, (3.13)
i=0

b

S gy, =, (3.14)
i=0

b k ¢ 0¢ k o¢ 04

€, 5 2 _ MYV YV Rt St * g%
'Z(;gi €inCip = (cs Do, 8x,>5°‘”+p x, 8x,;+u“u/" (3.15)

and the new equilibrium distribution functions for a D2Q9 model,
which both modify and extend the classical formulation (e.g.,
[22]), read (i=0,...,8),

)2 *
2 _w, enlly | (ewity)” |w|
i N e 2ct 2¢?

2

k k
} + Wi;Gq/feimei/f - T/iz \V¢|27

(3.16)

where the summation is performed over indices o and $ (but not on
i), cs is the speed of sound defined, for a D2Q9 lattice as, ¢; = C/\/§
[19], and w; and »; are weighting functions defined as,

4 1 1

W0=§; W1,3,5.7=§; W2,4.6‘8:%7 (3.17)
5 3 .
Ww=-35: Vi=gw (i=12...8), (3.18)
and
L9 00009 06 0b
Cup(9) = 53 O, x5 4c* Ox, 8x,,()“ﬁ' (3.19)

[Note, these values of »; and G, are similar to those of Inamuro
et al.’s [10] and Swift et al.’s [23] model.]

It should be pointed out that, since pressure is solved for sepa-
rately using a Poisson equation, the zeroth-order moments of equi-
librium functions in the above Eq. (3.13) does not need to be equal
to density (or pressure). This is unlike classical LB models where
the zeroth-order moments of equilibrium functions needs to be
equal to density to satisfy mass conservation. Here, the latter is
enforced by the Poisson equation, which determines the pressure
gradient in the resulting NS equations.

The convergence of the solution of these modified LBM equa-
tions to that of NS equations (without a pressure gradient term)
is verified by applying the Chapman-Enskog expansion [11] to
Eq. (3.9), with the equilibrium distribution functions of Egs.
(3.16)—(3.18) and (3.19). This leads to:

o, O k0 (0906, 09 00
at " Paxy  poxg \dx, ox, T dxy Oxy

9 {, 1 ou; ouy B,
+8_X,;{C5 <'L'g—§At> (0_)6/;+8Xa +?, (320)
whose right-hand-side should be the gradient of the stress tensor
defined in Eq. (3.8) without a pressure gradient term. As there is
no density in the second term in the right-hand-side, however,
the relaxation time 7, cannot immediately be related to the fluid
kinematic viscosity v, by contrast with a classical LBM [20]. To do
so, we first have to rewrite the governing pressureless NS Egs.
(3.3) and (3.8) as,
ou;, au, k o
ot “Poxy  poxs

o
(9)(/3

*

29 94, 99 9%
ox, Ox, T Oxy OXg

1 (Ouy Oy
P \OXp  OXy4
ou, au;;> 0 (1) B,
- + —(=)+=.
K (ax,; 0Xy) OXp \ P p
Now, Eq. (3.21) can be made identical to Eq. (3.20) if one defines
u/p=v=c?(tg—1At), which is the standard relationship in
classical LBMs (e.g., [20]), and adds the next to last term of its
right-hand-side to the LBM evolution Eq. (3.9) as an equivalent

body force. According to Buick and Greated’s formulation, this
reads,

(3.21)

At
Tg

+ f—zwiemAt{% — 0, % (%) }7 (3.22)
where agjfc** is given by Eq. (3.5), when using the pressureless veloc-
ity u*. It is noted that the last term in Eq. (3.22) is Buick and Great-
ed’s classical body force divided by density.

Based on the above Chapman-Enskog expansion, the relaxation
time is thus expressed as,

Zi(x+ ALt + At) = gi(x,1) (gi(x,t) — g7 (x,1))

v 1
Ty = - + 5 AL,

=a+3 (3.23)

Note, if one introduces the non-dimensional LBM kinematic
viscosity V' =vt/4* and speed of sound ¢, =c'/v3=1/V3, Eq.
(3.23) yields the standard LBM relaxation time, T, =V'/c?
TAE/2 =3V +1/2.

3.1.3. Correction of velocity field based on a Poisson equation

Due to the absence of a pressure gradient term in the modified
NS Eq. (3.21), the velocity field, u*, which is calculated at every
time step with Eq. (3.14) based on the modified distribution func-
tions, computed as a function of time with Eq. (3.22) in the LBM,
is only an approximation of the actual velocity field u. One addi-
tional step is thus required to both compute the pressure field
and a corresponding correction Au of the velocity, in order to sat-
isfy the full NS Egs. (3.2) and (3.3). Following Inamuro et al. [10]
we define,

u=u +Au with Au~—

AP (3.24)
0
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Thus, for the actual velocity field to satisfy continuity equation
(i.e., V.u =0, assuming an incompressible fluid), u* must satisfy
the following Poisson equation,

V-(At—w) =V-u.
)

This Poisson equation (3.25) could be discretized and solved by
various methods. Here, we iteratively solve it in the LBM frame-
work, using the following evolution equation and a second set of
particle distribution functions h; (i=0,...,8),

(3.25)

hf (x+ et £+ A0 = hi (x,6) — (h“ hean ) — Atwy(V - (1)),
(3.26)

where n denotes the nth iteration in the solution. The equilibrium

distribution functions are simply defined as,

h(eq.n) _ Wipn(X7 t)
: PoC?

where p, is a reference density. The relaxation time 7, is related to

the density by,

2
At{ P }
27" pcz )’
or in LBM variables, 7, =1/2+ pp/p/, with p' =pi’/w and

Py = poA*/w. In this LBM scheme, pressure is simply calculated as
the zero-th order moment of the particle distribution functions as,

, (3.27)

(3.28)

b
P = poc®y . (3.29)
i=0

This scheme is iteratively run at a given time ¢, until the pres-
sure field converges to a stable solution. Once this is achieved, the
correction to the velocity field is calculated using Eq. (3.24). In
our new method, the two previously derived LBM schemes thus
solve, at time t: (i) the pressureless NS equations for high density
ratios, with surface tension forces partly included in the formula-
tion of the equilibrium distribution functions and in the body
forces, which yields u*; and (ii) a Poisson equation using the
approximate velocity field as an equivalent “volume force” to ac-
count for pressure gradients, which yields u and p. By contrast
with sharp interface methods, the calculation of the interface cur-
vature is not necessary in this method, but only the gradients of
the phase field function ¢ are needed.

3.2. LBM for solving Cahn-Hilliard equation

The diffusive interface motion is modeled by the Cahn-Hilliard
equation (2.12), where the left hand side describes the interface
advection, and the right hand side the diffusive transport; M de-
notes the mobility and the chemical potential u, is defined by
Eq. (2.3), as a function of the bulk free-energy density ¥ and the
phase field parameter ¢. To solve this equation, we also use an
LBM and introduce a third set of probability distribution functions,
fi(x,t), whose evolution is again governed by a standard LBM
scheme,

—fiw ) -2 (Fx 0 [0 x ).

fi(x + eAt, t + At)
Tf

(3.30)

This formulation also uses the SRT collision operator where, by
analogy with Swift et al. [23], we define the moments of f; to be the
phase field parameter, its flux, and a higher-order moment, respec-
tively, as,

b
> fi=o, (3.31)
-0
b
Zﬁem = Uy, (3.32)
Zfemel,; My 4’1 X’t + Uy, (3.33)
The equilibrium distribution functions for f;(, t) are further de-

fined as,

M eully  (eily)?  |u?
fi(eq) :Hi¢+ Ul lAt:u(p"‘(sz{ = oc+( ';C'g) _%}7 (334)

Cs

where w; and v; are the weighing functions defined in Egs. (3.17)
and (3.18), and
Hy=1, H;=0;

(i=12,....8). (3.35)

It can be shown by Chapman-Enskog expansion that with these
definitions, the LBM scheme solves the CH convection-diffusion
equation.

Density p is assumed to vary smoothly across the two-fluid
interface and is calculated throughout the LBM domain as a func-
tion of the order parameter ¢, as,

P2 ¢ < ¢y
P(P) =S T2 (01— o)+ P2 b2 <P <y (3.36)
pl (,b > d)lv

Similarly, both kinematic and dynamic viscosities are calculated
as a function of density as,

P—py
Y = Vi — V) + Vs, 337
(p) ,01—;02(1 2) + Va, (3.37)
uip) ==L — ) + (3.38)
P1— P2

respectively.
3.3. Boundary conditions

Wall boundary conditions are introduced here, for the three
LBM distribution functions f;, g;, and h;.

For f; and g;, which are used for the fluid momentum and inter-
face tracking equations, Eqs. (3.11) and (3.32) indicate that the
first-order moment is related to the macroscopic velocity, as in
standard LBM approaches. Thus, for no-slip boundary conditions
along solid walls, velocities are zero and hence the unknown par-
ticle distribution functions can be obtained from standard LBM
bounce back schemes. In those, particles are specified to reflect
back off the wall, into the fluid domain, resulting in a zero fluid
velocity at the wall surface [20].

For the boundaries with periodic conditions, the unknown par-
ticle distribution functions on one boundary are set equal to the
particle distribution functions on the other boundary, where the
periodicity condition has been implemented [20].

At a stationary wall, the boundary condition of distribution
functions h;, used in the LBM solution of the pressure Poisson equa-
tion, follows from the NS momentum equation. For instance,
assuming that the wall is planar and perpendicular to gravity
g = —gj, Eqs. (3.2), (3.3) and (3.4) yield,

p v 32
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An approximation of the pressure at the wall (x = x,,) as a func-
tion of its values at neighboring lattice points can then be obtained
from a Taylor series expansion in the direction perpendicular to the
wall as,

ap

p(XWayw7 t) = p(xw-,yw - AX, t) T oy (Xwﬁywv t)AX + O(sz)’

o (3.40)

where we can substitute the pressure gradient from its value in Eq.
(3.39). Based on this equation, boundary values of the unknown
particle distribution functions h; are finally specified at the wall
by assuming these are equal to the equilibrium distribution func-
tions [24], hi(x,t) = b (p(xw, 1)), calculated with Eq. (3.27). For
more complex geometries, same procedure can be done by finding
the pressure value on the neighbor lattice node to the wall. compute
the pressure on the wall bye a Taylor series and then use Eq. (3.27)
to find unknown distribution functions.

3.4. Computation of spatial derivatives

The first and second spatial derivatives in the various LBM
equations defined above (e.g., Egs. (2.3), (3.16), (3.19), (3.22) and
(3.24)) are computed using the following centered finite difference
schemes, that are typical of standard LBM implementations [9], i.e.,
for the D2Q9 scheme and o =1, 2,

o D(X + eAL) — D(x — eAl) ,

o, (x) = 2 wiei, AL +0(Ax7), (3.41)

and,

PP S P(x+ eAt) — 20(X) + (X — eiAL) 5

oz ®) = ;wi aar +O(AR),
(3.42)

for an LBM cell of coordinate x, with ¢ denoting any of relevant flow
parameter and w; the weight factors defined in Eq. (3.17). Along the
boundary, except when a periodicity condition is specified, we use
first-order de-centered finite difference schemes.

Algorithm 1. Algorithm for LBM computation of flow fields and
phase interface updating

for t < t,,g do
Compute f;(x,t + At) using Eq. (3.30)
Compute g;(x,t + At) using Eq. (3.22),
Compute ¢(x,t+ At) and u*(x,t + At) with Egs. (3.31) and
(3.14);
p(x,t+ At) and v(x, t + At) are calculated using Eqs. (3.36)
and (3.37)
while 222"

Compute p™(x,t + At) using Egs. (3.26)-(3.28) and

(3.29).
end while
Compute u(x, t + At) using Eq. (3.24).

end for

> ¢ do

3.5. Summary of LBM algorithm

The resulting LBM algorithm for the calculation of 2D flows of
two fluids having a high density ratio, and the updating of the
phase interface is summarized in Algorithm 1.

As indicated in the introduction, although we built our work in
part based on Inamuro et al.’s [10] results, there are significant

differences between our approach and theirs. These are summa-
rized in the following. First of all, in their work, they solve the fol-
lowing equation for the interface tracking,

p . O(puy) 9Py
ot Oy OXyXy' (343)
where O is a diffusion coefficient and P,; is defined as,
oy ok 0¢ 09|
Py = qb% s kfd)ax}.(?xy ) 87) ﬁ Oup- (3.44)

By comparing this equation with the Cahn-Hilliard equation (2.12)
used in our model, we see that the right hand sides of each equation
are different and, unlike in our case, Inamuro et al. did not provide a
clear physical interpretation for their equation.

Second, Inamuro et al. defined three separate variables ki, ko
and T for calculating surface tension and interface thickness. As
showed before, in our method, only two different coefficients k
and p are used, which can be expressed as a function of interface
thickness W and the surface tension coefficient ¢, using Egs.
(2.7) and (2.11).

Third, in Inamuro et al.’s scheme, the particle distribution func-
tions g;'s used for calculating the hydrodynamic fields are just solv-
ing the advection part of the (NS) momentum equation. The effect
of the viscous stress tensor is implemented by adding an extra
term to the collision part of the g; equation (corresponding to
our Eq. (3.9)), and the viscosity effects resulting from this extra
term have no clear physical interpretation. By contrast, in our mod-
el, dynamic viscosity is rigorously related to relaxation time in a
way that is consistent with classical LBM schemes.

Finally, and importantly, our LBM scheme is fully optimized and
implemented as a highly efficient parallel code on a GPGPU hard-
ware, as summarized in Section 4.

4. GPGPU implementation of the LBM code

GPGPUs are computing hardware with a large number of cores
(448 on the nVIDIA Tesla C2070), and a shared memory (6 MB for
the nVIDIA Tesla C2070), that execute a number of computing
threads in parallel. To manage these threads, the CUDA program-
ming environment offers two levels of parallelism. First, all the
threads are grouped in one thread block where extremely fast
memory is shared between the threads, which can be synchro-
nized. Each thread is identified by its three-dimensional thread
index, which gives the position in the thread block within the hard-
ware. To efficiently use the hardware, the total number of threads
per block should be in the range of 64-512. This number can be ad-
justed up or down depending on the size of local and shared mem-
ory available on each particular GPGPU. Threads are executed in
warps containing 32 threads each, on one of the GPGPU multipro-
cessors. Second, the thread blocks are bundled into the grid. Unlike
threads located within the same thread block, threads in different
blocks can only communicate via the GPGPU shared memory and a
synchronization is not possible. Blocks are identified by their two-
dimensional block index, namely their position within the grid.
Further details on the thread processing, grouping in warps, and
distribution among the GPGPU multiprocessors can be found in
[25,26].

4.1. Topology and grid mapping

The main design element in the GPGPU implementation of a
numerical method is the mapping of the numerical grid onto the
computational hardware, i.e.,, in our case the mapping of LBM
nodes onto the GPGPU processors, blocks, and threads. In earlier
GPGPU hardwares, several restrictions existed on memory access
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patterns that needed to be taken into account in order to achieve
maximum performance (see, e.g., [12]). However, recent GPGPUs
dedicated to numerical computations offer higher flexibility, so
that in this model we decided not to use the earlier shared memory
particle propagation pattern but instead to access the GPGPU main
memory directly in the propagation step. Hence, by contrast with
earlier implementations, the thread blocks can be designed almost
arbitrarily.

Specifically, in our grid mapping, we assign one single lattice
node to one CUDA thread. The memory is allocated as a one-
dimensional array and, as proposed by [16], the memory index is
calculated as k = nx * y + x, for a node at position (x,y) and a total
of n, x n, nodes. The dimension of the grid and the number of
threads are specified in the CUDA Kkernel call and the coordinates
of an LBM node can then be determined via, x = threadId.x,
and y = blockIdx.x. After the kernel launch, CUDA manages the
exact distribution of tasks among the multiprocessors and cores
on the GPGPU.

4.2. Implementation details

The implementation of most of the LBM kernels is straightfor-
ward, as demonstrated in [ 16]. The CUDA interface supports C-style
programming, so that standard C codes written for single proces-
sors can be easily transferred. Note that all the computations in this
work require double precision variables to ensure accuracy and
convergence. On the latest nVIDIA boards, double precision compu-
tations are only a factor of 2 slower than single precision ones. Due
to the doubled memory requirement of double precision, memory
transfers are also a factor of 2 slower, so that for our LBM algorithm,
we can approximately estimate that the performance in double pre-
cision is half that of single precision.

In general, the performance of our proposed LBM multiphase
model highly depends on the number of Poisson iterations per-
formed at each time step, which depends on the problem physics.
Hence no generally valid performance value of the multiphase
scheme can be given and performance must instead be assessed
on a case-by-case basis. Performance details are given below for
the applications presented in the validation section.

4.2.1. Memory allocation

In GPGPU implementations, data transfer between the host (i.e.,
the CPU computer controlling the GPGPU hardware) and GPGPU
memory, usually significantly penalizes performance and hence
must be minimized. To do so, in this LBM, unlike in previous imple-
mentations, we do not allocate host memory for the full 3 sets of
particle distribution functions (PDFs), but instead these are only
allocated on the GPGPU. Hence, in the post-processing step, which
involves data transfer from the GPGPU to the host, only the macro-
scopic values, such as pressure, velocity and phase field parameter
(i.e., 3-5 double precision variables) are copied to the host mem-
ory, instead of copying the full sets of PDFs.

Additionally, in GPGPUs, the memory is accessed as one single
vector (with the limitation in CUDA C codes that the function
parameter space of the kernel calls be less than 256 bytes). In a
D2Q9 double precision model, 2 x 9 x 8 = 144 bytes are needed
for pointers to the GPGPU memory, to refer to the kernels where
data is located. To reduce the number of pointers, the memory
for all PDFs is allocated at once, leading to a single linear memory
segment. The individual memory locations are then computed
within each thread. Hence, as the data layout structure is clearly
defined, it is sufficient to only send the start address of the PDF ar-
rays to the kernels. This saves function parameter space, which can
thus be used for storing pointers to other variables, such as the
macroscopic variables, derivatives, and so on.

4.2.2. Boundary conditions

Boundary conditions (BCs) disturb the flow of the LBM algo-
rithm, as they require additional operations on a specific subset
of nodes; hence this affects model performance. In general, a single
LB kernel for all lattice nodes is preferable on a data- and thread-
parallel system, for optimal load balancing. However, this is not
possible for all the boundary conditions used in this work, which
require additional kernel launches to process the particle distribu-
tion functions. To optimize parallel LBM computations, in our mod-
el, ghost layers of lattice nodes surround the whole computational
domain, so that all particle distribution functions can be advected
to neighboring nodes (propagation step), even at the domain
boundary; this way, no logical test is required inside the LBM ker-
nels regarding boundaries. Then, after the standard kernels for col-
lision and propagation have been run, BCs are applied. No-slip BCs
for instance are simply specified by bouncing the PDFs, that have
been advected into the ghost layer, back into the domain
(bounce-back scheme). In extrapolation (or open) boundary condi-
tions, values from the next-to-last fluid node are copied to the last
one. Here, the problem of thread synchronization leads to a second
justification for using separate BC kernels and launching them after
the calculation of the flow field is complete. Such BCs indeed rely
on consistent and valid particle distribution functions at the neigh-
boring lattice nodes, so that these nodes need to have terminated
their flow field updating before the BCs can be applied. In general,
we found that the additional computational overhead related to
the BC kernel launches is more than compensated by a higher flex-
ibility in setting up BCs in the model (i.e., allowing to easily switch
boundary conditions), and an easier model upgrade (i.e., imple-
mentation of further boundary condition types without having to
modify the basic LB kernels).

4.2.3. Convergence check for Poisson iteration

Aloop over all lattice nodes is needed to evaluate the maximum
error during iterations in the solution of the pressure Poisson equa-
tion. To improve performance, this error is only computed on the
GPGPU without copying all node results back to the host memory.
However, such operations in thread-parallel systems require a
careful treatment to avoid “race conditions” among threads, which
would lead to inaccuracies. Thus, a first kernel computes the max-
imum error in one thread block, where local errors are calculated
for each computational node and the maximum error in the block
is then calculated in a “divide and conquer” strategy, with the help
of the thread-global shared memory and thread block synchroniza-
tion points. Maximum errors of each thread block are stored in the
GPGPU memory (as a vector of n, values), and the same steps are
applied to calculate the global maximum error among blocks,
which is finally copied to the memory of the CPU host. The latter
is responsible for kernel flow control and stopping the Poisson iter-
ations, once a certain relative error threshold ¢ is reached.
[Although, in our algorithm, convergence of the Poisson equation
solution is checked after each iteration, this is not necessary and
a minimum number of iterations could be set beyond which con-
vergence would be checked, leading to a slightly more efficient
solution.] The relative error is checked every 20 iteration to the
performance of the computations.

4.2.4. Computational algorithm

The GPGPU computational algorithm is summarized in Algo-
rithm 2, including the previously mentioned approach for bound-
ary conditions and the Poisson iteration convergence check.
Moreover, additional kernels are introduced for the calculation of
derivatives, such as the divergence of the predicted (pressureless)
flow field V - u*. Before the time loop starts, several iterations of
the phase field kernel (with a zero velocity field) are run, to let
the interface between the two fluids converge to an initial equilib-
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rium diffusive interface shape. This is of great importance when no
analytical solution for the initial interface shape exists.

Algorithm 2. GPGPU implementation of the LBM multiphase
algorithm

Allocate memory on host (CPU) and device (GPGPU)

Initialize phase field ¢, velocity u, and pressure p on the host

Copy phase field ¢, velocity u, and pressure p from the host to
the GPGPU memory

Initialize the particle distribution functions on the GPGPU,
consistent with the initial conditions

for t < tjy; do
Update chemical potential ,, by Eq. (4)
LB kernel for the phase field ¢, based on Eq. (3.30)
BC for the phase field ¢ (periodic or bounce-back)
Update ¢, p, v, and u according to Egs. (3.31), (3.36), (3.37)
and (3.38)
end for

for t < topq do
Update chemical potential
LB kernel for the phase field ¢, based on Eq. (3.30)
BC for the phase field ¢ (periodic or bounce-back BCs)
LB kernel for the flow field u*, based on Eq. (3.9),
BC for the flow field (periodic or bounce-back)
Update ¢, p and v, according to Egs. (3.31), (3.36) and (3.37)
Calculate predicted flow field u* as given by Eq. (3.14)
Calculate the divergence of the predicted flow field, V - u*
(check every 20 iteration)
if PmaxError > ¢ then
LB kernel for the Poisson equation (Egs. (3.26)-(3.28) and
(3.29))
BC for the Poisson equation
calculate maximum error PmaxError on Poisson solution
end if
Correct the predicted flow field u* with Eq. (3.25)
end for

4.3. Performance

As indicated before, the performance of our LBM multiphase
model highly depends on the number of Poisson iterations per-
formed at each time step, which depends on the problem physics.
Hence performance is assessed on a case-by-case basis for each
case presented in the application Section 5. Thus, Table (4.1) lists
the average value of “Million Node Updates Per Second” (MNUPS)
achieved for the different test cases. We see that the best perfor-
mance (52) is achieved in the first case, which does not require
solving the pressure Poisson equation, while the other cases, which
require such a solution have their performance reduced by a factor
of 5-6. For comparison, a FORTRAN single-processor (CPU) imple-
mentation done earlier for a similar code achieved MNUPS values
about 40 times smaller than on the GPGPU.

5. Applications

Here, we present applications that validate our newly devel-
oped LBM for multiphase flows, by comparing numerical results
to the solution of analytical and experimental benchmark prob-
lems. First, the LBM scheme is applied to simulating a two-fluid
laminar Poiseuille flow between infinite plates, for which there is
an analytical solution; this assesses the method’s accuracy in the

Table 4.1

Performance for different test cases presented in the application section.
Case MNDUPS
Two-fluid Poiseuille flow 52
Stationary bubble 12
Rising bubble (case (a)) 9.6
Rising bubble (case (b)) 8.4
Rising bubble (case (c)) 8.2
Rayleigh-Taylor instability 11
Breaking wave 8.1

absence of surface tension effects (since the fluid interface curva-
ture is zero) in case of large density gradients. Second, we solve
the case of a stationary bubble of a lighter fluid in a non-moving
heavier fluid, in the absence of gravity; this validates the computa-
tion of surface tension effects, by comparison with Laplace’s law.
Then, we model a lighter fluid bubble rising in a heavier stationary
fluid, and compare LBM results to other numerical results, which
provide an independent reference simulation. Finally, we apply
the LBM model to more complex two-fluid flows with a large den-
sity ratio: (i) a Rayleigh-Taylor instability and (ii) ocean wave
breaking.

5.1. Definitions

In all the following simulations, values are provided for non-
dimensional lattice variables (denoted by a prime), which are the
parameters actually used in LBM computations. Besides having
AX' = At' = ¢ =1, as stated before, in all cases the non-dimen-
sional relaxation time for solving the momentum equations is kept
within the limits, 0.5 < 7, < 1, in order to ensure stability of the
LBM solution [20]. With Eq. (3.23), this requires 0 < v < 1/6, and
hence the time step is defined as, At= (Ax)*V/v < (AX)%/(6V).
The non-dimensional surface tension coefficient is further
defined as,

y i‘»_\_,\ul
h »  Fluid 1
X
h Fluid 2
“

Fig. 5.1. Definition sketch of a two-fluid Poiseuille flow between infinite plates,
with typical analytical solution for the horizontal velocity profile u(y).

Table 5.1

L,-norm error (between analytical and LB results) and body force magnitude g’, as a
function of LBM discretization size I, for the two-fluid Poiseuille flow test case of
Fig. 5.2 (see, Fig. 5.3 for error plot).

Case 14 g Ly-norm (%)
(a) 50 2.871x107% 6.2
(b) 60 2.390 x 107 54
() 70 2.051 x107% 4.4
(d) 100 1.436 x 107% 32
(e) 125 1.149 x 107% 2.7
() 150 9.572 x 1079 1.9
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O = 3= : (5-1)

The non-dimensional relaxation time for solving the
Cahn-Hilliard equation (3.30) is set to 7; = 7y/At = 1. The non-
dimensional mobility M’ = Mw/(t/?) is set to M’ = 0.02/f to get
the most stable results [27]; additionally, we specify ¢, = 0.4 and
¢, = 0.1 in all cases, and the interface thickness is assumed to be
of 4 lattice meshes: W = 4Ax or W’ = 4, which by combining Egs.
(2.7) and (2.11) yields the interface lattice parameters,

30, 60,
(1 — b2)* (61— ¢o)°

where ' = /(p,c?) and k' = k/(p,c24?). Although other values of W
(both smaller and larger) were tested in applications, the selected
interface thickness was found to yield the most accurate results in
applications, as compared to reference results, by ensuring a sulffi-
cient sharpness of the interface gradients while not causing numer-
ical instabilities with unnecessary large gradients.

The non-dimensional relaxation time used for solving the
pressure Poisson equation (3.26) is similarly kept within the
range 0.5 <7, <1 [24]; with the latter constraint, Eq. (3.28)
yields that for either fluid the non-dimensional density
(py,py) = 6. Finally, the non-dimensional reference density is
set to pj, = 1, which implies that, @ = py(Ax)* (usually, one will

and k' =

p = (52)
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Fig. 5.3. L,-norm error (between analytical and LB results) as a function of LBM
discretization size I, for the two-fluid Poiseuille flow test case (Fig. 5.1): (e) data

from Table 5.1; (——) power curve fit L, (h')’wo8 (R* = 0.99).

also assume for simplicity, p, = 1 kg/m3) and p} = p;/p,, for fluid
i=1,2.
5.2. Two-fluid Poiseuille flow

The two-fluid Poiseuille flow, between two infinite plates,
inclined at an angle o with respect to the horizontal, is a good
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Fig. 5.2. Non-dimensional velocity profiles v’ = u/uf" in two-fluid Poiseuille flow (Fig. 5.1), for Re = 100, Ma = 0.01, p, /p, = 100, and v, /v, = 0.1: (—-) analytical; (o) LB
results (only 33% of nodes are plotted for clarity), for different grid resolutions h’ (see, Table 5.1).
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analytical test case to validate the method for both high fluid dy-
namic viscosity and density ratios in the absence of surface tension
effects. Two immiscible fluids are accelerated in between the plates
by a body force (i.e., projected gravity, pg sin«) and slowed by the
viscous shear along the plate surfaces (Fig. 5.1). At the planar two-
fluid interface, the continuity of fluid velocity and stresses has to
be satisfied and, in such a case, geometry also implies that surface
tensions forces are zero. An analytical solution of the steady state
NS equations can be derived for this case, to which the fully devel-
oped velocity field computed by the LBM can be compared.
Specifically, the analytical reference solution is derived by solv-
ing the following simplified, but exact, one-dimensional momen-
tum equation for the horizontal velocity component u; in each
fluid (i = 1,2) (with y = x;),
. dzu,-
pgsino i (5.3)

which yields [28],

gsino (2 (p; + p,) (P2 — op1) o ,01}
U = h —yh =y 54
T2 { TR R A TN (TSR TS G4
gsino {5 (py + p,) (lpy = topr) o Pz}
U — h —vyh -y =5 55
) { TS R T TRNSTI R TS 3.9)

with fluid densities p; and p,, and dynamic viscosities y, and u,,
respectively; g denotes the gravitational acceleration and 2h is the
distance between the 2 plates. This analytical solution yields veloc-
ity profiles that are parabolic in each fluid, with a discontinuity of
the vertical velocity gradient at the interface, owing to the identical
horizontal stress on either side of the interface, for different viscos-
ity values (Fig. 5.1).

LBM simulations are started from a state of rest in a 2D channel
similar to that sketched in Fig. 5.1. A periodic boundary condition
is specified for lateral upstream and downstream boundaries, in
the flow direction x = x;, and no-slip boundary conditions are
specified on the plate surfaces (y = 4-h). The interface parameters
of the system are set to k' = 0.01 and ' = 0.05. Thanks to the peri-
odicity in flow direction and the laminar nature of the flow, the
grid resolution in the x direction can be low, and only 4 grid points
were used. The number of grid points in the vertical y direction is
N =2k’ = 100—300, with Ax = 2h/N (Table 5.1).

A convergence study of LB results accuracy as a function of
mesh size N is performed for a series of flows defined by a constant
Reynolds number, Re =u*2h/v, =100 (based on maximum
velocity in the channel, assuming this occurs in fluid 1, correspond-
ing kinematic viscosity, and channel width); the LBM Mach num-
ber in these computations is also fixed at, Ma = u"®/c, = 0.01,
which provides sound speed c; to use for a given flow. For each
flow parameters and LBM discretization N or k', the non-dimen-
sional body force magnitude, g’ = gsino(t?/2) = g sin aAt/c? (with
c? = 3c?) is adjusted by varying the channel angle o, in order for
the maximum flow velocity u® (obtained from the analytical
solution) to satisfy the desired Reynolds number. In practice, given
fluid and geometry parameters p,/p,,v1/v2,h and g and combin-
ing the expression for u® with the definitions of Re and Ma, we
find g’ as a function of h' (Table 5.1).

Let us first assume, the density of fluid phase 1 is p; = 600 and
the density ratio is p}/p, = 100 (thus p}, = 6); the kinematic vis-
cosity ratio is v;/v, = 0.1, which yields u,/u, = 10. To check the
accuracy of numerical results, we calculate the L,-norm relative
error (i.e., a RMS error between numerical and analytical velocities
u, scaled by the RMS of the analytical velocity). LBM simulations
were stopped when the difference between the L,-norm of two
consecutive time steps became less than 10°°. Fig. 5.2 shows the
analytical and numerical (steady-state) velocity profiles for differ-
ent grid sizes h', and the convergence to the analytical reference

solution is seen to be quite good. In previous studies of two-phase
Poiseuille flows with LBM multiphase models [29,30], numerical
oscillations of the fluid velocity were observed near the phase
interface, even for low density ratios. Our LBM multiphase method
does not trigger such oscillations and captures very well the slope
discontinuity of the velocity profile at the phase interface. Table 5.1
summarizes the L,-norm errors for different grid configurations.
Convergence can clearly be observed. Fig. 5.3 further shows a
first-order convergence of the relative error is achieved, as a func-
tion of the number of lattice nodes in the y direction.
Simulations are run next for different viscosity and density ra-
tios, using a fixed LBM grid resolution with N =300 in the y
direction. Flow parameters are, Re=1000 and Ma = 0.005.
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Fig. 5.4. Two-fluid Poiseuille flow (Fig. 5.1)). Non-dimensional velocity profiles
u = u/uf™ for Re =1000 and Ma = 0.005: (—-) analytical; (o) LB results for
N =300 LBM nodes (only 33% of nodes are plotted for clarity). (a) p;/p, =1 and
vi/v2 =01, (b) p}y/py,=100 and vi/v;=1, and (c) p}/p,=1000 and
Vi/v, = 0.0667.

Table 5.2
Stationary bubble case. Comparison of computed and analytical (0.4 N/m?) pressure
jumps Ap for stationary circular droplets, as a function of LBM discretization.

Ny =N, ai, K 4 Ap (N/m?) L,-norm (%)
64 434x102 028 16 0389 2.7

128 217x10* 014 08 0395 123

256 109x10 007 04 0397 0.72
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(a)t' =0

(b) ¢ = 3000

(c) t' = 5000

(d) ¢’ = 8000

(e) t' = 12000

(f) ¢ = 25000

Fig. 5.5. Time evolution of the shape of an initially rectangular droplet towards a circle of radius R’ = 68 (p; = 600, p,/p, = 100), as a result of Laplace law; t' is non-

dimensional time of computations (i.e., number of time steps).

FoZIIIIIUN

(b) ' = 30000

(c) t' = 40000 (d) ¢ = 50000

Fig. 5.6. Velocity vectors computed around the bubble interface at four different
times equal or larger than the largest time in Fig. 5.5.

Fig. 5.4 shows steady-state velocity profiles for three different
cases: (a) the fluid densities are identical (p/p, =1), and the
kinematic viscosity ratio is v;/v, = 0.1 (which yields different
velocity gradients at the phase interface to satisfy the continuity
of shear stress); (b) p}/p, =100 and v;/v, =1 (which yields
continuous shear stress and a continuous velocity gradient at
the phase interface: zero, due to the symmetry); and (c)
py/p5 = 1000 and v, /v, = 0.0667, as for water and air, which are
the fluids used in our final applications. The good agreement of

p/
700
600 2
500 £ o o) E
400 £ E
300 2 = E
200 E :
100 E ° o :
OE i i 5 . o] PRI & B
0 50 100 150 200 250
p (N/m')
N+t
0.6F 1
L o (o) .
04 1
C ° ° ]
02 | 1
[ o o ]
ok ]
0.2 I —— PR PR P : L X'
0 50 100 150 200 250

Fig. 5.7. Case of Fig. 5.5(f) (steady-state). (o) LBM simulation of non-dimensional
density and pressure profiles across the domain mid-axis.

Table 5.3
LBM parameters for rising bubble computations.

Case Vi K 4 g Bo Mo

(a) 20x103 0266 1.481
(b) 20x103 0266 1.481
(© 10x102 0210 1.171

1853 x 107" 0.1 0.001

1.853x107° 10 0.1
1.465x 10" 100 1000

numerical and analytical results, even in the latter case, confirms
the accuracy of the LBM scheme and its applicability to practical
problems such as at an air-sea interface.
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Fig. 5.8. Terminal shape and flow velocity vectors for a bubble of density p, =6
rising under buoyancy in a fluid with density p; = 6000, /i, = 1000 : (rightward
panels) VOSET results of [33]; (leftward panels) present LB results (see Table 5.3).

5.3. Stationary bubble in quiescent fluid

The exact solution (in the absence of gravity, i.e., volume forces)
for a circular stationary bubble of a lighter fluid embedded within a
heavier quiescent fluid is used as a benchmark to validate surface
tension force computations in our LBM scheme, on the basis of the
Cahn-Hilliard equation. Laplace law predicts that, if the two-fluid
interface is curved, a pressure jump Ap occurs across the interface
(with pressure being higher along the concave side); for a two-
dimensional circular bubble of radius R, we have,

012
R (5-6)

A circular droplet of fluid of density p, = 10 kg/m? and radius
R = 0.005 m is placed in the middle of a square LBM domain with
sided = 0.02 m, filled with a fluid of density p, = 600 kg/m? (hence,
the density ratio is p}/p, = 60). The fluid kinematic viscosities are
Vi =V, =2x10°m?/s, and the surface tension coefficient
012 =2 x 10 N/m. Eq. (5.6) predicts that this situation corre-
sponds to a pressure jump Ap = 0.4 N/m? across the interface.

In LBM computations, we use all the fixed parameter values
specified in the definition section and select a lattice viscosity,
V) =V, =1/6, ie, 1, = 1. Three grid sizes: Ny = N, = 64, 128 and
256 are successively used and periodic boundary conditions are
specified on the 4 sides of the square domain. The mesh size is,
Ax = d/N, and time step, At = (Ax)?/(6v;). The dimensionless lat-
tice surface tension coefficient ¢}, is then given by Eq. (5.1) and
the interface lattice parameters ' and k' follow from Eq. (5.2). Ta-
ble 5.2 lists values of the latter coefficients and gives results for the
pressure jump, computed as the difference between the average
pressure inside and outside of the droplet, as a function of the dis-
cretization size. We see that numerical results are in good agree-
ment with the analytical results, with a 0.72% L,-norm error in
the finest discretization. The convergence of numerical errors also
appears to be first-order in grid size, as in the previous application.

To further validate the surface tension force computation for a
non-stationary case, a similar simulation is repeated for an initially
square droplet of a lighter fluid, with side 128Ax, embedded within
the larger square domain of side d = 256Ax = 0.02 m used earlier
(Ax = 7.813 x 107> m), filled with a heavier fluid. The LBM simula-
tion parameters are Py =600,p,/p, =100,v; = v, =2 x 107> m?/
S, Oi2=4x 10 N/m and 7, =1. Hence, At= (Ax)? /(6v1)
=5.086 x 107 s, c = 153.6 m/s, Wthh yields ¢, =2.17 x 1073, ¢/
= 0.8 and k' = 0.14. Fig. 5.5 shows the time-evolution of the drop-
let geometry, which as expected gradually relaxes to a circle to

Ap =

Fig. 5.9. Time evolution of a rising bubble shape for p /p, = 1000,Bo = 100, Mo = 1000 (case of Fig. 5.8(c)). From left to right, for t' = 0,10%, 2 x 10%, 4 x 10°. Note, only half

the domain height is plotted.
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both minimize and equalize the interface pressure jump, based on
Laplace law. The relaxation time 7; = 1 corresponds to a highly vis-
cous fluid, so that the initial droplet relaxes to the equilibrium
shape without significant oscillations.

In an accurate two-phase flow model, there should only be neg-
ligible flow velocities computed once the bubble reaches its equi-
librium shape. In the LBM model, such spurious velocities are
eliminated by the correction of the velocity field resulting from
the solution of the Poisson equation for the modified pressure in
Eq. (3.7). As a verification, Fig. 5.6 shows velocity vectors computed
around the bubble interface as a function of time, once its shape
has nearly reached equilibrium. We clearly see that spurious veloc-
ities gradually decay over time. When the steady state solution is
reached, spurious currents have almost completely vanished.

Fig. 5.7 shows the pressure and density profiles computed
across the interface, when reaching steady-state. As expected, the
density variation is sharp over the interface and occurs over 4 grid
cells. At this stage (Fig. 5.5(f)), the droplet is nearly circular, with a
radius R = 68 lattice nodes or R = 5.3 x 10~ m, for which Laplace
law predicts an expected pressure jump Ap = 0.75N/m?
(Ap' = 3.179 x 107°), whereas on Fig. 5.7 we see a computed aver-
age pressure jump of about 0.745 N/m? (relative difference 0.67%).

5.4. Rising bubble in quiescent fluid

The dynamic behavior of a lighter fluid (p,, v,) bubble rising in a
heavier fluid (p,,v:) under the buoyancy (gravitational) force is a
standard test case extensively used for validating two-phase flow
simulations. Although the LBM simulation setup in terms of grid ini-
tialization and boundary conditions is straightforward, the flow struc-
ture computed around the bubble is quite complex and governed by
competing effects of viscosity, buoyancy, and surface tension forces.
Several experimental studies have been conducted to measure the
rise and deformation of single bubbles in a quiescent fluid [31,32],
which indicate that the bubble shape greatly varies according to
various flow regimes defined by values of non-dimensional parame-
ters, such as the Bond number Bo (also known as Eotvos number,
the ratio of gravity to surface tension forces), the Reynolds number
Re, and the Morton number Mo, defined as,

4
Mo:%<1 7&) rRe—L (57

&, up
- (pl p2)7 p17 V1

Bo 4
012 01201

where U is the bubble terminal velocity and D its (equivalent) diam-
eter, g is the gravitational acceleration, and v; and g, are the kine-
matic and dynamic viscosities of the heavier fluid, respectively. The
terminal shapes of individual rising bubbles were experimentally
observed for a range of Reynolds and Bond numbers [31], and can
be generally regrouped into the following cap shape regimes: (a)
spherical, (b) ellipsoidal, and (c) curved ellipsoidal. In the spherical
regime, for small Bo, surface tension is dominant. The large surface
tension force prevents the deformation of the bubble under inertia
and viscous forces; consequently, the shape of the bubble remains
(nearly) spherical during its rise. When increasing the Reynolds
and Bond numbers, the contribution of surface tension gradually
becomes less important as compared to inertia, and the terminal
shape of the bubble becomes ellipsoidal for moderate Reynolds
and Bond numbers (10 < Re < 500 and 10 < Bo < 100), and spher-
ical for high Reynolds and Bond numbers.

In the LBM simulations, a circular fluid bubble of density p) = 6
and initial diameter D = 60 is located one bubble diameter above
the bottom of a rectangular domain discretized with 256 x 1024
LBM cells, filled with a fluid of density p}; =6000 (hence
py/p5 = 1000); the fluid viscosity ratio is /i, = 1000. Both flu-
ids are assumed to be stationary at initial time t' = 0 and we spec-
ify a periodic boundary condition on the lateral sides of the domain

(c) t' = 3.0 (d) ¢ = 4.5

Fig. 5.10. Rayleigh-Taylor instability problem for p,/p, =3,A=0.5Re = 256.
Time evolution of the two-fluid interface for four dimensionless times
t'=t/\/L/g: (leftward panels) results of [8]; (rightward panels) present LB results.

and a bounce-back condition on the top and bottom boundaries.
Simulations are run for 3 test cases (a-c) with different Mo and
Bo values, given in Table 5.3 together with LBM and other flow
parameters, corresponding to the three flow and bubble shape re-
gimes discussed above.

Since we only solve for a two-dimensional (2D) flow, we cannot
compare our LBM simulation results to experiments. However, we
can validate results by comparing them to an independent 2D
numerical solution, such as that of Sun and Tao [33], who used a
hybrid volume-of-fluid and level set (VOSET) method to simulate
incompressible two-phase flows. In Fig. 5.8, the terminal shapes
of the bubbles and the velocity fields computed with the LBM for
the 3 cases are compared to Sun and Tao’s results. We see that both
the predicted bubble shape and flow fields agree well with the ref-
erence solution.

Fig. 5.9 further shows the computed time evolution of the bub-
ble shape during its rise, for the case of Fig. 5.8(c). During the early
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stages of the simulation, buoyancy forces are dominant and the
bubble starts rising; as it picks up speed, viscous drag gradually
changes the bubble shape, bending it downstream. Eventually,
the terminal shape of the bubble is formed when buoyancy, surface
tension, and viscous forces are balanced.

5.5. Rayleigh-Taylor instability

The classical Rayleigh-Taylor instability at the interface be-
tween two immiscible fluids, with the heavier fluid being located
above the lighter fluid, is used to demonstrate the accuracy of
our LBM model to solve more complex two-phase flows, in which
the interface becomes extremely deformed. Here, the heavier fluid
will gradually sink into the lighter fluid, which is displaced up-
wards, under the influence of gravity. The dimensionless numbers
that are important in this test case are the Atwood number and the
Reynolds number, which are defined as,

P1— P

P, ’

and Re=— @ (5.8)

where L is the width of the channel, and p, and p, are the densities
of the heavy and light fluids, respectively. We set-up this simulation
following [8] and specify no-slip boundary conditions along the top
and bottom boundaries, and periodic boundary conditions on the
lateral boundaries; gravity is chosen to satisfy /L'g’ = 0.04.
The kinematic viscosity is the same for both fluids v =v; = v,,
and the Atwood and Reynolds numbers are 0.5 and 256, respec-
tively, with accordingly p,/p, = 3,0, =6,k =0.07 and ' =0.4.
LBM simulations are carried out in a grid with 256 x 1024 lattice
nodes. Fig. 5.10 compares results of our method to the independent
2D numerical results of [8], for four selected time steps; the agree-
ment between both methods is quite good.

5.6. Breaking wave

Previous work [34,35] shows that a periodic sinusoidal wave of
large amplitude, with the initial velocities being calculated from
linear wave theory, is not stable and rapidly breaks, since the initial
velocity field is not in equilibrium with the initial wave profile, for
the fully nonlinear flow equations. To limit computational time, as
in this earlier work, the simulation is assumed to be 2D and peri-
odic in the flow direction. This characteristic makes such periodic
sinusoidal waves a convenient and efficient way of studying wave
breaking [1].

According to linear wave theory, in axes (x,z), the initial wave
velocity and interface shape are given by,

n= g cos(kx) (5.9)
_H coshk(h+2)

u= fwsiT(kh) cos(kx)
_H sinhk(h+2z) .
= fwsiT(kh) sin(kx)

where m is the wave angular frequency, k the wavenumber, and
other wave parameters are defined in Fig. 5.11.

Fig. 5.12 shows the time evolution computed with the LBM, of a
high amplitude sinusoidal wave with H/L=0.13 in depth
h/L = 0.25. The number of grid nodes used in this simulation is
512 x 256. We see that the wave is not stable and rapidly over-
turns and breaks, after traveling for about one wavelength from
initialization. Results obtained for the plunging breaker shape are
qualitatively similar to those of earlier numerical solutions [34,35].

Water

Fig. 5.11. Definition sketch for initial interface profile of a large amplitude
sinusoidal wave.

6. Conclusions and outlook

In this paper, we reported on the development, efficient GPGPU
implementation, and numerical validation, of an LBM model for
the simulation of two-phase flows of fluids with large density ratios
(up to at least p,/p, = 1000), and possibly large viscosity ratios as
well. In the model, we introduced three sets of LBM particle distribu-
tion functions to solve: (i) the “pressureless” Navier-Stokes equa-
tions in both fluids; (ii) the convection-diffusion Cahn-Hilliard
equation for the two-fluid interface motion (including surface ten-
sion effects); and (iii) a (pressure) Poisson equation for correcting
the pressureless velocity field. As a result of this homogeneous
LBM formulation, this 2D scheme could be efficiently implemented
in a GPGPU framework, owing to both the locality and simplicity of
LB operators. This LBM scheme was applied to the simulation of var-
ious analytical or numerical benchmark problems, showing both
good convergence towards reference results and efficiency in terms
of computational time. This good agreement confirmed the predic-
tion of the theoretical Chapman-Enskog expansions, of convergence
of the scheme to the above-mentioned macroscopic equations.

While validating the LBM scheme for several benchmark prob-
lems, we found a linear convergence rate of the L,-norm of numer-
ical errors to the reference solution. This is consistent with the
truncation errors of both the Chapman-Enskog expansions and
time updating schemes corresponding to the various particle dis-
tribution functions. Additionally, some of the numerical errors re-
sult from the computation of the —u(d,uy + 95u,)9p(1/p) terms in
Eq. (3.21), which are added to the standard LBM scheme (Eq. (3.9))
as an equivalent body force, to simulate the complete Navier—
Stokes equations. Since these extra forcing terms are highly vary-
ing in both space and time near the two-fluid interface, unlike
standard body forces such as gravity, additional terms appear in
the Chapman-Enskog expansion for the momentum equation, that
only linearly vanish with grid size. To obtain more accurate (and
faster converging) numerical results, these terms should not be ne-
glected, especially for high fluid density and viscosity ratios. Hence,
higher-order LBM schemes for the body force terms should be used
(e.g [36]). We are currently addressing this issue and developing
such second-order schemes, which will be reported on in a future
paper.

Note, a simple temporary solution to decrease this truncation
error would have been to increase the interface thickness W, thus
yielding smaller density gradients across the interface and hence a
smaller total body force. While the nature of the real fluid interface
is to be diffusive, however, this occurs over a very small length
scale, that possibly is below LBM grid resolution, so that the inter-
face thickness should be kept small. Additionally, the analytical
reference solutions, such as for the two phase Poiseuille flow, are
derived assuming a sharp phase interface. Hence, in order to com-
pare our LBM results to theoretical solutions, we decided to limit
the interface thickness to only 4 LBM grid cells.

A second significant model improvement that will be the object
of future work, is the derivation of multiple relaxation time (MRT)
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Fig. 5.12. Space-periodic wave breaking (Fig. 5.11). Time evolution of an overturning breaking wave with H/L = 0.13 and h/L = 0.25 (dimensionless time t' = t//L/g).

collision operators. In these, the particle distribution functions are
transformed to a well-defined moment space before doing the
relaxation step. Several different relaxation rates can thus be used
for the collision steps, unlike the single relaxation time used in the
currently implemented SRT approach. This typically leads to a
more efficient and stable numerical scheme, particularly for low
fluid viscosities and high Reynolds numbers.

Finally, once the model has been further improved, such as by
using the MRT, the GPGPU implementation will be extended to
solving three-dimensional (3D) flows. As the iterations for solving
the pressure Poisson equations may become much more computa-
tionally demanding in 3D, we are planning to explore using a
multigrid algorithm to speed up this part of the simulations.
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