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a b s t r a c t

We report on the development, implementation and validation of a new Lattice Boltzmann
method (LBM) for the numerical simulation of three-dimensional multiphase flows (here
with only two components) with both high density ratio and high Reynolds number.
This method is based in part on, but aims at achieving a higher computational efficiency
than Inamuro et al.’s model (Inamuro et al., 2004). Here, we use a LBM to solve both a
pressureless Navier–Stokes equation, in which the implementation of viscous terms is
improved, and a pressure Poisson equation (using different distribution functions and
a D3Q19 lattice scheme); additionally, we propose a new diffusive interface capturing
method, based on the Cahn–Hilliard equation, which is also solved with a LBM. To achieve
maximum efficiency, the entire model is implemented and solved on a heavily parallel
GPGPU co-processor. The proposed algorithm is applied to several test cases, such as
a splashing droplet, a rising bubble, and a braking ocean wave. In all cases, numerical
results are found to agree very well with reference data, and/or to converge with the
discretization.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the lattice Boltzmannmethod (LBM) has become an increasingly attractive, fast, and accurate, alternative
modeling method to standard continuum mechanics numerical models, for solving a variety of complex single and
multiple-fluid flow problems [1]. Besides its versatility, this is in part due to the LBM’s ability to be efficiently parallelized
for implementation on General Purpose Graphical Processor Units (GPGPUs). Specifically, it has been shown in various
publications [2–4] that LBMmethods are especially well-suited for a GPGPU implementation, due to the locality of collision
and propagation operators and the explicit nature of the method.

The LBM is based on the Boltzmann equation, which governs the dynamics of molecular probability distribution func-
tions from a microscopic point of view. In the standard LBM implementation, the Boltzmann equation is discretized on an
Eulerian mesh, a.k.a. the lattice, yielding a numerical method for computing macroscopic distribution functions on the lat-
tice, in which the macroscopic hydrodynamic quantities, such as pressure and velocity, are obtained as low-order moments
of these distribution functions [5,1]. To the limit of small time step and grid spacing, the LBM solution can be shown to
converge towards the solution of the governingmacroscopic equations of continuummechanics [6]. Hence, with the proper

∗ Corresponding author.
E-mail addresses: amir_banari@my.uri.edu (A. Banari), mail@christian-janssen.de (C.F. Janßen), grilli@oce.uri.edu (S.T. Grilli).

http://dx.doi.org/10.1016/j.camwa.2014.10.009
0898-1221/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.camwa.2014.10.009
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2014.10.009&domain=pdf
mailto:amir_banari@my.uri.edu
mailto:mail@christian-janssen.de
mailto:grilli@oce.uri.edu
http://dx.doi.org/10.1016/j.camwa.2014.10.009


1820 A. Banari et al. / Computers and Mathematics with Applications 68 (2014) 1819–1843

selection of the LBM collision operator and distribution functions, the LBM solution can be made to converge to that of the
Navier–Stokes equations (NS), including in the presence of a free surface (e.g., Janssen et al. [7]). The explicit nature of the
method and the linear formulation of advection terms in the LBM collision–propagation equation provide the numerical
scheme with several advantages, such as: (i) a relatively easy implementation (as far as uniform grids are concerned); and
(ii) the locality of numerical operators, which allows for a more efficient parallel implementation, particularly on GPGPUs,
than for more traditional finite volume of finite element algorithms. These characteristics havemade the LBM awidely used
tool for solving various complex fluid mechanics problems, such as multiphase flows, micro- and nanoscale flows, flows in
porous media, and other fluid flow types [8,9,1].

Although many studies of multiphase flows using the LBM have been reported [10,11], most of these had two significant
limitations: (i) the maximum density ratio between fluids is typically limited to 5–10, due to the triggering of local
instabilities near the fluid-phase interface for larger ratios; (ii) most of the schemes cannot simulate high Reynolds
number flows, due to instabilities resulting from the low relaxation times required for high Reynolds numbers (Re). The
effects of either one of these problems are sufficient to make simulations unstable, even in the absence of the other
problem.

The practical applications that motivated this research deal with air–sea interactions at the ocean surface in high wind
conditions, hence with turbulent (i.e., very large Re values around 108) two-fluid flows with a high density ratio (order
1000). Hence, our main goal has been to develop an efficient LBM model that overcame these two limitations.

Several LBM studies ofmultiphase flowswith a high density ratio have been proposed; Zheng et al. [12] proposed an LBM
scheme for high density ratio, but in their work they used an artificial density ratio defined as the mean of densities of two
fluid system. The deficiencies and limitations of their work have been explained in [13,14]. Two promising concepts were
proposed by Lee et al. [8] and Inamuro et al. [9]. Lee et al. [8] used an approach similar to that of He et al. [15], in which they
transformed the classical single phase discrete Boltzmann equation, from a mass–momentum to a pressure–momentum
formulation. This decreased potential instabilities that could occur due to large fluid density gradients near the phase
interface. Also, they split up the intermolecular forces for a non-ideal gas into hydrodynamic pressure, thermodynamic
pressure, and surface tension force contributions. They reported that ‘‘parasitic currents’’ at the phase interface affected
the numerical results due to the imbalance between thermodynamic pressure and surface tension forces, resulting from
truncation errors related to curvature computations. Theynearly eliminated this problembyusing a thermodynamic identity
to recast the intermolecular forcing term from a stress to a potential formulation. Furthermore, to stabilize their numerical
scheme for large density ratios, they used different discretization patterns (i.e., central, biased and mixed differences) at
different stages of the simulations. With this scheme, they were able to simulate two-phase flows with density ratio up to
1000. However, they could not achieve high Reynolds numbers, because stability issues related to low relaxation timeswere
not addressed, and in their scheme relaxation time was still a function of the Reynolds number. To eliminate the numerical
instabilities resulting from high density ratios, Inamuro et al. [9] removed the density from the advection part of the LBM
equilibrium distribution functions. This in effect eliminated the pressure gradient from the corresponding macroscopic
momentum equation, which thus became a ‘‘pressureless’’ NS equations. To retrieve the complete momentum equations
and satisfy mass conservation, they subsequently corrected the velocity field by solving a Poisson equation for the pressure
field. In theirmethod, unlike in classical LBMs, the fluid viscosity is no longer related to the relaxation time and hence results
stay more stable at high Reynolds numbers. Finally, in Inamuro et al.’s method, viscous effects are modeled by specifying
the viscous stress tensor as a body force in the LBM collision operator. Proceeding this way, however, yields additional
non-physical terms in the corresponding momentum equation, which decreases the model accuracy. In earlier work [5], we
modified Inamuro et al.’s method to solve two-dimensional (2D) two-phase flows with high density ratio, by removing the
non-physical terms from themomentumequation and formulating the phase interface tracking equations in amore rigorous
way, based on the Cahn–Hilliard equations [16]. Additionally, we efficiently implemented ourmodel for amassively parallel
solution on a GPGPU. In doing so, we solved all the governing equations for each fluid, the interface, and the Poisson equation
(required for correcting the velocity field) with a LBM scheme, thus achieving an even higher computational efficiency on
the GPGPU. Our method, however, only worked for low Reynolds number flows.

In this paper, in light of this earlier work, we develop a new three-dimensional (3D) LBM model, also based on Inamuro
et al.’s [9] approach. As before, we introduce new equilibrium distribution functions to both retrieve NS equations and
improve the formulation of surface tension and viscous forces. For the interface capturing part, as in [5], we solve the
Cahn–Hilliard equation using a LBM scheme with improved equilibrium distribution functions. In this new 3D model,
however, we formulate the latter functions to be able to achieve high Reynolds numbers in the applications without
suffering from instability problems. The resulting numerical scheme is computationally demanding, as the Poisson equation
must be (iteratively) solved for each time step of the solution, in order to obtain the velocity field correction terms. As
before, to achieve high computational efficiency, our LBM code is parallelized and implemented on a GPGPU using the
nVIDIA CUDA framework. This approach provides access to the latest generation of GPGPU boards, such as the nVIDIA
Tesla C2070 that was used in the present work (448 computing cores; 6 GB of memory; and a double precision computing
capability).

Thepaper is organized as follows.We first develop the LBMequations used to solve formultiphase flowswithhighdensity
ratios and detail their numerical implementation. The method is then validated for a series of applications, by comparing
the present numerical results to reference solutions, for the splashing of droplets on a thin fluid layer, for a rising bubble,
and for breaking ocean waves. Finally, we draws some conclusions and provide perspectives for future work.
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2. Governing equations and numerical implementation

2.1. Lattice Boltzmann methods

The numerical simulation of multiphase flow problems typically involves solving the macroscopic governing Navier–
Stokes (NS) equations within each fluid region, which directly provides hydrodynamic parameters such as velocity and
pressure. Here, as discussed in the introduction, we instead use the lattice Boltzmann method (LBM) to solve a mesoscopic
problem, whose solution converges to that of NS equations. Additionally, our proposed LBM approach is able to solve
two-fluid flows whose density ratio is nearly 1000, typically air and water.

For multiphase flows, a separate model must also be implemented for tracking the motion of interfaces between fluids,
which can be represented as sharp or diffused. Here, the latter is assumed and interfaces are tracked by the Cahn–Hilliard
advection–diffusion (AD) equation. In the latter, a phase order function is used to smoothly vary fluid properties, such as
density and viscosity, across the interface (denoted φ and varying between arbitrary values of φ1 and φ2 set for fluid 1 and
2, respectively, with here φ1 > φ2; see details in Section 2.3).

As in the two-dimensional (2D) model of Banari et al. [5], in our three-dimensional (3D) model, both the NS and AD
equationswill be solved by twodistinct LBMschemes,with separate sets of distributions functions and collision operators. In
both cases, theD3Q19 lattice discretization schemewill be used,which introduces 19discrete particle velocities in directions
ei defined as,

ei = c.

 0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 1 -1 0 0 0 0
0 0 0 1 -1 0 0 1 -1 -1 1 0 0 0 0 1 -1 1 -1
0 0 0 0 0 1 -1 0 0 0 0 1 -1 -1 1 1 -1 -1 1


(2.1)

where c = 1x/1t denotes the particle propagation speed on the lattice [17], and 1x and 1t are the lattice constant mesh
size and time step, respectively.

Details of the LBM equations and schemes are given in the following sections.

2.2. Lattice Boltzmann solution of NS equations

The macroscopic continuity and momentum (i.e., NS) equations for incompressible Newtonian fluids read (using the
index summation convention),

∂αuα = 0 (2.2)

∂tuα + ∂β


uαuβ


= −

1
ρ

∂β(p) + ∂β


µ

∂αuβ + ∂βuα


+

k
ρ

∂β


∂φ

∂xγ

∂φ

∂xγ

δαβ −
∂φ

∂xα

∂φ

∂xβ


(2.3)

where the last term in Eq. (2.3) is non-standard and represents surface tension effects at the diffuse interface between
both fluids [5] (k is related to the φ1 and φ2 and the surface tension coefficient σ12, for fluids 1 and 2, and will be defined
in Section 2.3). These equations are solved in a LBM framework using the particle distribution functions gi, whose time
evolution is governed by,

gi(x + ei1t, t + 1t) = gi(x, t) −
1t
τg

(gi(x, t) − g(eq)
i (x, t)) + 1t (Fi + Gi) (2.4)

where Fi and Gi represent effects of the viscous and gravitational volume forces, respectively, τg is a relaxation time, and geq
i

are the equilibrium distribution functions defined as,

g(eq)
i = wi


eiαu∗

α

c2s
+

(eiαu∗
α)2

2c4s
−

|u∗
|
2

2c2s
+

1
2c2s


τg −

1
2
1t


∂uβ

∂xα

+
∂uα

∂xβ


eiαeiβ


+ wi

k
ρ
Tαβeiαeiβ − vi

k
2ρ

|∇φ|
2. (2.5)

where cs = c/
√
3, is the speed of sound and,

w0 =
1
3
; w1,...,6 =

1
18

; w7,...,18 =
1
36

, (2.6)

v0 = −
2
c2

; vi =
3
c2

wi (i = 1, 2, . . . , 18), (2.7)

are LBM weights used for the D3Q19 scheme, and,

Tαβ(φ) =
9
2c4

∂φ

∂xα

∂φ

∂xβ

−
3
2c4

∂φ

∂xγ

∂φ

∂xγ

δαβ . (2.8)
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expresses surface tension effects at the two-fluid interface, together with the last term in Eq. (2.5). The last term in the curly
bracket in Eq. (2.5) removes the dependency of τg on viscosity, which makes the proposed method extremely stable for the
simulation of high Reynolds number flows. For this reason, viscous effects are added back as a volume force in the evolution
Eq. (2.4), together with the effect of the gravity force. The volume forces expressing the contributions of viscous effects and
gravity force in the LBM governing equation read,

Fi =


1 −

1t
2τg


wi


ei − u
c2s

+
ei.u
c4s

ei


.F (2.9)

Gi =


1 −

1t
2τg


wi


ei − u
c2s

+
ei.u
c4s

ei


.G (2.10)

with G the gravitational acceleration vector, and F =
1
ρ
∂β


µ(

∂uβ

∂xα
+

∂uα

∂xβ
)

the viscous stress per unit mass. Note that the

extended body force formulation of Guo et al. [18] has been used in these equations, since body forces vary in time and
space.

The presence of density in the standard equilibrium distribution functions used for solving NS equations is the main
source of instability identified in various earlier LBM solutions of multiphase flows with high density ratios [10,19]. Here, to
eliminate these instabilities, following Banari et al. [5], density was removed from the first part of the equilibrium functions
in Eq. (2.5). This will require adding a correction to the velocity field to satisfy mass conservation, as discussed next. It can
be shown by applying a Chapman–Enskog expansion that Eq. (2.4) with the equilibrium distribution functions defined in
Eq. (2.5) converges to the NS equations (Eqs. (2.3), (2.2)), without the pressure gradient term (referred to as ‘‘pressureless’’
NS equations). The details of the Chapman–Enskog expansion are shown in Appendix A. The fluid velocity corresponding to
these pressureless NS equations is found from Eq. (2.5) as,

u∗

α =

b
i=0

gieiα +
1t
2

(F + G). (2.11)

However, this velocity is not divergence free and hence needs to be corrected. Thus, similar to [9,5], the corrected velocity
u is obtained as,

u = u∗
+ 1u (2.12)

with the correction 1u defined as,

1u ≃ −1t
∇p
ρ

(2.13)

as a function of the gradient of the pressure p, which is obtained by solving the following Poisson equation,

∇.


1t ∇p

ρ


= ∇.u∗. (2.14)

Similar to [5], this equation is solved iteratively in a LBM framework. For this purpose, an additional set of particle
distribution functions hi (i = 0, . . . , 18) is introduced, whose time evolution is governed by,

hn
i (x + ei1t, t + 1t) = hn

i (x, t) −
1t
τh

(hn
i − h(eq,n)

i ) −
1
3
wi(∇.u∗(t)) (2.15)

where n denotes the n-th iteration in the Poisson equation solution (see [9] for details). In this second LBM scheme, the
equilibrium distribution functions are defined as,

h(eq,n)
i =

wipn(x, t)
ρ0c2

(2.16)

with ρ0 denoting a reference density and the relaxation time τh being related to the density by,

τh = 1t


ρ0c2

ρc2s
+

1
2


. (2.17)

Once the Eqs. (2.15)–(2.17) are solved for a given iteration n, the pressure is obtained as the zeroth order moment of the
particle distribution functions as,

pn+1
= ρ0c2

b
i=0

hn
i . (2.18)
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This scheme is solved iteratively until convergence is achieved on the pressure for a given time step. Then, the velocity
correction is calculated using Eq. (2.13).

As shown in the Chapman–Enskog expansion (Appendix A), the complete set of LBM equations (2.4)–(2.18) solves the
complete set of NS equations (2.3). Unlike the classical LBM, however, the relaxation time τg can be chosen arbitrarily,
independently from the Reynolds number, and the scheme is stable for high density ratios between fluids. It should be
pointed out that, incorporating viscous forces as volume forces creates additional spurious terms in the macroscopic NS
equation. These terms, however, scale with viscosity and hence are negligible for high Reynolds number flows [5].

2.3. Lattice Boltzmann scheme for interface capturing

In this 3D model, similar to the 2D model of Banari et al. [5], the position of the interface between the 2 fluids is tracked
using the Cahn–Hilliard advection–diffusion equation,

∂t(φ) + ∂α (φuα) = M∇
2µφ (2.19)

whereM is the mobility parameter between two components, and µφ is the chemical potential (see details below). Diffuse
interface schemes offer some advantages as compared to sharp interface schemes, for which fluid parameters such as
density and viscosity vary discontinuously across the interface. Such discontinuities often cause numerical noise, which
can potentially trigger instabilities, especially for high density and viscosity ratios. By contrast, in diffuse interface schemes,
fluid properties continuously and smoothly vary over a short distance across the interface. Additionally, for sharp interface
schemes, the accurate computation of the interface curvature and related surface tension forces is very challenging, whereas
surface tension effects are intrinsically included in diffuse interface models. Here, similar to [5], the motion of the diffusive
interface is modeled by the Cahn–Hilliard equation,

In the model, the chemical potential is defined as,

µφ =
dΨ
dφ

− k∇2φ with Ψ (φ) = (φ − φ2)
2(φ − φ1)

2 (2.20)

the bulk free-energy density. Coefficients k and β are related to the surface tension coefficient σ12 and interface thickness
W by,

W =
4

φ1 − φ2


k
2β

and σ12 =
(φ1 − φ2)

3

6


2kβ. (2.21)

A more detailed derivation and discussion of this model can be found in [5].
Eqs. (2.19)–(2.21), are solved with a LBM using a third set of probability distribution functions, fi(x, t), whose time

evolution is governed by,

fi(x + ei1t, t + 1t) = fi(x, t) −
1t
τf

(fi(x, t) − f (eq)
i (x, t)). (2.22)

The corresponding equilibrium distribution functions f (eq)
i read,

f (eq)
i = Hiφ + vi

M
τf −

1
21t

µφ + φ wi


eiαuα

c2s
+

(eiαuα)2

2c4s
−

|u|
2

2c2s


, (2.23)

with,
H0 = 1 and H1,2,...,8 = 0 (2.24)

andwi and vi defined as in Eqs. (2.6) and (2.7). The order parameter φ is computed from the first moment of the distribution
functions as,

φ =

b
i=0

fi. (2.25)

Once the order parameter computed, the spatial distribution of fluid properties (density ρ and dynamic viscosity µ) in the
entire domain, and in particular across the interface can be expressed as,

ρ(φ) =


ρ2 φ ≤ φ2

φ − φ2

φ1 − φ2
(ρ1 − ρ2) + ρ2 φ2 < φ < φ1

ρ1 φ ≥ φ1.

(2.26)

Rather than directly expressing the kinematic viscosity as a function of φ, it is defined as a function of density as,

µ(ρ) =
ρ − ρ2

ρ1 − ρ2
(µ1 − µ2) + µ2. (2.27)

This was fund by Banari et al. [5] to yield more accurate results.
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2.4. Numerical implementation and performance

The numerical algorithm for this multi-component LBMmodel is given in Algorithm 1. The entire model is implemented
for a parallel solution on aGPGPU, using the CUDA language in theNVIDIA environment. In the algorithm, after initializing all
the fluid properties and LBM variables, these are adjusted through initial iterations performed on the interface shape or the
field variables to fulfill the governing equations. Specifically, the initially sharp interface between the two fluids specified at
time step zero is smoothed out by solving the advection–diffusion equation, for the interface capturing, for a fixed number of
initial iterations (e.g., 5000), while assuming a zero velocity field and adjusting interface thickness based on Eq. (2.21). Once
physically relevant initial conditions are achieved, the main computational time loop is started. Note that, in the latter, to
increase the efficiency of the computations, the convergence of the iterative solution of the Poisson equation is only checked
every 20 iterations.

Algorithm 1 Algorithm for the LBM computation of two-fluid flow fields and phase field interface update
Set initial conditions, φ = φi, ρ = ρi, µ = µi and p = 0

Initialize particle distribution functions, i.e. set
fi(x, t0) = f eqi (x, t0), gi(x, t0) = geq

i (x, t0), hi(x, t0) = heq
i (x, t0)

Run initial iterations to improve the initial conditions for the phase field

for t < tend do
Compute fi(x, t + ∆t) using Eq. (2.22)
Compute gi(x, t + ∆t) using Eq. (2.4),
Compute φ(x, t + ∆t) and u∗(x, t + ∆t) with Eqs. (2.25) and (2.11);
ρ(x, t + ∆t) and µ(x, t + ∆t) are calculated using Eqs. (2.26) and (2.27).
For every 20 Poisson iterations:
if |

pn+1
−pn

pn | > ε then
Compute pn+1(x, t + ∆t) using Eq. (2.15)–(2.18).

end if
Compute u(x, t + ∆t) using Eq. (2.13).

end for

The performance of our new 3D LBMmultiphasemodel highly depends on the number of Poisson iterations performed at
each time step, which depends upon the problem physics that is tackled. For a given relative error threshold ε, we find that
the number of iterations required to solve the Poisson equation is initially larger, in the first few time steps of calculations,
while the field variables are still dynamically adjusting to the governing equations, but then decreases later on. After this
early phase of computations we can evaluate the model efficiency in terms of the usual metric used in LBM models, the
‘‘Million of Node Updates Per Second’’ (MNUPS). On a NVIDIA TESLA 2070 GPGPU (448 CUDA cores), the performance of the
current scheme is found to be around 20 MNUPS, using the largest possible grid that can fit in he 6 Gb RAM, with about
40% of the computational time spent for solving the Poisson equation. While this is less than for standard LBM schemes
applied to a single fluid, which may achieve over 100 MNUPS, this is still a very respectable performance considering the
higher complexity of solving large Reynolds number flows, for two fluids with a high density ratio, while tracking their 3D
interface, which may have a very complex geometry in some applications (e.g., ocean breaking waves).

3. Validation

A few increasingly complex validation/benchmarking applications of our LBM scheme are presented in the following, to
assess the accuracy and convergence of the presented multiphase model and confirm its relevance from investigating new
physics in multi-fluid lows, particularly in he context of air–sea interactions, which is the motivation for this research. All
simulations are carried out in a dimensionless framework, using non-dimensional lattice variables (here denoted by a prime)
scaled on the basis of a length scale λ, time scale τ and mass scale ϖ . Thus, for the mesh parameters, 1x′

= 1x/λ, 1t ′ =

1t/τ and c ′
= cτ/λ. It is also customary in LBM to assume that c ′

= 1, which is akin to having the mesh Courant number
be unity. If the length scale is further defined as λ = 1x, we then have 1x′

= 1 and this requires τ = 1t and 1t ′ = 1 as
well. Hence, with these definitions, in lattice variables, we always have c ′

= 1x′
= 1t ′ = 1 and c ′

s = c ′/
√
3 = 1/

√
3 [17].

Accordingly, the dimensionless relaxation times are defined as,

τ ′

g =
τg

1t
and τ ′

h =
1
2

+
ρ ′

0

ρ ′
(3.1)
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for distribution functions gi and hi, respectively, with ρ ′
= ρλ3/ϖ and ρ ′

0 = ρ0λ
3/ϖ . The non-dimensional reference

density is set to ρ ′

0 = 1, which implies that, ϖ = ρ0(1x)3 (usually, one will also assume for simplicity, ρ0 = 1 kg/m3) and
ρ ′

i = ρi, for fluid i = 1, 2. The non-dimensional surface tension coefficient is further defined as,

σ ′

12 =
σ12τ

2

ρ0λ3
=

σ12

ρ0c21x
. (3.2)

For the phase order function, we specify φ1 = 1.0 and φ2 = 0.0 in all cases, and the interface thickness is assumed to
span 4 lattice meshes, i.e.,W = 41x orW ′

= 4, which with Eq. (2.21) yields the interface lattice parameters,

β ′
=

3σ ′

12

(φ1 − φ2)4
and k′

=
6σ ′

12

(φ1 − φ2)2
, (3.3)

whereβ ′
= β/(ρ0c2) and k′

= k/(ρ0c2λ2). The error threshold for the Poisson equation is set to ε = 10−5 for all simulations.
Additionally, the non-dimensional relaxation time for solving the Cahn–Hilliard equation (2.22) is set to τ ′

f = τf /1t = 1,
and the non-dimensional mobility coefficient, M ′

= M ϖ/(τλ3) is set to M ′
= 0.001/β ′. It should be pointed out that Lee

et al. [11] suggestedM ′
= 0.02/β ′ to get themost stable results, but such a largemobility would lead to additional diffusion

in the fluid. Hence, we selected a lower mobility coefficient to prevent such an unrealistic diffusion. The relaxation time τ ′
g

is set to unity in all cases, because this is a suitable choice to ensure that LBM simulations are numerically stable. In the
following, our LBM model will be successively applied to the simulation of: (i) a droplet impacting a thin wet surface; (ii) a
bubble rising in a quiescent heavier fluid; and (iii) a breaking ocean wave.

3.1. Droplet impact on a thin wet surface

Simulating the impact of a droplet on a wet surface is important for a wide variety of engineering and industrial design
problems, such as turbine blades, ink-jet printing, and internal combustion engines. Worthington was the first to study the
droplet splash in 1908 [20]. However, more than a century later, this phenomenon is still far from being fully understood,
due to the complexity of the problem. The important parameters physical this problem are: (i) the direction of impact
(normal or oblique); (ii) the depth of the fluid layer; (iii) the viscosity and density ratios of the two fluids; (iv) whether
these are Newtonian or non-Newtonian fluids; (v) the droplet velocity at the time of impact; and (vi) the importance of
gravitational effects. Here, for simplicity, we investigate the impact of a single droplet on a thin layer of the same fluid, only
up to a short time after the impact. Earlier experimental work [21,22] shows that the impact of a droplet on a thin liquid film
may follow two patterns: (i) splashing; and (ii) spreading (deposition). In the spreading pattern, the impact velocity is low
and the droplet spreads over the wall, taking the shape of lamella, whereas in the splashing pattern, the impact velocity is
high and the lamella eventually takes the shape of a crown consisting of a thin liquid sheets with an unstable free rim at the
top, fromwhich numerous small secondary droplets are ejected (Rayleigh–Plateau instability). The important dimensionless
numbers relevant for the droplet impact problem are theWeber number and the Reynolds number, which based on, e.g., the
properties of fluid 1, read,

We =
2RU2ρ1

σ12
and Re =

2RU
ν1

(3.4)

where U is the impact velocity (velocity when the droplet touches the fluid film), ρ1 and ν1 are the density and kinematic
viscosity of fluid 1, respectively, R is the initial radius of the droplet and σ12 is the surface tension for the two fluids. Dimen-
sional analysis shows that the gravity force is negligible in the droplet impact and therefore this term (Gi) is not kept in the
LBM equations for this application.

We simulate the fall of a 3D droplet made of fluid 1 in a second lighter fluid (fluid 2), concluded by the droplet impact on
a thin layer of fluid 1. Fig. 3.1 shows the computed time evolution of the droplet impact where, owing to symmetry in the x
direction, the solution in only half of the domain was calculated. The grid size is 128× 256× 64 in the x, y, and z directions,
respectively. The density ratio is ρ1/ρ2 = 1000 and the viscosity ratio is µ1/µ2 = 100 (such as for water (1) and air (2)).
The Reynolds number is Re = 200, with U = 0.011x/1t and the Weber number is We = 8000.

Earlier work [21,22] indicates that the droplet spreading radius r should vary with time as
√
2RUt during the splashing

process (power law). To confirm this, the dimensionless spreading factor (r/2R) is plotted versus the non-dimensional time
(Ut/2R) in Fig. 3.2. Our numerical results are found to follow the power law, except for a short time after the impact, which
could result from the impulsive start of the collision, which does not occur in experiments.

A further validation of our numerical results is performed for the impact of a droplet on a thin layer of fluid by comparing
with Lee et al.’s [8] numerical results, which were 2D. In our 3D model, a grid with 1024 × 512 × 2 points is used in the
numerical simulations, where the 2 points across the width are aimed at representing 2D conditions. The domain set-up
is shown in Fig. 3.3; symmetry boundary conditions are specified on the leftward and rightward boundaries, and no-slip
boundary conditions on the top and bottom walls; periodic boundary conditions are specified along the third dimension.
As in Lee et al., the density ratio is set to ρ1/ρ2 = 1000 and the viscosity ratio is adjusted to µ1/µ2 = 40. The Weber
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(a) Ut/2R = 0.0. (b) Ut/2R = 0.5.

(c) Ut/2R = 1.125. (d) Ut/2R = 1.8.

Fig. 3.1. Time evolution of the 3D simulation of a droplet impacting a thin layer of fluid, at four different times t , for ρ1/ρ2 = 1000, µ1/µ2 = 100, Re =

200 and We = 8000.

Fig. 3.2. Spread factor r/2R as a function of Ut/2R in the 3D simulation of a droplet impacting a thin layer of fluid, for ρ1/ρ2 = 1000, µ1/µ2 = 100, Re =

200 and We = 8000. The straight line corresponds to the power law r =
√
2UtR.

number is set to We = 8000, the droplet diameter is R = 601x, the layer thickness is such that H/R = 0.25, and the
impact velocity is U = 0.0051x/1t . Four different simulations were performed for four different Reynolds numbers,
Re = 20, 100, 500, 2000.

Figs. 3.4–3.6 show the computed time evolution, for a fewnon-dimensional timesUt/2R values, of the droplet shape after
impact in the first three cases, compared to Lee et al.’s [8] results. Overall, we observe a very good agreement for all three
configurations with Lee et al.’s results. In Fig. 3.4, the Reynolds number is low and deposition patterns occur. Viscous forces
dominate the initial phase of the impact and the droplet gently spreads on the surface without splashing at all. Immediately
after impact, a certain amount of the fluid 1 is trapped within fluid 2, and small bubbles are formed, due to effects of surface
tension. The smaller bubbles diffuse into fluid 2 and eventually disappear, after they become smaller than the grid resolution,
while the larger ones (Fig. 3.4(e)/(f)) persist and advect with the flow.

In Figs. 3.5 and 3.6 the impact process occurs for higher Reynolds numbers Re = 100, 500, for which droplet inertia is
sufficient to overcome the viscous forces, causing the creation of a finger of fluid 1 into fluid 2. This finger is not stable
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Fig. 3.3. Domain and parameter definition for the quasi-2D simulation of a droplet impacting a thin fluid layer, following Lee et al. [8].

Fig. 3.4. Time evolution in quasi-2D simulations of a droplet impacting a thin fluid film for Ut/2R = 0.0, 0.1, 0.2, 0.4, 0.8, 1.6. Re = 20,We = 8000,
ρ1/ρ2 = 1000 and ν1/ν2 = 40; top: Lee et al.’s results [8], bottom: current LBM model.

and eventually breaks up into smaller droplets. This process, also referred to as Rayleigh–Plateau instability, can be clearly
observed in Figs. 3.5 and 3.6(f), whereas this instability was not observed in the work of Lee et al.

Finally, results for a droplet impacting a fluid layer at an even higher Reynolds number, Re = 2000, are shown in Fig. 3.7.
Note that the method of Lee et al. was not able to go beyond Re = 100 (based on the grid size they used), because of the
dependence of relaxation time on viscosity, which has been removed in the current work.

3.2. Rising bubble in a quiescent fluid

Here, we model the dynamic behavior of a 3D bubble of a light fluid (ρ2, ν2) rising in a heavier fluid (ρ1, ν1), due to
the buoyancy force. Although the LBM simulation setup in terms of grid initialization and boundary conditions is
straightforward, the flow structure around the bubble is quite complex and governed by competing effects of viscos-
ity, buoyancy, and surface tension forces. Several experimental studies have been conducted to measure the rise and
deformation of single bubbles in a quiescent fluid [23,24]. These showed that the bubble shape greatly varies accord-
ing to various flow regimes defined by non-dimensional parameters, such as the Bond number Bo (also known as
Eotvos number, the ratio of gravity to surface tension forces), the Reynolds number Re, and the Morton number Mo,
defined as,

Bo =
gD2

σ12
(ρ1 − ρ2); Mo =

g µ4
1

σ 3
12ρ1


1 −

ρ2

ρ1


; Re =

ρ1UD
µ1

(3.5)

with the bubble terminal velocityU and diameterD, the gravitational acceleration g , and the dynamic viscosity of the heavier
fluid µ1. The terminal shapes of individual rising bubbles were experimentally measured for a broad range of Reynolds and
Bond numbers [23], and can be categorized into three shape regimes: (a) spherical, (b) ellipsoidal, (c) spherical cap. In the
spherical regime, for small Bo values, surface tension is dominant and prevents the deformation of the bubble to occur under
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Fig. 3.5. Time evolution in quasi-2D simulations of a droplet impacting a thin fluid film for Ut/2R = 0.0, 0.1, 0.2, 0.4, 0.8, 1.6. Re = 100, We =

8000, ρ1/ρ2 = 1000 and ν1/ν2 = 40; top: Lee et al.’s results [8], bottom: current LBM model.

Fig. 3.6. Time evolution in quasi-2D simulations of a droplet impacting a thin fluid film for Ut/2R = 0.0, 0.1, 0.2, 0.4, 0.8, 1.6. Re = 500,We = 8000,
ρ1/ρ2 = 1000 and ν1/ν2 = 40; top: Lee et al.’s results [8], bottom: current LBM model.

inertia and viscous forces; consequently, the shape of the bubble remains (almost) spherical during its rise.When increasing
the Reynolds and Bond numbers, the contribution of surface tension gradually becomes less important as compared to in-
ertia, and the terminal shape of the bubble becomes ellipsoidal for moderate Reynolds and Bond numbers (10 < Re < 500
and 10 < Bo < 100), and spherical cap for high Reynolds and Bond numbers.

In our 3D LBM simulations, a spherical bubble of density ρ ′

2 = 1 and initial diameter D′

0 = 32 is placed at one bubble
diameter above the bottom of a domain of size 4D′

× 4D′
× 8D′, filled with a fluid of density ρ ′

1 = 1000 (hence the
ρ ′

1/ρ
′

2 = 1000); the fluid viscosity ratio isµ′

1/µ
′

2 = 100, which approximates the air–water case. Amaya et al. [25] reported
that wall effects are negligible when a domain size of 4D′ or larger in the radial direction is used. Also, the vertical domain
size has to be large enough to allow the bubble to adjust to its final steady shape during its rise. The required distance of this
to occur is different for each case and depends on the Reynolds number, which directly controls the bubble rising velocity.
For cases up to Re ∼ 100, a domain of height 8D′ was found to be sufficient.

Initially, both fluids are stationary; free slip boundary conditions are prescribed on the lateral sides of the domain and
a bounce-back condition on the top and bottom boundaries. Simulations are run for four distinct test cases (A–D) with



A. Banari et al. / Computers and Mathematics with Applications 68 (2014) 1819–1843 1829

(a) Ut/2R = 0.0. (b) Ut/2R = 0.1.

(c) Ut/2R = 0.2. (d) Ut/2R = 0.4.

(e) Ut/2R = 0.8. (f) Ut/2R = 1.6.

(g) Ut/2R = 2.4.

Fig. 3.7. Time evolution in quasi-2D simulations of a droplet impacting a thin fluid film, for Re = 2000,We = 8000, ρ1/ρ2 = 1000 and ν1/ν2 = 40,
using current LBM model.

Table 3.1
Rise of a 3D bubble of a light fluid 2 in a heavy fluid 1 (ρ ′

1/ρ
′

2 = 1000;µ′

1/µ
′

2 = 100). Comparison of terminal Reynolds number between experiments [24]
and 3D-LBM numerical simulations.

Test case Mo Bo Simulated Re Experimental Re Relative error on Re (%)

A 711 17.7 0.189 0.232 18.53
B 8.2 × 10−4 32.2 55.1 54.6 1.26
C 266 243 7.51 7.77 3.34
D 43.1 339 17.74 18.3 3.06

differentMo and Bo values. In Table 3.1, the terminal Reynolds number is comparedwith experimental data and a reasonable
agreement between numerical and experimental results can be observed, but there are larger discrepancies for case A.
Similar larger errors for this case were reported in the work of Hua et al. [26], which they interpreted as being due the
extremely low rising velocity leading to higher relative errors.

The computed terminal shapes of the bubble for cases (A)–(D) are compared in Table 3.2 to experimental results [24] and
to independent numerical results [26]. We see that our computed shapes agree very well with the reference data and that
spherical, ellipsoidal, and spherical caps have been formed depending on the case.

Fig. 3.8 further shows the computed time evolution of the bubble shape during its rise, for case (C). During the early
stages of the simulation, buoyancy forces are dominant and accelerate the bubble. As the bubble picks up speed, viscous
drag gradually changes its shape, bending it downstream. Eventually, the terminal shape of the bubble is formed when
buoyancy, surface tension, and viscous force contributions are balanced.

Finally, in Fig. 3.9, the computed bubble rising velocity as a function of time is compared to the numerical results of Hua
et al. [26]. The agreement between both sets of numerical results is very good.

3.3. Breaking wave

In this last application, we solve the demanding test case of a 3D breaking ocean wave at an air–water interface. Earlier
numerical simulations based on fully nonlinear potential flow theory [27,28] showed that a periodic sinusoidal wave of
large amplitude, with initial velocities specified from linear wave theory, is not stable in a fully nonlinear model and rapidly
overturns and breaks, when used as an initial condition. This type of initialization has thus often been used to rapidly create
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(a) t∗ = 0. (b) t∗ = 4. (c) t∗ = 5.

(d) t∗ = 8. (e) t∗ = 8.8. (f) t∗ = 10.4.

Fig. 3.8. Time evolution of a rising bubble of fluid 2 into fluid 1, for case (C), with Et = 243,Mo = 266, t∗ =
√
g/Dt, ρ ′

1/ρ
′

2 = 1000, and µ′

1/µ
′

2 = 100.

Fig. 3.9. Rising bubble of fluid 2 into fluid 1: non-dimensional rising velocity U∗
= u/

√
gD as a function of non-dimensional time t∗ =

√
g/Dt: 3D LBM

results (•); experimental results of [26] (—).
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Table 3.2
Comparison of the computed terminal shapes of a rising bubble of fluid 2 into fluid 1, with the experimental results of [24] and the numerical simulations
of Hua et al. [26], for ρ ′

1/ρ
′

2 = 1000 and µ′

1/µ
′

2 = 100.

Test case Current results Experimental results J. Hua et al. results

(A)

Bo = 17.7

Mo = 711

(B)

Bo = 32.2

Mo = 8.2 × 10−4

(C)

Bo = 243

Mo = 266

(D)

Bo = 339

Mo = 43

a breaking wave, when validating both single or multiple fluid NS models [29]. To limit computational time, simulations
typically assume spatial periodicity in the main flow direction. Hence, this problem is still quasi-2D in the vertical plane,
although 3D turbulent flow structures appear in the transverse direction to that of wave propagation.

The initial velocity field and interface shape for a 2D linear wave of height H in depth h, specified in a 3D domain, are
given by [29] (with z denoting the vertical direction and z = 0 at the undisturbed air–water interface),

η =
H
2

cos(kx) (3.6)

u =
H
2

σ
cosh k(h + z)
sinh(kh∗)

cos(kx)

w =
H
2

σ
sinh k(h + z)
sinh(kh∗)

sin(kx)

v = 0

where σ = 2π/T is the wave angular frequency, k = 2π/L is the wave number (Fig. 3.10), andh∗
= h + ϵ, where ϵ(y) =

0.08y is a small linear perturbation of the seafloor geometry, denotes a perturbed depth used in the model for triggering
unsymmetrical flows and vortices in the transverse direction to the main flow, thus ensuring that turbulent structures will
rapidly develop at high Reynolds numbers [29].

Because the finest LBMmesh resolution (i.e., largest grid) achievable on a single GPGPU in this applicationwill not be fine
enough to capture all the turbulent scales, as in [29],weuse a Large Eddy Simulation (LES)model as a subgrid scale turbulence
model. In LES, a spatial filter is applied to the velocity field, which should be fine enough that the largest turbulent structures
of the flow are not filtered out [4]; in LBM-LES, 1x is typically used as the filter length (see Krafczyk et al. [30] for details). In
the Smagorinsky LES model, a turbulent eddy viscosity µT is added to the molecular viscosity µ for calculating total forces
(viscous and turbulent sub-scale forces) in Eq. (2.9), which is defined as,

µT = ρ(Cs1x)2∥S∥ (3.7)
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Fig. 3.10. Definition sketch in the vertical plane (x, z) for the initial interface profile of a large amplitude sinusoidal wave (left), used to initialize the
3D-LBM domain (right).

with Cs the Smagorinsky constant and S the strain rate tensor being defined by,

Sαβ =
1
2


∂uα

∂xβ

+
∂uβ

∂xα


. (3.8)

Since in our LBM scheme, spatial derivatives of the velocity field have already been calculated using Eq. (2.5), there is no
need to recalculate them for computing the strain rate tensor, which makes using a LES quite efficient in our model.

The key dimensionless flow parameters for the periodic breaking wave problem are the Reynolds number, Re =

ρwcL/µw , the density ratio, ρw/ρa, and the viscosity ratio, µw/µa (where w and a denote water and air respectively).
Dimensionless wave parameters are the steepness H/L, which quantifies wave nonlinearity, and the relative depth, h/L,
which quantifies dispersive effects. In the following application, the fluids characteristics are set to the properties of air and
fresh water, i.e., µw/µa = 55, ρw/ρa = 855 with ρw = 1000 kg/m3 and µw = 10−3 N s/m2.

Lubin et al. [29] solved this problemwith a 3D-NS-VOFmodel, using a LES subgrid scheme, in a 250×25×75 grid in the
x, y, and z directions (z denoting the vertical direction), using a uniform grid size of 0.0004 m. In the following we compare
results of our 3D-LBM model to the latter study, while assessing their sensitivity to grid resolution. As in Lubin et al., we
specify as initial condition a steep sinusoidal wave, with H/L = 0.13 and h/L = 0.13 (i.e., an intermediate depth wave).
Based on linear wave theory, the wave celerity is c = 0.324 m/s for a wave period of T = 0.308 s and a wavelength L = 0.1
m, which results in a Reynolds number Re = 32, 400. Note that because of the short wavelength, surface tension effects are
expected to play a significant role in the interface dynamics. In the LBM model, free slip boundary conditions are specified
on the top and bottom boundaries of the computational domain, and periodic boundary conditions are applied on the four
vertical sides (Fig. 3.10).

We first solve the problem in a 256 × 128 × 64 LBM grid (i.e., with N = 2.1 million grid cells; referred to as ‘‘grid
1’’), which has a resolution in the vertical plane similar to that of Lubin et al. and is wide enough in the lateral direction to
ensure fully developed 3D turbulent flow structures. Then, to improve the resolution of breaker jets and better match Lubin
et al.’s results in the vertical plane, we use a 512 × 64 × 128 LBM grid (i.e., with N = 4.2 million grid cells; referred to as
‘‘grid 2’’). This larger grid, however, is narrower (one-eighth of the length compared to half for grid 1) because of memory
limitations on a single GPGPU (owing to the 3 sets of LBM distribution functions and related physical fields that need to
be discretized), which will prevent fully turbulent structures form developing in the transverse direction. A convergence
study of breaker shape to grid resolution, while maintaining a 4:1 ratio of horizontal to vertical grid size, finally shows that
a 400×100 resolution in the vertical plane is sufficient to obtain converged breaker shapes. This allows increasing thewidth
to a quarter the length, yielding 400 × 100 × 100 cells (4 million), for a grid referred to as grid 3.

Fig. 3.11 first shows the time evolution of the free surface profile, before breaking occurs, computed in the middle lateral
cross section (y = 0; Fig. 3.10), at four times t/T = 0.17, 0.3, 0.38 and 0.46, in our 3D model for both grids 1 and 2,
compared to Lubin et al.’s results [29]. As expected, the wave quickly overturns and develops a plunging jet. The agreement
of our results with Lubin et al.’s results is good for both grids, although the shape of the plunging jet appears to be in better
agreement in the finest resolution grid 2.

To assess the convergence of LBM results with grid resolution, in Fig. 3.12, we compare results ofLBM simulations up
to impact of the breaker jet on the free surface, for 6 different grid resolutions, of which the first one is identical to grid
2 and the second one has the same resolution in the vertical plane as grid 3: (1) 512 × 64 × 128 (N = 4.2 million);
(2) 400 × 50 × 100 (N = 2 million); (3) 320 × 40 × 80 (N = 1 million); (4) 256 × 32 × 64 (N = 0.5 million);
(5) 200 × 25 × 50 (N = 0.25 million); and (6) 128 × 16 × 32 (N = 0.066 million). All these grids have a mesh ratio
of 8:1:2, in order to study the convergence of the numerical scheme in similar conditions (i.e., their width is one-eighth
their length and their height one quarter their length). Fig. 3.12 compares the computed air–water interface geometry, in
the main-cross-section (y = 0) of the 3D-LBM domain, for clarity, only for four different resolutions (1, 2, 4 and 6). While
large differences are observed between the last 3 coarsest resolutions 2, 4 and 6, these differences become quite small
between the two finest resolutions 1 and 2. Hence, both grid 2 and 3, seem to ensure convergence on the breaker shape in
the vertical plane. To quantify convergence of the simulations, in the absence of detailed reference data, we compute the L2
relative error norm of the air–water interface location between results in the 5 coarsest discretizations (2–6) and those in
the finest one (1; grid 2). This error norm is plotted in Fig. 3.13 as a function of the resolution, expressed as the number of
grid cells in the x direction. Convergence clearly occurs and we see that it is approximately second-order in the log–log plot.
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Fig. 3.11. Time evolution of a 3D breaking sinusoidal wave with initial characteristics: H/L = 0.13 and h/L = 0.13, Re = 32, 400. Comparison of pre-
breaking surface profiles in the main vertical cross-section (y = 0; Fig. 3.10), at t/T = 0.17, 0.3, 0.38, and 0.46 (top to bottom) in: (left, right) 3D-LBM
results in grids 1 and 2, respectively; (middle) Lubin et al.’s 3D-NS-VOF results [29].

(a) t = 0.38T . (b) t = 0.46T .

(c) t = 0.48T .

Fig. 3.12. Convergence study for the case of Fig. 3.11. Geometry of the air–water interface in the main cross-section (y = 0) for four different resolutions
in a grid with dimension ratios 8:4:1 and number of cells in the x direction: (1; blue; grid 2) 512; (2; red) 400; (4; black) 256; and (6; green) 128. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3.13. Case of Fig. 3.12. L2 relative error norm, between surface profiles computed for resolution (1) and those for resolutions (2–6), as a function of
resolution in the x direction.

Fig. 3.14. Case of Fig. 3.11. Time evolution of a 3D overturning breaking wave in the middle lateral cross section (y = 0; Fig. 3.10). Comparison of details
of splash-up generation in the main vertical cross-section (y = 0; Fig. 3.10) at t/T = 0.48, 0.5, 0.52, 0.56, 0.64, 0.68 (top to bottom) in: (left, right) 3D-LBM
results in grids 1 and 2, respectively; (middle) Lubin et al.’s 3D-NS-VOF results [29].

(Note, however, while the proof of convergence is conclusive in such a grid-to-grid comparison, the rate of convergence is
only indicative as one would have to use an independent converged solution as a reference to accurately calculate it.)

Fig. 3.14 shows details of the splash-up generation after the plunging jet impacts the water surface. Our results for grid 1
and 2 are again compared with those reported by Lubin et al. [29], at 6 different times. (Note that no times were provided in
Lubin et al.’s results, sowe tried to find similar phases in our computations to perform this qualitative comparison.) In all sets
of results, after the initial jet impact, a secondary rebound jet occurs while an air mattress is enclosed in the water. Later on,
the rebound jet also impacts the free surface, enclosing an even larger airmattress in the process.While there are differences
in the details of the computed free surface shapes, which can be attributed to the different free surface tracking/capturing
methods, surface tension force computation, and discretization, overall, our results in both grids are in good qualitative
agreement with those of Lubin et al. As for the pre-breaking results, however, we find that the agreement is much better for
grid 2 results. The converged shape of the initial plunging jet was also much better modeled in this grid (Fig. 3.12) and, as
we see, this applies to the subsequent splash-up and flow structures in the vertical plane during post-breaking processes.
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(a) t/T = 0.38. (b) t/T = 0.46.

(c) t/T = 0.48. (d) t/T = 0.56.

(e) t/T = 0.64. (f) t/T = 0.68.

(g) t/T = 0.85. (h) t/T = 1.

Fig. 3.15. Time evolution of a 3D periodic breaking wave for the same case as in Fig. 3.11, for grid 1 with 256 × 128 × 64 cells in the x, y and z directions.

Finally, Figs. 3.15, 3.16, and 3.17 show snapshots of 3D-LBM results computed in grids 1, 2 and 3, at eight different times,
the first two being the same (t/T = 0.38 and 0.46) as for the overturning free surface profiles shown in Fig. 3.11, while the
last six (t/T = 0.48 to t/T = 1) illustrating the wave breaking and post-breaking decay processes up to one wave period,
with the 3rd–6th time levels matching some of the times shown in Fig. 3.14. Overall, as expected from previous results in
vertical cross-sections, both thewave and breaking processes aremuch better simulated (and resolved) in grids 2 and 3 than
in grid 1. However, as could also have been expected from the much larger width of grid 1 (four times that of grid 2 and
twice that of grid 3), for the same length to height ratio 4:1 in all grids, the flow structure becomes much more 3D in grid 1,
with larger turbulent structures appearing in the transverse direction towards the end of the simulations. While almost no
turbulent structures appear in grid 2, however, grid 3 seems to offer a reasonable compromise, with a goodmuch of breaker
shapes in the vertical plane and some turbulent structures in the transverse direction.

More specifically, in the first two snapshots, while the wave is not broken yet and hence is still fairly 2D in all grids, one
can already see in grid 1 the appearance of lateral flow perturbations triggered by the perturbation in seafloor bathymetry.
Later on, at t/T = 0.48, 0.56 and 0.64, shortly after the plunging jet has impacted the free surface, as in Fig. 3.14, a sizable
splash up jet is generated in all 3 grids, but much more so in grids 2 and 3, which creates a secondary rebound jet, with
the enclosure by the plunging water jet of a cylindrical air cushion. At this stage, the flow is still fairly laterally uniform,
although some transverse instabilities are clearly starting to grow, particularly in grid 1. Later on, in the last three snapshots,
the rebound jet impacts the free surface and the wave gradually dissipates. In grids 1 and 3, the flow at this stage clearly
becomes turbulent and 3D, with large lateral variations. We also see sizable pockets of air enclosed in the water at a few
locations. In grid 2, however, lateral turbulence does not significantly develop and, likely as a result of this quieter dynamics,



1836 A. Banari et al. / Computers and Mathematics with Applications 68 (2014) 1819–1843

(a) t/T = 0.38. (b) t/T = 0.46.

(c) t/T = 0.48. (d) t/T = 0.56.

(e) t/T = 0.64. (f) t/T = 0.68.

(g) t/T = 0.85. (h) t/T = 1.

Fig. 3.16. Time evolution of a 3D periodic breaking wave for the same case as in Fig. 3.11, for grid 2 with 512 × 64 × 128, in the x, y and z directions.

the wave dissipates more slowly than in grids 1 and 3. Clearly, one would need to use a finer lateral discretization in grid 2,
to achieve a fully realistic simulation, with sufficient turbulence.

As indicated above, we find that grid 3 results offer a good comprise between the better resolved breakers of grid 2 and
the more intense lateral turbulence of grid 1. Nevertheless, all these simulations still lack the stronger splash up seen in
many observations of breaking ocean waves, with many water parcels being ejected in the air and widespread air bubble
generation in the water. The likeliest reason for this is that our 3D-LBM discretization is not fine enough to properly resolve
such phenomena, due to the memory/grid size limitation when using a single GPGPU. This could only be improved with a
significant increase in grid size, which would require implementing our numerical code on a large GPUGPU–CPU cluster,
where one could perhaps achieve on the order of 100 million grid cells (i.e., an improvement in resolution of nearly a factor
of 3 in each direction, as compared to grid 2). In view of the maximum of 4.2 million cells we were able to achieve here
on a single GPGPU, this would require using on the order of 25 GPGPUs. As an indication, recent NS-VOF two-fluid flow
simulations by Lubin and Glockner [31], implemented on thousands of CPUs, have shown that very fine flow structures can
be resolved in breaking wave simulations, when using tens of millions of grid cells. This extension of our 3D-LBM model to
an implementation on large GPGPU clusters, which is hardware already available, will be left out for future work.

4. Conclusions and outlook

In this paper, we presented the development, numerical implementation and validation of an efficient 3D Lattice
Boltzmann model (LBM) for the simulation of multiple-fluid flows with high density ratios, at high Reynolds number. This
model both extends our earlier 2D model [5] to 3D but, importantly, to high Reynolds number flows. While some of the
principles for our method were first proposed by Inamuro et al. [9], we improved the method by using: (i) a 3D D3Q19
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(a) t/T = 0.38. (b) t/T = 0.46.

(c) t/T = 0.48. (d) t/T = 0.56.

(e) t/T = 0.64. (f) t/T = 0.68.

(g) t/T = 0.85. (h) t/T = 1.

Fig. 3.17. Time evolution of a 3D periodic breaking wave for the same case as in Fig. 3.11, for grid 3 with 400 × 100 × 100, in the x, y and z directions.

lattice operator; (ii) a more accurate and rigorous formulation of body forces and surface tension terms; and (iii) a new
interface capturing method based on solving a convection–diffusion Cahn–Hilliard equation. Additionally, our model relies
entirely on the LBM, using three different sets of LBMparticle distribution functions for solving (pressureless) Navier–Stokes
(NS) equations, a Poisson equation for the pressure field in order to correct the velocity field to satisfy mass conservation,
and the Cahn–Hilliard equation. This complete LBM approach makes our numerical scheme particularly well-suited, and
thus efficient, for an implementation on heavily parallel GPGPU boards (NVIDIA TESLA 2070). Here, with an implementation
in double precision on a single GPGPU, we could achieve up to 20MNUPS for discretizations of up to 4.2 million grid cells in
the breaking wave application. The latter simulation was run in a 512× 64× 128 grid for one wave period, or 101136 time
steps, yielding a total computational time of about 6 h. By contrast, the simulation run in the 400×100×100 grid (4million
nodes) had a larger time step and only took 3.5 h to compute one wave period. Inamuro et al. reported that the simulation
of two droplets collision with a coarse grid 192 × 48 × 96 takes about 48 h on an AMD AthlonXP 1800+ PC machine (the
Poisson equation also is solved in their method). This computational time comparison shows the capability of the proposed
algorithm with the GPU calculation.

Lee et al. did not reported the computational time of their simulations and Unfortunately we are not able to make the
efficiency comparison of these two methods. Although in their work they do not solve extra Poisson equation, but they still
need to calculate the different types of finite difference (central, biased, mixed) for different variables, which is computa-
tionally expensive, to make their simulation stable. Considering that in our work the Poisson equation calculation takes 40%
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of the total computing time and we are not limited in low Reynolds number flows, we can use the proposed algorithm as a
efficient numerical scheme for simulating multiphase flows with high Reynolds number and high density ratios.

To achieve higher NUPS values, the Poisson equation solution should be further accelerated, since it must be performed
at each time step and represents a large fraction of the computing time. This could be achieved by using a multigrid-type
method, which would require smaller numbers of iterations to compute the velocity field correction terms.

The new 3D LBMmodel was applied to the simulation of various benchmark problems, for which numerical results were
found to agreewell with the reference data inmost cases; convergence of numerical results with grid size was also assessed,
for the demanding application of a breaking oceanwave. This latter case, however, revealed the limitations of the present sin-
gle GPGPU implementation of themodel, due tomaximumgrid size/resolution that can be achieved. This limitation could be
overcome by implementing the model on multiple GPGPUs, by way of a parallel MPI algorithm. Except for a small overhead
in computational time, due to communication and data exchange between various GPGPUs and the CPUs, one would ex-
pect solving problems in larger grids in nearly the same total time on a GPGPU cluster. For instance, the last application for a
breakingwave could be solved in a grid 25 times larger (110million nodes; improvement by a factor of nearly 3 in resolution)
using 25 GPGPUs, perhaps in as little as 7 h of computations (assuming a 15% overhead). This will be left out for furtherwork.

We will also note that the convergence and comparison study made for the 3D breaking wave application seemed to
indicate that a finer discretization (perhaps by a factor of 1.5–2 in each direction) is required in the 3D-LBM, to produce
results comparable to those of the 3D-NS-VOF model of Lubin et al. [29]. Indeed, in their work, they used a 250 × 25 × 75
grid while our grids 2 and 3 that matched their results in the vertical plane were 512 × 64 × 128 and 400 × 100 × 100,
respectively. Such differences in grid size, however, are to be expected. While they directly discretize and solve the NS
equations, we solve a set of discrete Boltzmann equations, whose solution converges to that of the NS equation. In doing so,
we discretize the LBM distribution functions and not the physical fields (i.e., velocity and pressure). Nevertheless, we expect
that the present efficient GPGPU implementation of our 3D-LBMmodel, should achieve much smaller computational times,
even with larger discretizations, for similar accuracy.

On the basis of the present results, we are confident that the multi-GPGPU implementation in combination with an ac-
celeration of the pressure Poisson equation, would make our numerical model a powerful tool for simulating complex 3D
two-fluid flows, in order to explore new physics or solving complex engineering problems, with high fluid density ratios at
a high Reynolds number.
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Appendix A. Chapman–Enskog expansion to retrieve the Navier–Stokes equation

Here we apply Chapman–Enskog expansion [6] to verify that the mesoscopic evolution Eq. (2.4), with the equilibrium
distribution functions defined in Eqs. (2.5)–(2.8), converges to the macroscopic ‘‘pressureless’’ NS equations of motion
equation (2.3).

It should be mentioned that the below properties of the D3Q19 lattice scheme have been used in deriving the equations
in this section,

b
i=0

wi = 1 (A.1)

b
i=0

wieiα = 0 (A.2)

b
i=0

wieiαeiβ = c2s δαβ (A.3)

b
i=0

wieiαeiβeiγ = 0 (A.4)

b
i=0

wieiαeiβeiγ eiζ = c4s (δαβδγ ζ + δαγ δβζ + δαζ δγ β) (A.5)

b
i=0

wieiαeiβeiγ eiζ eiγ = 0. (A.6)
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The zeroth-, first-, second- and third-order moments of equilibrium distribution functions Eq. (2.5) are calculated as,

b
i=0

g(eq)
i =

b
i=0

gi = 0, (A.7)

b
i=0

g(eq)
i eiα =

b
i=0

gieiα = u∗

α, (A.8)

b
i=0

g(eq)
i eiαeiβ = Π

(0)
αβ =


k
ρ

∂φ

∂xγ

∂φ

∂xγ


δαβ −

k
ρ

∂φ

∂xα

∂φ

∂xβ

+ u∗

αu
∗

β + c2s


τ ∗

g −
1
2


∂uα

∂xβ

+
∂uβ

∂xα


1t (A.9)

b
i=0

gieiαeiβeiγ = c2s

δαβu∗

γ + δαγ u∗

β + δγ βu∗

α


. (A.10)

The Taylor series expansion in space and time of the left hand side of LB equation (2.4) yields,

gi(x + eiα1t, t + 1t) = gi(x, t) + ϵ (∂t + eiα∂α) gi(x, t) +
1
2
ϵ2 (∂t + eiα∂α)


∂t + eiβ∂β


gi(x, t) + O


ϵ3 (A.11)

with the expansion parameter ϵ = 1t being small compared to the macroscopic time scales. Then, we expand the particle
distribution function gi(x, t) as,

gi = g(eq)
i + ϵg(1)

i + O

ϵ2 , (A.12)

with the following multiple-scale expansion for the time derivative,

∂t = ∂t0 + ϵ∂t1 + O

ϵ2 , (A.13)

where t0 denotes the ‘‘slow’’ (macroscopic) time and t1 is the ‘‘fast’’ time.
Substituting the latter two equations into Eq. (A.11) and sorting out terms in orders of ϵ, we obtain,

ϵ(∂t0 + eiα∂α)g(eq)
i + ϵ2


∂t1g

(eq)
i + (∂t0 + eiα∂α)g(1)

i +
1
2

(∂t0 + eiα∂α)(∂t0 + eiβ∂β)g(eq)
i


+ O


ϵ3

= −
1
τ ∗
g


ϵg(1)

i + ϵ2g(2)
i


+ O


ϵ3 (A.14)

where gi(x, t) has been subtracted and τ ∗
g = τg/1t . Matching terms of 1st and 2nd orders in ϵ in this equation yields,

(∂t0 + eiα∂α)g(eq)
i = −

1
τ ∗
g
g(1)
i (A.15)

∂t1g
(eq)
i + (∂t0 + eiα∂α)g(1)

i +
1
2
(∂t0 + eiα∂α)(∂t0 + eiβ∂β)g(eq)

i = −
1
τ ∗
g
g(2)
i . (A.16)

respectively. Substituting Eq. (A.15) into Eq. (A.16) yields,

∂t1g
(eq)
i +

2τ ∗
g − 1

2τ ∗
g


∂t0 + eiα∂α


g(1)
i = −

1
τ ∗
g
g(2)
i . (A.17)

According to the definitions of the zeroth- and first-order moments of gi in Eqs. (A.7) and (A.8), we get for k = 1, 2, . . . ,

b
i=0

g(k)
i = 0 and

b
i=0

g(k)
i eiα = 0. (A.18)

Now taking zeroth order moment of Eq. (A.15),

b
i=0

(∂t0 + eiα∂α)g(eq)
i = −

1
τ ∗
g

b
i=0

g(1)
i (A.19)

with the definition of g(eq)
i in Eq. (A.7), yields,

∂αu∗

α = 0, (A.20)

which is the incompressible mass conservation equation (2.2) (i.e., continuity equation).
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Taking the first-order moment of Eq. (A.15) yields,

b
i=0

eiα(∂t0 + eiβ∂β)g(eq)
i = −

1
τ ∗
g

b
i=0

eiα g(1)
i (A.21)

∂t0

b
i=0

eiαg
(eq)
i + ∂βΠ

(0)
αβ = 0. (A.22)

Using Eqs. (A.7)–(A.9) we obtain,

∂t0u
∗

α + ∂β


k
ρ

∂φ

∂xγ

∂φ

∂xγ


δαβ −

k
ρ

∂φ

∂xα

∂φ

∂xβ

+ u∗

αu
∗

β + c2s


τ ∗

g −
1
2


∂uα

∂xβ

+
∂uβ

∂xα


1t


= 0. (A.23)

Additionally, the first-order moment of Eq. (A.17) reads,

∂t1u
∗

α +
2τ ∗

g − 1

2τ ∗
g

∂β Π
(1)
αβ = 0, (A.24)

with the definition,

Π
(1)
αβ =

b
i=0

g(1)
i eiαeiβ . (A.25)

Substituting g(1)
i from Eq. (A.15) into Eq. (A.25), and using Eqs. (A.10) and (A.9), we find,

Π
(1)
αβ = −τ ∗

g

b
i=0

eiαeiβ

∂t0 + eiγ ∂γ


g(eq)
i = −τ ∗

g


∂t0

b
i=0

eiαeiβg
(eq)
i + ∂γ

b
i=0

eiαeiβeiγ g
(eq)
i


(A.26)

Π
(1)
αβ = −τ ∗

g


∂t0Π

(0)
αβ + ∂γ c2s


δαβu∗

γ + δαγ u∗

β + δγ βu∗

α


(A.27)

then,

Π
(1)
αβ = −τ ∗

g


∂t0


k
ρ

∂φ

∂xγ

∂φ

∂xγ


δαβ −

k
ρ

∂φ

∂xα

∂φ

∂xβ

+ u∗

αu
∗

β + c2s


τ ∗

g −
1
2


∂uα

∂xβ

+
∂uβ

∂xα


1t


+ ∂γ c2s

δαβu∗

γ + δαγ u∗

β + δγ βu∗

α


(A.28)

which can be simplified to,

Π
(1)
αβ = −τ ∗

g


∂t0


k
ρ

∂φ

∂xγ

∂φ

∂xγ

δαβ −
k
ρ

∂φ

∂xα

∂φ

∂xβ

+ u∗

αu
∗

β + c2s


τ ∗

g −
1
2


∂uα

∂xβ

+
∂uβ

∂xα


1t


+ c2s

∂αu∗

β + ∂βu∗

α


(A.29)

where continuity equation (2.2) has been used in the last term. Using chain rule in the term ∂t0(u∗
αu

∗

β) yields,

∂t0(u∗

αu
∗

β) = u∗

α∂t0(u∗

β) + u∗

β∂t0(u∗

α) (A.30)

with, from Eq. (A.22),

∂t0(uβ) = −∂γ (Π0
βγ ) (A.31)

∂t0(uα) = −∂γ (Π0
αγ ) (A.32)

yielding after substitution,

∂t0(u∗

αu
∗

β) = −u∗

α∂γ (Π0
βγ ) − u∗

β∂γ (Π0
αγ ). (A.33)

Therefore,

∂t0(u∗

αu
∗

β) = −u∗

α∂γ


k
ρ

∂φ

∂xζ

∂φ

∂xζ


δβγ −

k
ρ

∂φ

∂xβ

∂φ

∂xγ

+ u∗

βu
∗

γ + c2s


τ ∗

g −
1
2


1t


∂uβ

∂xγ

+
∂uγ

∂xβ


− u∗

β∂γ


k
ρ

∂φ

∂xζ

∂φ

∂xζ


δαγ −

k
ρ

∂φ

∂xα

∂φ

∂xγ

+ u∗

αu
∗

γ + c2s


τ ∗

g −
1
2


1t


∂uα

∂xγ

+
∂uγ

∂xα


(A.34)
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then,

∂t0(u∗

αu
∗

β) = −u∗

α∂γ


u∗

βu
∗

γ


− u∗

β∂γ


u∗

αu
∗

γ


− u∗

α∂γ
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ρ
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∂φ
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ρ
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∂xβ


− u∗

β∂γ
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δαγ −
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ρ
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∂φ

∂xγ
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τ ∗

g −
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∂uα

∂xγ

+
∂uγ

∂xα


. (A.35)

The first term in the above equation canbe replacedby−∂γ


u∗

βu
∗
αu

∗
γ


. Now, replacing ∂t0(u∗

αu
∗

β) from the above equation
into Eq. (A.36) results in,
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β + ∂βu∗
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. (A.36)

With this definition, Eq. (A.24) becomes,

∂t1u
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= 0. (A.37)

To recover the pressureless NS momentum equation, we multiply Eq. (A.37) by ϵ = 1t and add it to Eq. (A.23), yielding,
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= 0. (A.38)
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In the latter equation, the terms including ∂β
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are on the order of 1t2 and can be eliminated.

After accounting for the above simplifications, Eq. (A.38) becomes,
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=
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δαβ −
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∂xβ


(A.39)

which is identical to Eq. (2.3) without viscous forces, gravitational force and pressure gradient. The effects of viscous and
gravitational forces are added as body forces to the LB scheme as proposed in [18].

Appendix B. Chapman–Enskog expansion for the Cahn–Hilliard equation

By applying a procedure similar to that in Appendix A to Eq. (2.22) we obtain,

ϵ

∂t0 + eiα∂α


f (eq)
i = −

1
τ ∗

f
ϵf (1)

i , (B.1)

with τ ∗

f = τf /1t , and,

∂t1 f
(eq)
i −
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f −
1
2

 
∂t0 + eiα∂α

 
∂t0 + eiβ∂β


f (eq)
i = −

1
τ ∗

f
f (2)
i , (B.2)

on the O (ϵ) scale and the O

ϵ2

scale, respectively.

From the definitions of fi and f (eq)
i we find,

b
i=0

f (k)
i = 0 and

b
i=0

f (k)
i eα = 0 (k = 1, 2, . . .) . (B.3)

And the moments of f eqi are,

b
i=0

fi = φ, (B.4)

b
i=0

fieiα = φuα, (B.5)

b
i=0

fieiαeiβ =
Mµφδαβ

τ ∗

f −
1
21t

+ φ uαuβ . (B.6)

Taking the zeroth-order moments of Eqs. (B.1) and (B.2) bye using Eqs. (B.4)–(B.6), yields,

∂t0φ + ∂α (φuα) = 0, (B.7)

and,

∂t1φ −


τ ∗

f −
1
2


∂t0∂t0φ + ∂α∂t0 (φuα)


−


τ ∗

f −
1
2



×


∂β∂t0


φuβ


+ ∂α∂β


M

τ ∗

f −
1
2

µφδαβ + φuαuβ


= 0. (B.8)
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From Eq. (B.7) we have,

∂t0∂t0φ + ∂α∂t0 (φuα) = ∂t0

∂t0φ + ∂α (φuα)


= 0, (B.9)

and simplify Eq. (B.8) into,

∂t1φ =


τ ∗

f −
1
2


∂β∂t0


φuβ


+ ∂α∂β


M

τ ∗

f −
1
2

µφδαβ + φuαuβ


, (B.10)

or

∂t1φ =


τ ∗

f −
1
2


∂β


∂t0

φuβ


+ ∂α


φuαuβ


+ ∂α∂αMµφ . (B.11)

Multiplying Eq. (B.11) by 1t and adding it to Eq. (B.7), we get,

∂tφ + ∂α (φuα) = 1tM∇
2µφ + 1t


τ ∗

f −
1
2


∂β


∂t0

φuβ


+ ∂α


φuαuβ


. (B.12)

For low Mach number flows, the last term can be neglected, since it has a small magnitude and is multiplied by the small
parameter 1t , so that we finally get,

∂tφ + ∂α (φuα) = M∇
2µφ, (B.13)

which corresponds to the Cahn–Hilliard equation with diffusivity coefficient (Mobility)M .
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